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Robustness of entanglement
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~Received 27 July 1998!

In the quest to completely describe entanglement in the general case of a finite number of parties sharing a
physical system of finite-dimensional Hilbert space an entanglement magnitude is introduced for its pure and
mixed states: robustness. It corresponds to the minimal amount of mixing with locally prepared states which
washes out all entanglement. It quantifies in a sense the endurance of entanglement against noise and jamming.
Its properties are studied comprehensively. Analytical expressions for the robustness are given for pure states
of two-party systems, and analytical bounds for mixed states of two-party systems. Specific results are obtained
mainly for the qubit-qubit system~qubit denotes quantum bit!. As by-products local pseudomixtures are
generalized, a lower bound for the relative volume of separable states is deduced, and arguments for consid-
ering convexity a necessary condition of any entanglement measure are put forward.@S1050-2947~99!03701-4#

PACS number~s!: 03.67.2a
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I. INTRODUCTION

Entanglement@1,2# is arguably the most nonclassical fe
ture of quantum mechanics. For it to show up, the phys
system has to consist of different local parts, which we w
call local subsystems, in one-to-one correspondence with d
ferent physicists, which we will callparties. Each party acts
locally on its respective local subsystem. Each local s
system will, in general, consist of further parts,local partial
subsystemsor objects, which may be entangled among them
selves, locally. We are only concerned here with nonlo
entanglement, involving more than one local subsystem.
system might also be partitioned intononlocal subsystems,
which are shared by several parties~see Appendix A!.

Entanglement refers thus to states shared by more
one party. It is behind~or depending on the definitions
equivalent to! nonlocality, nonseparability, and the existen
of nonclassical or quantum correlations, as seen by the
ties. It plays a central role in quantum communication a
quantum computation. A huge effort is being put into qua
tifying entanglement. This is an extremely difficult underta
ing, mainly because of the intricate interplay between cla
cal and quantum correlations. What one would like to hav
a minimal set of independent, physically meaningful mag
tudes, which completely characterize entanglement.

Consider, e.g., a two-party system consisting of two thr
state local subsystems~each one being, say, a spin 1 pa
ticle!. As far as entanglement is concerned, any pure stat
this system is completely determined by two of the th
coefficients of its Schmidt decomposition@3#:

uC&5a1u1& ^ u1&1a2u2& ^ u2&1a3u3& ^ u3&,

ai>0, (
i 51

3

ai
251, ~1!

say, the two largest ones. Thus two independent magnitu
will suffice to completely characterize its entanglement. S
pose one chooses one of them to be the entropy of entan
ment @4#,
PRA 591050-2947/99/59~1!/141~15!/$15.00
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2 . ~2!

Consider now two pure states with different Schmidt coe
cients, uC1&ÞuC2&, which have the same entropy of en
tanglement,E(C1)5E(C2). As we will see, there are
physically meaningful entanglement magnitudes wh
quantify differently these two states. Any such magnitu
together with the entropy of entanglement we chose to s
with, determines the two largest Schmidt coefficients a
thus characterizes entanglement for pure states comple
~provided they are bijective!.

As the local subsystems become more complex, involv
more states and more partial subsystems, as the numb
local subsystems and thus parties grows, so does the nu
of entanglement magnitudes needed to completely chara
ize entanglement@5#.

The measures of entanglement proposed up to now
examples of entanglement magnitudes. Foremost is the
tanglement of formation or creation@6#. Others are the en
tanglement of distillation@6# and the relative entropy of en
tanglement @7#, but several more have been propos
recently ~e.g., entanglement of assistance@8#!. It has been
argued that for pure states there is a unique measure o
tanglement@9#, but certainly one sole magnitude will, in gen
eral, not be enough for characterizing entanglement co
pletely.

The aim of this contribution is to propose an entang
ment magnitude which we will callrobustnessand to study it
in some detail. It has several appealing features. Its defini
is simple and valid for any state of a composite system co
posed by any finite number of local subsystems of fin
dimension. It is based on a simple physical operation: mix
with locally prepared states. It does not increase on aver
when the parties, classically communicated, act locally
the subsystems. Therobustnessquantifies the endurance o
entanglement with respect to local mixing by asking ab
the minimal amount of entanglement-free mixing needed
wipe out all entanglement. It can be interpreted as a qua
fication of intelligent jamming of entanglement, intellige
141 ©1999 The American Physical Society
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142 PRA 59GUIFRÉ VIDAL AND ROLF TARRACH
meaning that the parties know the entangled state and
tailor the jamming accordingly, so that a minimal amou
suffices. An auxiliary and useful magnitude will be theran-
dom robustness, which can be interpreted as the robustne
of entanglement with respect to mixing with white nois
While we explain and analyze robustness a few more gen
results will be presented: convexity of entanglement m
sures is put on firmer grounds, a set of necessary and s
cient conditions for consistency with the fundamental law
quantum information processing@10# is presented, and a
weak version for the composition law of entanglement m
nitudes for a state describing a system which consists of
uncorrelated nonlocal entangled subsystems is suggeste

The paper is organized as follows. In Sec. II, after a
lyzing some features of mixing, we introduce, followin
@11#, local pseudomixturesand prove their existence for th
most general, finite-dimensional, case, thus generalizing
cal descriptions of entanglement. A universal local pseu
mixture is given for any state of this general case.Relative
robustnessand random robustnessare also introduced an
their physical meaning discussed. In Sec. III we introdu
robustness, and prove eight general properties that make
potentially useful entanglement magnitude. In Sec. IV
number of results for the robustness of two-party systems
presented, whose proofs can be found in Appendixes B
C. They include explicit expressions for the robustness
the random robustness of any pure state, and bounds
mixed states. For the two simplest two-party systems m
accurate results are presented and a numerical method fo
computation of the robustness is discussed. We presen
application of some of the results of the preceding sectio
Sec. V by obtaining a universal lower bound for the relat
volume of separable states, thus completing Ref.@12#.

One of the main questions concerning entanglement m
sures is, what are the necessary and what are the suffi
conditions they have to fulfill? Much progress has be
achieved in the last few years~see, e.g.,@7–9#! although
many questions still remain, in particular concerning addit
ity. We hope this and further studies of robustness will a
contribute to the understanding of these issues.

II. LOCAL PSEUDOMIXTURES

A. Mixing of shared states and local operations

Since the mixing of states that are shared by several
ties will play a major role throughout this contribution, w
find it convenient to begin with a few comments on how o
can obtain a density matrix from one of itsrealizations, with-
out resorting to nonlocal operations. This will, as a b
product, lead to a new condition any measure of entan
ment has to satisfy.

We will call a set of states$rk%k51, . . . ,l with associated
probabilities $pk%k51, . . . ,l a realization1 Y[$rk ,pk%k51,...,l

of the density matrixr[(k51
l pkrk . Consider a deviceS

that is known to supply a systemQ in the staterk with

1We will not call it an ensemble because we construe the star
from it by dismissing information, not by choosing randomly o
item out of an ensemble of statesrk populated proportionally topk .
us
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probability pk , for k51, . . . ,l . The state of the systemQ
the parties obtain from such a device depends on the am
of extra informationS supplies together with the prepare
systemQ. Thus, if ~a! no extra information is supplied, the
the state ofQ is r, whereas this is not the case if~b! S casts
a message stating which specific staterkQ has been prepare
in, such an event having ana priori probability pk . These
two situations lead to states ofQ that are clearly inequivalen
even in a statistical sense, and this fact is exemplified if o
adopts a utilitarian approach: consider any functionm(r)
defined on the set of states that quantifies somehow s
resources contained inr. @Alternativelym(r) could quantify
the cost of preparing the stater, and so on.# Then, in situa-
tion ~a! the parties obtain a stater, from which they can
extract, maybe after some manipulations, an amountm(r) of
resources, whereas in situation~b! the expected amount o
resources the parties can extract is an average, over
realization Y, of the amounts m(rk), i.e., m(Y)
[(k51

l pkm(rk), the extra information supplied togethe
with Q allowing for a conditional treatment of this syste
depending on the concreterk the parties get. Moreover
whatever is done toQ in situation~a! in order to use it as a
resource, the very same manipulations can be done in~b!
regardless of the extra information supplied, obtaining, in
statistical sense, the same results as in~a!, so that one gets
on average, at least as many resources in case~b! as in case
~a!. Therefore

m~r!<m~Y!. ~3!

„Werem(r) a quantification of the minimal cost of prepar
tion of r, one could reach the same conclusion by notic
that Y is not the only realization which leads tor, and that
there may be cheaper ones, that is,m(Y)>minY8m(Y8)
@[m(r)#, whereY8 is any realization ofr.…

Notice, moreover, that since the only difference betwe
situation ~a! and ~b! consists of the extra information sup
plied in ~b!, if this extra information is irreversibly lost by
the parties, the largest amount of resources that they
obtain fromQ becomesm(r), even if initially the expected
amount has beenm(Y).

Let us translate the above considerations to the c
wherem is any measure of entanglement, which we will d
with a concrete example. SupposeS prepares two particles
in the global staterk with probability pk and then sends on
to Alice and the other to Bob~and thusQ is a two-party
system!. What we want to remark here is that the loss of t
extra information supplied in case~b!, which forces a transi-
tion of the state ofQ from ark to r, can occur without Alice
and Bob having to put the two particles back together, so
to all effects it can be regarded as a local process. Then
particular, we have argued that any measureE of the en-
tanglement of a shared stater has to be a convex function
~see also@7#!, that is,

E~r!<(
k51

l

pkE~rk! ~4!

if r5(k51
l pkrk , otherwise one would be creating, on ave

age, entanglement by means of local operations~as losing
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PRA 59 143ROBUSTNESS OF ENTANGLEMENT
information is something one can always do locally!. Notice
that the entanglement of assistance@8# is concave, not con-
vex ~it also is generally nonvanishing for separable state!.
We interpret it as a measure of the entanglement ofr when
supplemented with further information~assisted!, and thus
more as a measure for maximally entangled ensemble
pure states realizing a density matrix, rather than as a pr
measure for a single system described by the density m
alone.

Once a possible way of~locally! obtaining a state from
any of its information-supplied realizations has been d
cussed, we would like to address a question motivated by
fact that a mixture of shared states, even if they all are
tangled, may contain no entanglement at all, so that the
cedure of mixing often implies the disappearance of quan
correlations: specifically, given an arbitrary entangled st
of a composite system shared byN parties, we would like to
know whether it is always possible to wash out all its qua
tum correlations by mixing it with an adequate separa
state. This will be our starting point to derive an entang
ment magnitude: therobustnessof entangled states.

B. Erasing quantum correlations by mixing with a separable
state: A local description of entangled states

Consider a composite systemQ with N local subsystems
such that the dimensionn of its Hilbert spaceH is finite. Let
us recall that, according to whether they can be expresse
a convex combination of pure product states or not, one
distinguish between separable and entangled states. Thu
$H i% i 51, . . . ,N the Hilbert spaces of the local subsystem
(H5 ^ i 51

N H i), separable statesrs can be written as

rs5(
k

pkuCk&^Cku, ~5!

wherepk.0, (kpk51 anduCk&5 ^ i 51
N uCk

i &PH, uCk
i &

PH i . We will now introduce the concept of robustness o
state rPT(H) relative to a separable statersPS(H) @by
T(H) we denote the set of states ofQ, and byS(H),T(H)
that of separable states of the same system#.

Definition: Given a staterPT(H) and a separable stat
rsPS(H), we call robustness of r relative to
rs , R(ruurs), the minimals>0 for which

r~s![
1

11s
~r1srs! ~6!

is separable. It might be infinite.
We will single out a particular case of the relative robu

ness and name it accordingly.
Definition: We call random robustnessof r its robustness

relative to the~separable! maximally random state (1/n)I .
ThusR(ruurs) is the minimal amount ofrs that has to be

mixed with r in order to wipe out all the entanglement in
tially contained inr. Notice thatR(ruurs) is zero if, and
only if, r is separable itself. Our previous question, whi
Theorem 1 will answer, reduces now to see whether one
always find a separablers such thatr has finite relative
robustnessR(ruurs). Equivalently, in terms of the loca
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pseudomixtures introduced in@11#, we would like to know
whether one can always express any staterPT(H) as

r5~11t !rs
12trs

2 , 0<t,` ~7!

for somers
1 ,rs

2PS(H), that is, whether one can alway
describe a state as a local pseudomixture~see @13# for a
recent proof forN52). Notice that expressingrs

1 andrs
2 in

Eq. ~7! as finite statistical mixtures of pure product state
uCk&5 ^ i 51

N uC&, uCk
i &PH i @14#, one gets

r5 (
k51

l ,`

r kuCk&^Cku, ~8!

where (k51
l ,`r k51 and r kPR. That is, a stater of Q is

expressed as a sum of pure product states, in a similar wa
how separable states are as statistical mixtures, but with
difference that now the probabilistic weightspk in Eq. ~5!
have been replaced by real numbersr k , still restricted by
(k51

l ,`r k51. It is this resemblance with mixtures that mo
vates calling the right hand sides of Eqs.~7! and ~8! local
pseudomixtures, the adjectivelocal reflecting the fact that all
states intervening in such expressions are separable.

Theorem 1.Any entangled stater of a generic composite
system ~with finite-dimensional Hilbert space! can be ex-
pressed in terms of two separable states and a non-neg
finite real number,$rs

1 ,rs
2 ,t%, as r5(11t)rs

12trs
2 ~see

Fig. 1!.
Proof: In Appendix C an explicit upper bound for th

random robustness of any stater,

RS rUU 1

n
I D<S 11

n

2D N21

21[ t̃ , ~9!

will be obtained. Then one can write

r5~11 t̃ !rs
12 t̃

1

n
I , rs

1[
1

11 t̃
S r1 t̃

1

n
I D , ~10!

wherers
2 in Eq. ~7! is (1/n)I and rs

1 is separable by con
struction.h

Notice that this means, in particular, that (1/n)I PS is not
on the frontier ofS andT\S, but in the interior ofS, as was
proved in@12#. Our proof, which is independent of that pre
sented in@12#, provides offhand an explicit pseudomixtur
for any stater and implies, from a physical point of view
that one can always erase all quantum correlations by mix

FIG. 1. Local pseudomixture for the entangled stater. Since
there always exists ars

2PS and a finitet.0 such thatrs
1[@1/(1

1t)#(r1trs
2) belongs toS, one can expressr in terms of two

separable states and the weightt asr5(11t)rs
12trs

2 .
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144 PRA 59GUIFRÉ VIDAL AND ROLF TARRACH
with the maximally random state. Let us remark that mixi
with (1/n)I can be regarded as a model for the study of
effect of white noise on the quantum correlations contain
in an entangled state. We will come back to the study of
random robustness in Sec. IV B, where it will be compu
for any pure state of a two-party~i.e., N52) system and for
any state of two-party systems of dimensionn<6, whereas
for any mixed state of a generic two-party system lower a
upper bounds will be presented. Finally, the random rob
ness will be used in Sec. V to obtain an explicit lower bou
for the volume of separable states.

III. ROBUSTNESS OF SHARED STATES

A. Definition of robustness

We have established so far that for any stater there is at
least one separable staters such thatR(ruurs) is finite. In
addition we have seen that thisrs can be chosen to be inde
pendent ofr. We now prove the existence of a minim
value of R(ruurs) as a function ofrsPS. This quantity,
R(ruuS), will prove to be, on average, nonincreasing und
any transformation of the shared system involving only lo
operations on the subsystems and classical communica
between the parties. Analogously toR(ruurs), R(ruuS) is
the minimal amount of any separable state that has to
mixed with r in order to wash out its quantum correlation
and has a neat geometrical meaning~see Fig. 2!. Notice that
no metric inT has been used to defineR(ruuS).

Let us consider, then, a stater of Q and all its possible
pseudomixtures$rs

1 ,rs
2 ,t% of separable states.

Lemma 1. There always exists a non-negativ
t(r;rs

1 ,rs
2) satisfying Eq.~7! which is the minimal one.

Proof: It follows from the fact that (rs
1 ,rs

2) must belong
to a compact subset ofS3S @since they are constrained b
Eq. ~7!# and thatt(r;rs

1 ,rs
2)>0 is a continuous function o

them.h
Definition: We call ~absolute! robustnessof rPT the

quantity

R~ruuS![ min
rsPS

R~ruurs!. ~11!

Definition: We call a local pseudomixture with
t(r;rs

1 ,rs
2)5R(ruuS) an optimal one.

FIG. 2. An optimal local pseudomixture for the stater is such
that the weight t5R(ruurs

2) is minimal. Thus the robustnes
R(ruuS) is a geometrical quantity that relates the elementrPT with
the subsetS,T, asp51/@11R(ruuS)# is the maximal weight ofr
in a convex combinationpr1(12p)rs

2 involving an elementrs
2

PS such that it belongs to the subsetS.
e
d
e
d

d
t-
d

r
l
on

be
,

B. Some properties of robustness

Next we will discuss eight properties the robustness o
state satisfies. Some of them are necessary if one wan
guarantee that an entanglement magnitude cannot be
creased locally~that is, by means of the combined use
local transformations and classical communication! ~cf.
@7,9#!. Another assures that the magnitude allows one to
tinguish between separable and entangled states. The
property is a weak version of a composition law, which r
places additivity.

Recall that the robustness has been defined for states
generic composite system, so that it can be applied to st
shared by an unrestricted~but finite! number of partiesN.
We associate parties with local subsystems, so that a l
subsystem consists of all the physical objects~particles, for
instance! a party holds and can act on. We also require e
of these local sets of objects to have a Hilbert spaceH i of
finite dimensionni , so thatr will be an n3n matrix acting
onH5 ^ i 51

N C ni, with n5dim(H)5) i 51
N ni . In analogy with

pure product states, product operators will be those that
be expressed asO5 ^ i 51

N Oi , with Oi an operator inH i , and

a product subspace ofH will be a spaceH̃#H such that
H̃5 ^ i 51

N H̃i with H̃i a subspace ofH i . The robustness of a
state, from now on simplyR(r), satisfies the following con-
ditions.

~i! If range(r)#H̃,H, thenR(r) is independent of the
Hilbert space,H̃ or H, r acts on.2

~ii ! R(r)>0; R(r)50⇔rPS.
~iii ! R(r)5R(ULrUL

†) for any unitary product operato
UL5 ^ i 51

N Ui .
~iv! R(TrQ̃@r#)<R(r), where TrQ̃@ .# is a partial trace

over Q̃, Q̃ denoting any subset, local or not, of the who
set of objects held by the parties.

~v! R(r ^ rs)5R(r), wherers is any separable state.
~vi! R(r)<(kpkR(rk), where$rk ,pk% is any realization

of r, i.e., r5(kpkrk .
~vii ! R(r)>(kpkR(rk) if as a result of a local, not nec

essarily complete, von Neumann measurementr becomes
the staterk with probability pk .

~viii ! m„R(rx),R(ry)…<R(rx^ ry)<M „R(rx),R(ry)…,
where m and M are two known functions ofR(rx) and
R(ry).

The meaning of property~i! is that the robustness of
state is not an intensive quantity in the dimensionn of the
Hilbert space of the shared systemQ, since it is independen
of n. The following example should clarify the meaning
~i!: the two-party pure entangled stateuC&5(1/A2)(u1&
^ u1&1u2& ^ u2&), whereu1& andu2& are two normalized or-
thogonal vectors, has a density matrixuC&^Cu that can act,
for instance, onC 2

^C 2 @a two-qubit~quantum bit! system#
or on C 3

^C 3 @a two-qutrit ~quantum trit! system#. What
property~i! assures is thatR(C) does not depend on whethe
uC& is the state of two qubits or of two qutrits, and it is n
obviously satisfied@later on, for instance, it will be seen tha

2The support or range of a density matrix is the subspace spa
by its eigenvectors of nonvanishing eigenvalue. The dimension
the range is the rank.
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PRA 59 145ROBUSTNESS OF ENTANGLEMENT
the random robustness ofuC&, R„Cuu(1/n)I …, does depend
on n#.

A genericr in H5 ^ i 51
N H i may have support only on

product subspace ofH. Let us callH̃#H the smallest of
such product subspaces (H̃5 ^ i 51

N H̃i can be constructed b
computing, for each partyi, its local stater i5TrQ\Q i@r#,
and by takingH̃i#H i to be the subspace spanned by t
eigenvectors ofr i with nonvanishing eigenvalue!. Taking up
the previous example involvinguC&PC 3

^C 3, one can see
that the projection ofuC&^Cu onto the product subspaceH̃
5^u1&,u2&& ^ ^u1&,u2&&>C 2

^C 2 by means of the produc
projectorP5(u1&^1u1u2&^2u) ^ (u1&^1u1u2&^2u) leaves the
state unchanged, that is,PuC&^CuP5uC&^Cu, and no other
product projector of equal or smaller rank does so.

If we now show that any optimal local pseudomixture
r, $rs

1 ,rs
2 ,t5R(r)%, satisfies that bothrs

1 and rs
2 have

support only onH̃, then it will be irrelevant, in terms o
R(r), whetherr acts on the wholeH or only onH̃.

Theorem 2. For any optimal pseudomixture o
r, $rs

1 ,rs
2 ,R(r)%, if H̃ is the smallest product subspa

supportingr and P is a projector onto it, thenPrs
1P5rs

1

andPrs
2P5rs

2 .
Proof: Notice first that for a normalized pure product sta

uC&5 ^ i 51
N uC i&, its projection onto a product subspace is

not zero, another pure product stateuF&5PuC&5
^ i 51

N Pi uC i&5 ^ i 51
N uF i&, with ^FuF&<1. Then, since any

separable staters can be expressed as a convex com
nation of projectors onto pure product statesuCk&,
i.e., rs5(kpkuCk&^Cku, and PuCk&^CkuP5uFk&^Fku
5qkuF̃k&^F̃ku, where 0,qk[^FkuFk&<1 and uF̃k&
[(1/Aqk)uFk& is a normalized pure product state~unless
PuCk&50), the renormalized restriction ofrs on H̃, r̃s
[PrsP/Tr@PrsP# (Tr@PrsP#5(kpkqk<1) is a sepa-
rable density matrix as well. Then

r5PrP5@11R~r!#Tr@Prs
1P#r̃s

12R~r!Tr@Prs
2P#r̃s

2 .
~12!

Now suppose that at least one ofrs
1 andrs

2 ~and thus, in

fact, both!, say rs
2 , has support not contained inH̃. Then

Tr@Prs
2P#,1 and we automatically obtain a new loc

pseudomixture involvingr̃s
2Þrs

2 , with t5Tr@Prs
2P#R(r)

,R(r), which is a contradiction, for we started from a
optimal one.h

Property~ii ! says that the robustness of a stater indicates
whetherr is entangled or separable. To see~ii !, notice that
R(r)50 implies thatr5rs

1 , which is separable, and that
r is separable, then by choosingrs

1 to ber one gets a loca
pseudomixture forr, with t50.

Property~iii ! states that any two states related by a unit
product transformation have the same robustness.

Theorem 3. R(r)5R(ULrUL
†).

Proof: Notice that R(ULrUL
†) cannot be greater tha

R(r), since by transforming an optimal local pseudomixtu

r5@11R~r!#rs
12R~r!rs

2 , ~13!

by UL we find the local pseudomixture
-

y

,

ULrUL
†5@11R~r!#ULrs

1UL
†2R~r!ULrs

2UL
† , ~14!

which has t5R(r). Mutatis mutandis we see that
R(ULrUL

†) cannot be smaller thanR(r). h

In order to discuss properties~iv! and~v!, recall that if to
Q, in the stater, we add a set of objectsQ̃ in the stater̃,
then the state ofQøQ̃ is r ^ r̃ ~assumingQ and Q̃ are
uncorrelated!. On the other hand, forQ̃,Q a subset of ob-
jects, if r is the state ofQ then that ofQ̃ is TrQ\Q̃@r#,
whereas if we throwQ̃ away the remaining state is TrQ̃@r#.

Point ~iv! states that the robustness of the stater of a
composite systemQ does not increase when throwing awa
any subset of objectsQ̃,Q.

Theorem 4. R(TrQ̃@r#)<R(r).
Proof: It will suffice to analyze the case ofQ̃ being a

single object held by one party, since for a generalQ̃
5ø i , jQ i , j one can proceed stepwise, each step involv
only one object. Take thenQ̃5Q 1,1 ~relabeling the parties
and objects, if necessary!, so that the partial trace is take
over the factor spaceH 1,1 of H 1. A rank one product pro-
jector uC&^Cu (uC&5 ^ i 51

N uC i&, uC i&PH i) will be
transformed into TrQ 1,1@ uC&^Cu#5TrQ 1,1@ uC1&^C1u# ^

^ i 52
N uC i&^C i u, which is a product~in general not pure! state

of Q\Q 1,1. Therefore TrQ 1,1@rs# is a separable state ifrs is
so, and the expression

r8[TrQ 1,1@r#5@11R~r!#TrQ 1,1@rs
1#2R~r!TrQ 1,1@rs

2#
~15!

is a local pseudomixture, not necessarily optimal, for
state r8 of Q\Q 1,1 with t5R(r). Consequently,
R(TrQ 1,1@r#)<R(r). h

Property~v! assures that the robustness of the state o
shared system is not an intensive quantity in the numbe
objectsQ consists of. Indeed, this follows from the fact th
R(r) is left unchanged if we give the parties new objectsQ̃,
provided they are in a separable staters and uncorrelated
with the objects ofQ. Notice that we need only prove tha
R(r ^ rs)<R(r), since Theorem 4 will do the rest.

Theorem 5. R(r ^ rs)<R(r).
Proof: For r5@11R(r)#rs

12R(r)rs
2 an optimal lo-

cal pseudomixture of the state ofQ, the state ofQøQ̃,
r ^ rs , admits the following decomposition:

r ^ rs5@11R~r!#rs
1

^ rs2R~r!rs
2

^ rs , ~16!

which is a local pseudomixture, not necessarily optimal.h

Definition: Given a realizationY[$rk ,pk%k51, . . . ,l , we
call the quantity(k51

l pkR(rk) the ~average! robustnessof
Y, R(Y).

Property ~vi! refers to the convexity ofR(r), and it
means that the robustness of any realization ofr, Y
[$rk ,pk%k51, . . . ,l , is not smaller than that ofr itself. It
suffices to prove~vi! for l 52, sincel .2 can be achieved by
iterating this case.

Theorem 6. R@pr11(12p)r2#<pR(r1)1(1
2p)R(r2), pP@0,1#.

Proof: For eachrk (k51,2) consider an optimal loca
pseudomixture, say
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146 PRA 59GUIFRÉ VIDAL AND ROLF TARRACH
rk5@11R~rk!#rs,k
1 2R~rk!rs,k

2 . ~17!

Thenr5pr11(12p)r2 can be reexpressed as

r5~11t !rs
12trs

2 , ~18!

which is a local pseudomixture, not necessarily optimal, w

rs
1[

1

11t
$p@11R~r1!#rs,1

1 1~12p!@11R~r2!#rs,2
1 %PS,

~19!

rs
2[

1

t
@pR~r1!rs,1

2 1~12p!R~r2!rs,2
2 #PS, ~20!

t[pR~r1!1~12p!R~r2!. ~21!

Then R@r5pr11(12p)r2#<t by the definition of
R(r). h

Let us explain property~vi! a bit further. Recall the device
S introduced in Sec. II A. If Alice and Bob are each given
particle which together are, with equal probability, either
state r15uC1&^C1u or r25uC2&^C2u, with uC1&5u1&
^ u1& and uC2&5(1/A2)(u1& ^ u1&1u2& ^ u2&), then if they
get them in the separable stater15uC1&^C1u together with a
message stating this fact, their shared state has null rob
ness. However, if they destroy the message and forge
content, the new state of the system isr5 1

2 (r11r2), which
can be checked to be entangled and consequently con
some robustness. This means Alice and Bob have incre
the robustness of their system by acting locally. Notice, ho
ever, that if the process is repeated many times~each repeti-
tion consisting of first getting a couple of particles alo
with a message stating their global state, and then destro
the message and forgetting its content!, on average the ro
bustness of the freshly obtained couples is1

2 R(r1)
1 1

2 R(r2), whereas the robustness of the state the cou
finally end up in isR(r)< 1

2 @R(r1)1R(r2)#. Therefore~vi!
states that one cannot, in a statistical sense, increase th
bustness of a shared state by mixing.

Let us now discuss property~vii !, which assures that th
output of a local measurement onr is a realizationY
5$rk ,pk%k51, . . . ,l ~of the averagedfinal stater f[(kpkrk)
that cannot have more robustness thanr, so that the robust-
ness of a systemQ cannot be increased, on average, by p
forming a local measurement on it.

Although property~vii ! refers to a local, not necessari
complete, von Neumann measurement~that is, one imple-
mented by a set of orthogonal product projectors, not ne
sarily of rank one but which correspond to a resolution of
identity!, we will prove it for local measurements of the mo
general nature. In addition to being complete or incomple
they may include the temporary use of ancillas@local posi-
tive operator valued measurements~POVM’s!# and classical
communication between the parties, and contemplate co
tional rejection of the system depending on the output
general local measurement is implemented by a
$Ak%k51, . . . ,l of product operators that satisfy 0<(kAk

†Ak

<I . As a result of such a measurement the state of the
tem becomes, with probability pk5Tr@AkrAk

†#, rk
h

st-
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ed
-

ng

es

ro-

-

s-
e

,

di-

et

s-

5AkrAk
†/Tr@AkrAk

†#. Notice that(kpk<1. Thus the realiza-
tion Y5$rk ,pk%k51, . . . ,l and the averaged final stater f are
in general unnormalized.

Theorem 7. If the ~unnormalized! realization Y
5$rk ,pk%k51, . . . ,l describes the potential final states of
general local measurement performed onQ in the stater,
thenR(r)>R(Y).

Proof: One can check that forrsPS, any resulting state
rs,k is separable as well~as is to be expected, otherwise w
would get some entanglement out of a separable state,
in a statistical sense!. Then, forr5@11R(r)#rs

12R(r)rs
2

an optimal local pseudomixture ofr, we can write

rk5
1

Tr@AkrAk
†#

$@11R~r!#Akrs
1Ak

†2R~r!Akrs
2Ak

†%,

~22!

which implies that if rk5@11R(rk)#rs,k
1 2R(rk)rs,k

2

is an optimal local pseudomixture, thenR(rk)
<R(r)Tr@Akrs

2Ak
†#/Tr@AkrAk

†#. Therefore R(Y)
5(kpkR(rk) 5(k Tr @AkrAk

†#R(rk)<R(r) Tr @(kAk
†Akrs

2#
<R(r)Tr@ Irs

2#5R(r). h

We want to stress here that properties~i! and ~iii !–~vii !
must be satisfied by any magnitudem(r) consistent with the
fundamental law of quantum information processing@10,9#,
that is, nonincreasing under local actions of the part
which are allowed to communicate classically. Propert
~iii !–~vii ! must be obviously satisfied@for property~vi!, see
discussion in Sec. II A#, whereas property~i! is also neces-
sary, but it can be proved to follow from properties~iii !–~v!.
Notice that properties~iii !–~vii !, which we claim to be a se
of necessary and sufficient properties a magnitudem has to
fulfill in order to be consistent with the fundamental law
quantum information processing, do not mention the fact tha
the parties can share information using a classical chan
The reason for this is that the use of classical communica
simply allows for a wise selection of a local action cond
tioned to the result of previous local measurements, eac
these local actions not increasing, on average, the magni
m. Properties~iii !–~vii ! are sufficient because any operatio
the parties can perform locally on the local subsystems
be decomposed into elementary steps taken into accou
~iii !–~vii !.

Finally, property~viii ! is a very weak version of a com
position law.3 Consider a state of the formrx^ ry , where,
for instance,rx may be the global state of a nonlocal syste
which consists of four particles shared by Alice, Bob, a
Claire, whereasry may be that of five other particles share
by Alice and Denis. The lack of correlations betweenrx and
ry allows on one hand Alice, Bob, and Claire to mixrx with
a separable staters,x

2 with weight R(rx) and on the other
Alice and Denis to mixry with a separable staters,y

2 with
weight R(ry). These operations transformrx^ ry into
rs,x

1
^ rs,y

1 , a separable state different from any separa

3Additivity of the robustness, that is,R(rx^ ry)5R(rx)
1R(ry), would be a particular form of a composition law. W
already know, however, that the robustness is not an additive q
tity, as will be shown elsewhere, though a function of it could w
be additive.



e

ro

er
du
ed

s
t-
-

e
f
s
o
in

site

-

on-
. A
o

sults
ul as

its
, to-

om-
two-

ce
rs
of

zed

w
ro-

s,
ei-

ill

-
, if

PRA 59 147ROBUSTNESS OF ENTANGLEMENT
state associated withR(rx^ ry). WhetherR(rx^ ry) is de-
termined or not byR(rx) andR(ry), we will now show that
the knowledge ofR(rx) and R(ry) leads to bounds on
R(rx^ ry), which is what property~viii ! announces. Thes
bounds are

max„R~rx!,R~ry!…<R~rx^ ry!<R~rx!1R~ry!

12R~rx!R~ry!, ~23!

and can be obtained as follows: the lower bound results f
taking the partial trace over the Hilbert space of eitherrx or
ry in an optimal local pseudomixture forrx^ ry , and is a
consequence of property~iv!, whereas to deduce the upp
bound one needs to take into consideration the tensor pro
of two optimal local pseudomixtures for the two shar
statesrx and ry @x[R(rx), y[R(ry)#, which is a local
pseudomixture forrx^ ry , not necessarily optimal, with
weight t5x1y12xy,

rx^ ry5@~11x!rs,x
1 2xrs,x

2 # ^ @~11y!rs,y
1 2yrs,y

2 #

5~11x!~11y!rs,x
1

^ rs,y
1 1xyrs,x

2
^ rs,y

2

2$x~11y!rs,x
2

^ rs,y
1 1~11x!yrs,x

1
^ rs,y

2 %.

~24!

C. Numerical computations and convexity

We end the exposition of general properties of the robu
nessR(r) by mentioning a property of the relative robus
nessR(ruurs) which is most valuable for the numerical com
putation of the absolute robustness of a stater, R(r),
namely, thatR(ruurs) is a convex function ofrs .

Indeed, if

r5~11Rk!rs,k
1 2Rkrs,k[@k# ~k51,2! ~25!

is the local pseudomixture forr that, involving the separable
state rs,k , has minimum non-negative weightRk
[R(ruurs,k) @cf. Eq. ~6!#, then the convex combination

1

p/R11~12p!/R2
S p

R1
@1#1

12p

R2
@2# D ~26!

is another local pseudomixture forr, involving rs[prs,1
1(12p)rs,2 , with weight t5@1/p/R11(12p)/R2#.
Since @p/R11(12p)/R2#@pR11(12p)R2#5p21(12p)2

1(R1 /R21R2 /R1)p(12p)>1, it follows that

R~ruurs!<t<pR~ruurs,1!1~12p!R~ruurs,2!. ~27!

This means that ifR(r) is computed by searching in th
set of separable statesS for the absolute minimum o
R(ruurs) as a function ofrs , then the search can finish a
soon as a local minimum is found, for any local minimum
R(ruurs) is also the absolute one. We will use this fact
Sec. IV A to explain a way of numerically computingR(r)
for states of the two simplest two-party systems.
m

ct

t-

f

IV. ROBUSTNESS AND RANDOM ROBUSTNESS
OF TWO-PARTY SYSTEMS

So far all our considerations have referred to compo
systems with an unrestricted number of partiesN. We con-
sider in what follows a composite systemQ shared by two
parties, Alice and Bob, so that from now onN52. Recall
that, as before,H i>C ni is the Hilbert space of all the physi
cal objects partyi can act locally on.

A. Robustness of two-party systems

We present here a list of bounds and exact results c
cerning the robustness of states of a two-party system
method for numerically computing this quantity for the tw
simplest two-party systems is also discussed. These re
make the robustness of states of two-party systems usef
an entanglement magnitude. And thus, for instance, from
expression for pure states one can see that robustness
gether with the entropy of entanglement, can be used to c
pletely characterize the entanglement of pure states of a
qutrit system~see the Introduction!.

1. Robustness of pure states of two-party systems

It turns out that for two-party systems with Hilbert spa
Cm

^Cm a set of m21 ordered non-negative paramete
$ai% i 51, . . . ,m21 suffices to completely specify any element
the set of locally inequivalent pure states,4

~Cm
^Cm\$u0&%)/R1

U~m! 3 U~m!
~28!

~that is the space of the orbits, in the subset of normali
elements of the complex vector spaceCm

^Cm, of the action
of all unitary product transformations!. This set$ai% can eas-
ily be obtained for any normalized vectoruC& from its or-
dered Schmidt decomposition,

uC&5(
i 51

m

ai u i & ^ u i &, ai>ai 11>0, (
i 51

m

ai
251, ~29!

after excludingam . It will be more convenient, however, to
keep allm coefficients. Then, in terms of$ai%, the robustness
R of the pure stateC is

R@C~$ai%!#5S (
i 51

m

ai D 2

21. ~30!

This result is proved in Appendix B, and indicates ho
R(C) can be systematically computed: given a rank one p
jector corresponding to a pure state,r5uC&^Cu, one needs
only to perform a partial trace over any of the two partie
and get the eigenvalues of the remaining matrix. These
genvalues areai

2 , so that the sum of their square roots w
immediately lead toR(C).

Notice that the sets

4In general, any two statesr1 andr2 are said to be locally equiva
lent if they are related by a unitary product transformation, i.e.
r15ULr2UL

† .
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Cm
^Cm

U~m! 3 U~m!
and

C n1^C n2

U~n1! 3 U~n2!
~31!

for anyn1 ,n2 satisfyingm5min(n1,n2) are equivalent~since
the Schmidt decomposition ofuC&PC n1^C n2 contains at
mostm terms!, so that Eq.~30! is also valid for any state in
C n1^C n2 if m5min(n1,n2).

One can check that, as previously announced, form53
the entropy of entanglementE(C) given in Eq.~2! and the
robustnessR(C) are independent functions of the two grea
est Schmidt coefficientsa1 anda2 , and that there is a one
to-one correspondence between (a1 ,a2) and (E,R), so that
(E,R) can be used to label unambiguously the elements
the set of locally inequivalent pure states of a two-qutrit s
tem, and therefore suffices to completely characterize t
entanglement.

2. Bounds for the robustness of mixed states
of two-party systems

It can be proved~see Appendix C! that for any state of a
two-party system the following inequalities hold:

UminS H l j

aj ,1
2 J ,0D U<R~r!<minXm̃21,RS r̃UU 1

ñ
Ĩ D C,

~32!

wherel j is the j th negative eigenvalue ofrTB,5 aj ,1 is the
biggest coefficient of the Schmidt decomposition of the
genvector corresponding tol j , ñ is the rank ofrA

^ rB

[TrB@r# ^ TrA@r# ~i.e., the dimension of the minimum prod
uct spaceH̃#H such thatr is entirely supported in it!, m̃

5min(rank@rA#, rank@rB#), and r̃ and Ĩ are the restric-
tions of r and I to H̃.

3. Robustness of a two-qubit system

For the simplest two-party system, theC 2
^C 2 case, we

present simpler bounds for the robustness of a general m
state and an exact result for a class of mixed states, w
includes all Werner states. These results are proved in
pendix C.

First, for l the negative eigenvalue ofrTB and un& its
corresponding eigenvector, withun&5cosuu1&^u1&1sinuu2&
^u2& (uP@0,p/4#) its ordered Schmidt decomposition, th
following inequalities hold for any stater:

ulu

cos2u
<R~r!<2ulu, ~33!

which in particular means that whenever cos2u51
2, R(r)

52ulu. The lower bound corresponds to Eq.~32!, and the
upper bound can be seen to be an improvement on that in
~32! by taking into account the result in Eq.~44! and that
ulu< 1

2 @12#, m̃52 for any entangledr.

5rTB is the partial transposed ofr with respect to the partyB
~which has the same spectrum asrTA, its eigenvectors also havin
the same Schmidt coefficients!.
of
-
ir

-

ed
ch
p-
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Another upper bound for the robustness comes from
fact that for pure states ofC 2

^C 2 the concurrenceC(C)
~see@15#! equals the robustness, and it reads

R~r!<C~r!, ~34!

where C(r) was explicitly computed for any state of th
system in@15#.

Finally, we have computed the robustness for a family
mixed states: consider the rank one projectoruu&^uu, where
uu&[cosuu1&^u1&1sinuu2&^u2&, uP@0,p/4#, and the ~sepa-
rable! diagonal state

rD[S q1 0 0 0

0
q2

2
0 0

0 0
q2

2
0

0 0 0 q3

D , qi>0, (
i

3

qi51,

~35!

then, for any 0<p<1, the stater[prD1(12p)uu&^uu has
robustness

R~r!5H 0 if rTB>0

~12p!sin 2u2pq2 otherwise.
~36!

A Werner state with fidelityF @16# is locally equivalent to
the r resulting from takingq15q35q2/25 1

4 , u5p/4, and
p54(12F)/3, and in terms of its fidelity we haveR(r)
52F21 for entangled Werner states, that is, for Wern
states with fidelityF. 1

2 .

4. Numerical computation of the robustness for mixed state
of two qubits and of a qubit-qutrit system

In C 2
^C 2 and C 2

^C 3 one can easily check whether
stater is separable by computing the eigenvalues ofrTB and
seeing whether they are all non-negative, since for these
temsrPS⇔rTB>0 @17,18#. Therefore given ar which is
known to be entangled, one can choose a separable stars
and computeR(ruurs) by requiring thats in Eq. ~6! be mini-
mum with r(s)TB>0. Consequently to findR(r) one can
perform, say, a conditional random walk, in the 16-~or 36-!
dimensional real vector space of Hermitian 434 ~or 636)
matricessrs , searching for the minimum of its traces, re-
quiring

rs>0, ~37!

rs
TB>0, ~38!

~r1srs!
TB>0, ~39!

and that at each steps diminishes. Conditions~37! and ~38!
assure thatrs is a separable state, and then condition~39!
assures that@1/(11s)#(r1srs) is also separable. For eac
srs satisfying conditions~37!–~39!, s is greater than or equa
to R(ruurs), and from the convexity of this function~see
Sec. III C! we know the search will finish as soon as a loc
minimum is reached fors, for it is the global one.
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In C 2
^C 2 the effectiveness of this method is notably e

hanced by the fact that, as a consequence of some resu
@11#, a stater of this system is entangled if, and only i
detrTB,0, that is,

rPS⇔detrTB>0. ~40!

Then, whereas the eigenvalues ofrs must be computed to
check constraint~37!, for constraints~38! and~39! one only
needs to compute the determinant ofrs

TB and that of (r
1srs)

TB.
B. Random robustness of two-party systems

The random robustness of two-party systems, that
shall compute exactly for pure states of a systemC n1^C n2

and for any state of the systemsC 2
^C 2 andC 2

^C 3, and for
which we will present lower and upper bounds for any st
in any system, is a quantity that will be very useful for tw
different purposes. We proved in Sec. II B that any state
any composite system can be expressed in terms of two s
rable states,rs

1 andrs
2 , and a non-negative numbert, i.e., as

a local pseudomixture. Moreover, we provided an expl
offhand example of local pseudomixture for any stater.
However, we did not prove this last result, and this is w
we will do with the help of the random robustness of mix
states. On the other hand, this quantity will allow us to obt
an explicit lower bound for the volume of separable states
a generic composite system in Sec. V.

1. Random robustness of pure states of two-party systems

Given a pure stateC of a two-party systemC n1^C n2 with
ordered nonlocal parameters$ai% i 51,m @m5min(n1,n2)#, its
random robustness is~Appendix B!

RS CUU 1

n1n2
I D5n1n2a1a2 , ~41!

which manifestly depends not only on the two largest co
ficientsa1 anda2 ~that is, on the state itself!, but also on the
dimensionn5n1n2 of the Hilbert space of the system@cf.
property ~i! of R(r)]. Notice that for any dimensions th
most robust pure state, as far as white noise is concerned
a15a251/A2, and thus is locally equivalent to a singl
state in aC 2

^C 2 product subspace ofC n1^C n2.

2. Bounds for the random robustness of mixed states
of two-party systems

For any r of a two-party system with Hilbert spac
C n1^C n2 of dimensionn5n1n2 , and forl the smallest ei-
genvalue ofrTB, the following bounds hold~Appendix C!:

numin~l,0!u<RS rUU 1

n
I D<

n

2
. ~42!

The upper bound is of some interest, for it indicates h
any state of a two-party system can be offhand explic
written in terms of a local pseudomixture, and it can be g
eralized to theN-party case, where it reads

RS rUU 1

n
I D<S 11

n

2D N21

21, ~43!

as was already mentioned at the end of Sec. II B.
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3. Random robustness of a two-qubit system
and of a qubit-qutrit system

Because inC 2
^C 2 and C 2

^C 3 the conditionrTB>0 is
not only necessary but also sufficient forr to be separable
@17,18#, the lower bound in Eq.~42!, which was based on
this condition, becomes an equality:

RS rUU 1

n
I D5numin~l,0!u. ~44!

V. APPLICATION: EXPLICIT LOWER BOUND
FOR THE VOLUME OF SEPARABLE STATES

In @12# the space of statesT was endowed with a measure
for which it was proved that the volume of the set of sep
rable statesS was nonzero compared to that of the whole
of statesT. We will next give an alternative proof of this
result by computing an explicit lower bound for this volum
Following the proposal in@12#, the set of states of a gener
systemQ can be viewed as a Cartesian product of two se

T;P3D, ~45!

whereP is the set of complete families$Pk%1, . . . ,n of or-
thogonal rank one projectors~i.e., (k51

n Pk5I ,Tr@PkPk8#
5dk,k8 ,Pk

25Pk), andD is the convex subset ofR n gener-
ated by all possible convex combinations of the pointsxi
PR n, xi[(0, . . . ,0,1i ,0, . . .,0), i 51,...,n @that is,D is
the convex hull generated by$xi% i 51, . . . ,n and thus a subse
of the (n21)-dimensional hyperplane which contains$xi%#.
For n the measure induced onP by the Haar measure on th
unitary groupU(n) andLn21 the Lebesgue measure induce
on D,R n21, it was argued in@12# that a natural measure o
T is m5n3Ln21 . We have then found the following lowe
bound for the ratio of the volume of the setsS andT of an
N-party system withn-dimensional Hilbert space:

V~S!

V~T! >S 1

11n/2D ~n21!~N21!

, ~46!

which indeed confirms that the volume of separable state
nonzero for any finiten.

Proof: Consider the function

Q~$Pk%,$Lk%![H 1 if (
k51

n

LkPkPS

0 otherwise,

~47!

where $Lk%PD. Then the ratio of the volumesV(S) and
V(T) is, with the proposed measurem5n3Ln21 on T
5P3D,

V~S!

V~T! 5

E
U~n!

dUE
D
dD Q~$Pk%,$Lk%!

E
U~n!

dUE
D
dD

. ~48!
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Consider now another function J($Pk%,$Lk%)
<Q($Pk%,$Lk%). Then

V~S!

V~T! >

E
U~n!

dUE
D
dD J~$Pk%,$Lk%!

E
U~n!

dUE
D
dD

. ~49!

If one can choose this functionJ to be independent of$Pk%,
then the integral over the unitary group in the numerator
Eq. ~49! will factor out and will be canceled by that in th
denominator. As we will argue, the following one does t
job:

J~$Lk%![H 1 if $Lk%PDp

0 otherwise,
~50!

where Dp[convexhull$yiPR n;yi5pxi1(12p)zI ,
i 51, . . . ,n%, with zI[(1/n, . . . ,1/n) and p5@1/(1
1n/2)#N21. Then one can see that, since the simplexDp has
edgesp times smaller thanD,

E
D
dDJ~$Lk%!5E

Dp

dD5pn21E
D
dD, ~51!

from where the lower bound easily follows.
To see that any state(k51

n LkPk is separable for any fam
ily $Pk% provided that$Lk%PDp ~that is, to see thatQ
>J), one can resort to the upper bound for the rand
robustness Eq.~C8! computed at the end of Appendix C
SinceR„ruu(1/n)I …<(11n/2)N2121[ t̃ , we find that ap,
independent ofr, such that

pr1~12p!
1

n
I ~52!

belongs to the set of separable statesS, is p[1/(11 t̃ )
5@1/11n/2#N21. Each point $Lk%PDp has components
Lk5qkp1(12p)/n for someqk>0 such that(k51

n qk51.
Then

(
k51

n

LkPk5p(
k51

n

qkPk1~12p!(
k51

n
Pk

n

5 (
k51

n

qkFpPk1~12p!
1

n
I G , ~53!

which is a convex combination(k51
n qkrs,k of separable

statesrs,k[pPk1(12p)(1/n)I , and therefore is also sepa
rable.
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APPENDIX A: NOTATION

Entanglement appears in composite systems, wh
divisions—and yet subdivisions—into constituent parts e
ily proliferate. These may imply working with a multitude o
Hilbert spaces which, together with having to deal with d
ferent types of states, easily leads to confusion. We h
chosen to label symbols such asQ, H, r ~standing for
physical systems, Hilbert spaces, states, etc.! with a superin-
dex to refer to a specific local subsystem, the parties be
called after the name of a physicist—Alice, Bob, etc.
following the tradition. On the other hand, subindices w
denote different elements of a collection of states.

The following list contains some of the symbols we ha
used, along with a short explanation of their meaning.
some cases we indicate how they are related to each o
See also the example in Fig. 3.Q, physical system, com
posed ofN local subsystems;H, Hilbert space ofQ, of
dimension n; C,F, . . . , pure states ofQ; r, mixed
state ofQ, or exceptionally of a nonlocal subsystem
Q; Q i , local subsystemi ( i 51, . . . ,N), i.e., subsystem
where partyi can act without further ado~the index i will
often be a capital letter instead of a number, that isi
5A,B,C, . . . ); H i , Hilbert space ofQ i , of dimension
ni ; C i ,r i , states of Q i ; ø i 51

N Q i5Q, ^ i 51
N H i

5H () i 51
N ni5n); Q i , j , local partial subsystem or partj

of the local subsystemi , j 51, . . . ,Ni ; H i , j , Hilbert space
of Q i , j ; ø j 51

Ni Q i , j5Q i , ^ j 51
Ni H i , j5H i ; Q\Q̃, sys-

tem obtained fromQ by dismissing a~local or nonlocal!
subsystemQ̃; rk ,tk , . . . , element k of a collection of
states, weights, etc.~typically k51, . . . ,l ); T, set of states;
S, set of separable states;rs , separable state, i.e.,rsPS.

APPENDIX B: ROBUSTNESS AND RANDOM
ROBUSTNESS OF PURE STATES

OF TWO-PARTY SYSTEMS

Proving that the robustness of any pure stateC in
Cm

^Cm is

FIG. 3. Example of a composite system shared by part
Twelve local partial subsystems of five different types, and thus
all identical, are grouped together into three local subsystems,
cording to which physicist or party—Alice, Bob, or Claire—can a

on them. One can also consider nonlocal subsystems, suchQ̄
[Q A3øQ B1, which involve partial subsystems belonging to d
ferent local subsystems.
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R„C~$ai%!…5S (
i 51

m

ai D 2

21 ~B1!

will take two steps. In the first step a local pseudomixtu
$rs

1 ,rs
2 ,t%, such thatt5(( iai)

221, will be explicitly con-
structed forC. In the second one it will be proved that thi
local pseudomixture $rs

1 ,rs
2t% is optimal, so that

t(C;rs
1 ,rs

2) is R(C). Then from Eq.~B1! it will be easy to
obtain the random robustness ofC,

RS C~$ai%!UU 1

n
I D5na1a2 , ~B2!

To further illustrate the issue, the caseC 2
^C 2 will be treated

in more detail.

1. Proof of Eq. „B1…

Consider, thus, a pure stateCPCm
^Cm, and its ordered

Schmidt decomposition:

uC&5(
i 51

m

ai u i i &, ai>ai 11>0, (
i 51

m

ai
251, ~B3!

where, from now on,ue f&[ue& ^ u f &PCm
^Cm and, unless

otherwise specified,$u i &% i 51, . . . ,m is an orthonormal basis in
Cm. We are interested in statistically mixingC with pure
product states in such a way that the final mixture is sep
rable and the statistical weight of the separable part is m
mal. Let us defineR[( iÞ jaiaj5(( iai)

221 and also

rs
2[

1

R(
iÞ j

aiaj u i j &^ i j u, ~B4!

rs
1[

1

11R
~ uC&^Cu1Rrs

2!. ~B5!

Notice thatrs
2 is a separable state by construction, since

has been built as a convex combination of projectors on
product vectorsu i j &. Next it will be shown thatrs

1 is a
separable state as well.

Consider the following convex combination:

rs[
1

am11
(
r 51

am11

uerer* &^erer* u, ~B6!

where the components ofuer&PCm are

^ i uer&[
Aai

~11R!1/4
expS 2pJ

am11
a i r D ~J[A21!, ~B7!

^ i uer* & is just the complex conjugate of^ i uer&, and the coef-
ficientsa j are defined by

a j[2a j 2111, ~B8!

a1[0. ~B9!

To see thatrs
15rs , and that thereforers

1 is separable, con-
sider the matrix element of( r 51

am11uerer* &^erer* u:
e

a-
i-

it
to

(
r 51

am11

^ i j uerer* &^erer* ukl&

5
Aaiajakal

11R (
r 51

am11

expH 2pJr

am11
~a i1ak2a j2a l !J .

~B10!

Now, since 0< i , j ,k,l ,m11 ~and recalling thatam11
.2am), the quantity ua i1ak2a j2a l u is always smaller
thanam11 . Taking this into account, and also the fact that

~B11!

we are left with the only nonvanishing elements

^ i i ursu j j &5^ i j ursu i j &5
aiaj

11R
. ~B12!

This provesrs
15rs and thus thatrs

1 is separable.
Let us now see that there is no separable staters such that

1

11t
~ uC&^Cu1trs! ~B13!

is separable witht,R. Recall that a necessary condition for
r to be separable is that its partial transpositionrTi ~in the
Hilbert spaceH i of party i , i 5A,B in this case! be non-
negative@17#, that is,

rPS⇒rTi>0 ; i . ~B14!

Thenrs and t must necessarily satisfy

K FU 1

11t
~ uC&^Cu1trs!

TBUF L >0 ~B15!

for any uF&PCm
^Cm. Define a set of Bell states:

uF i j
1&[

1

A2
~ u i j &1u j i &), Pi j

1[uF i j
1&^F i j

1u, ~B16!

uF i j &[
1

A2
~ u i j &2u j i &), Pi j [uF i j &^F i j u. ~B17!

Then the spectral decomposition ofuC&^CuTB can be ex-
pressed in terms ofF i j

1 , F i j , andu i i &:

uC&^CuTB5(
i 51

m

ai
2u i i &^ i i u1(

i 51

m

(
j . i

m

aiaj~Pi j
12Pi j !.

~B18!

Now, from Eq.~B15! for uF&5uF i j &,

K F i jU 1

11t
~ uC&^CuTB1trs

TB!UF i j L >0, ~B19!
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which immediately leads to

Tr~Pi j rs
TB!>

aiaj

t
. ~B20!

Then, taking into account that( i , j . iaiaj5
1
2 (( iai

221), we
get

(
i , j . i

Tr~Pi j rs
TB!>

R

2t
. ~B21!

It will next be proved that( i , j . iTr(Pi j rs
TB)< 1

2 , which im-
plies, together with Eq.~B21!, that t>R. Thus the proposed
local pseudomixture is an optimal one, andR(C)5R.

Define the projectorM[( i , j . i Pi j and consider a sym
metric unitary product transformationUa ^ Ua .

Theorem B.1.@M ,Ua ^ Ua#50.
Proof: For anyi , j ,M u i j &5Pi j u i j &5 1

2 (u i j &2u j i &), and, if
Uau i &5( i 8bi 8

i u i 8&,

MUa ^ Uau i j &5 (
i 8, j 8

bi 8
i bj 8

j M u i 8 j 8&

5 (
i 8, j 8

bi 8
i bj 8

j 1

2
~ u i 8 j 8&2u j 8i 8&)

5Ua ^ Ua

1

2
~ u i j &2u j i &)

5Ua ^ UaM u i j &. ~B22!

This proves the theorem, since$u i j &% i , j 51, . . . ,m is a basis of
the whole Hilbert space.h

Theorem B.2 (necessary condition for separability).

rPS⇒Tr@rM #<
1

2
. ~B23!

Proof: Recall that if r is separable, then it can be e
pressed as a convex combination of~not necessarily orthogo
nal! projectors onto product vectorsu f kgk&, that is, r
5(kpku f kgk&^ f kgku. Consider the following quantity:

M f g[^ f guM u f g&. ~B24!

It will be proved thatM f g< 1
2 for any product vectoru f g&,

and that therefore

Tr@rM #5(
k

pkM f kgk
<

1

2
. ~B25!

Indeed, by noticing that Theorem B.1 implies thatMUa f Uag

5M f g , since

Tr@Ua ^ Ua u f g&^ f guUa
21

^ Ua
21M #5Tr@ u f g&^ f guM #,

~B26!

instead ofM f g we can computeM1g̃ , where
~B27!

for some ug̃&5Uaug&, whereUa is such thatu1&5Uau f &.
Then,

^1g̃uM u1g̃&5 (
i , j . i

^1g̃uPi j u1g̃&5(
j 52

m

^1g̃uP1 j u1g̃&

5
1

2 (
j .52

m

z^ j ug̃& z2<
1

2
z^g̃ug̃& z25

1

2
. h

~B28!

2. Proof of Eq. „B2…

Now the result

RS C~$ai%!I 1

n
I D5na1a2 , ~B29!

where n[n1n2 is the dimension of the Hilbert spaceH
5C n1^C n2 of the two-party system, follows straightfor
wardly from the previous considerations. Indeed, withm
[min(n1,n2), Rr[n1n2a1a2 , andR given by Eq.~B1! (Rr
>R by construction!, the separable state (1/n)I can be writ-
ten as a convex combination ofrs

2 from Eq. ~B4! and an-

other manifestly separable stater̃s:

1

n
I 5

1

n(i 51

n1

(
j 51

n2

u i j &^ i j u

5
1

Rr
S (

i 51

m

(
j 51

m

aiaj u i j &^ i j u1(
i 51

n1

(
j 51

n2

ci j u i j &^ i j u D
5

1

Rr
@Rrs

21~Rr2R!r̃s#, ~B30!

where

ci j [H a1a22aiaj ~>0! if i , j <m

a1a2 otherwise,
~B31!

and

r̃s[
1

Rr2R(
i 51

n1

(
j 51

n2

ci j u i j &^ i j uPS. ~B32!

Then @1/(11Rr)#@ uC&^Cu1Rr(1/n)I #5@1/(11Rr)#@(1
1R)rs

11(Rr2R) r̃s], wherers
1 was defined in Eq.~B5!, is

manifestly separable, whereas one could check that for
e.0

^F12uuC&^CuTB1~Rr2e!
1

n
I TBuF12&52

e

n
,0,

~B33!
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so that, recalling the necessary condition for separability
cussed in Eq.~B14!, Rr is the minimum amount of (1/n)I
that mixed with uC&^Cu makes it separable, that is
R„Cuu(1/n)I …5Rr .

3. Pure state of the smallest composite system

Let us finally consider, as an example, a pure state of
smallest composite system: a system of two qubits. In
case the Hilbert space isC 2

^C 2, and the ordered Schmid
decomposition allows us to express with an adequate ch
of basis any pure stateC as

uC&5a1u1& ^ u1&1a2u2& ^ u2&5S a1

0

0

a2

D . ~B34!

Then, using the definitions given in Appendix B1,R
52a1a2 ,

rs
2[

1

2
~ u12&^12u1u21&^21u!5

1

2S 0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

D ,

~B35!
a

s-

e
is

ce

and

rs
15

1

11RS a1
2 0 0 a1a2

0 a1a2 0 0

0 0 a1a2 0

a1a2 0 0 a2
2

D . ~B36!

To check thatrs
15rs as given by Eq.~B6! let us specify it

for our example:

rs5
1

3(
k51

3

uerer* &^erer* u, ~B37!

where

uerer* &[S a1
1/2

a2
1/2expH 2pJ

3
r J D ^ S a1

1/2

a2
1/2expH 22pJ

3
r J D .

~B38!

More explicitly,

rs5
1

3~11R!(r 51

3

Nr , ~B39!

with Nr given by
S a1
2 a1

3/2a2
1/2expH 2pJ

3
r J a1

3/2a2
1/2expH 22pJ

3
r J a1a2

a1
3/2a2

1/2expH 22pJ

3
r J a1a2 a1a2expH 22pJ

3
2r J a1

1/2a2
3/2expH 22pJ

3
r J

a1
3/2a2

1/2expH 2pJ

3
r J a1a2expH 2pJ

3
2r J a1a2 a1

1/2a2
3/2expH 2pJ

3
r J

a1a2 a1
1/2a2

3/2expH 2pJ

3
r J a1

1/2a2
3/2expH 22pJ

3
r J a2

2

D . ~B40!
The sum overr now reproduces Eq.~B36! immediately so
that rs5rs

1 . Some of the expressions used in proving th
the local pseudomixture$rs

1 ,rs
2 ,R% is optimal read for our

example

uC&^CuTB5a1
2u11&^11u1a2

2u22&^22u1a1a2~P12
1 2P12!

5S a1
2 0 0 0

0 0 a1a2 0

0 a1a2 0 0

0 0 0 a2
2

D , ~B41!

and
t

uF12
1 &5

1

A2S 0

1

1

0

D , uF12&5
1

A2S 0

1

21

0

D , ~B42!

and Eq.~B21! is

Tr~P12rs
TB!>

a1a2

t
, ~B43!

which, taking into account that^ f guP12u f g&< 1
2 for any prod-

uct vectoru f g& ~Theorem B.2!, and consequently Tr(P12r)
< 1

2 for any separabler, implies that R(C)5R5(a1
1a2)221.
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Now Rr54a1a2 and the maximally random state i
C 2

^C 2 can be decomposed, following Theorem B.2, as
mixture of two separable states as follows:

1

4
I 5

1

Rr 5 S 0 0 0 0

0 a1a2 0 0

0 0 a1a2 0

0 0 0 0

D
1S a1a2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 a1a2

D 6 , ~B44!

so that

r̃s5
1

2S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

D ~B45!

in Eq. ~B32!.

APPENDIX C: MAINLY BOUNDS FOR ROBUSTNESS
AND RANDOM ROBUSTNESS OF MIXED STATES

OF TWO-PARTY SYSTEMS

1. zmin„ˆlj /aj,1
2
‰,0…z<R„r…

Proof: Assume that in the spectral decomposition
rTB, rTB5( j 51

n l j uC j&^C j u, at least one eigenvalue, sa
l j , is negative. Calling the nonlocal coefficients of the o
dered Schmidt decomposition of the corresponding eig
vector uC j&, $aj ,i%, one finds that, forrsPS, if ^C j u(r
1trs)

TBuC j& is to be non-negative„which is a necessary
condition for @1/(11t)#(r1trs) to be separable…, then t>
2l j /^C j urs

TBuC j&. We will next prove thatz^C j up& z<aj ,1

for any product vectorup&, and therefore^C j urs
TBuC j&

<aj ,1
2 , which implies the lower bound for the robustness

r. If, on the contrary, nol j,0 exists, no significant bound
is obtained.

Theorem C.1.If uC&5( i 51
m ai u i & ^ u i & is the ordered

Schmidt decomposition of the normalized vectoruC&
PC n1^C n2 @i.e., m5min(n1,n2), ai>ai 11>0, and
$u i &% i 51, . . . ,m are othonormal vectors# and up&[up1& ^ up2&
PC n1^C n2 is any normalized product vector, thenz^Cup& z
<a1 .

Proof: For p1,i[^ i up1& andp2,i[^ i up2&, one gets

z^Cup& z5U(
i 51

m

aip1,i p2,iU<(
i 51

m

ai up1,i p2,i u<a1(
i 51

m

up1,i p2,i u

~C1!

<a1A(
i 51

m

up1,i u2A(
i 51

m

up2,i u2

<a1A^pup&5a1 . h ~C2!
a

f

-
n-

f

2. R„r…<m̃21, where m̃5min„rank †rA
‡, rank †rB

‡…

Proof: For H̃#H the product subspace spanned by t
eigenvectors ofrA

^ rB with nonvanishing eigenvalue, an
rank one projector in a convex combination ofr happens to
project intoH̃, that is, if r5(pkuCk&^Cku, then uCk&PH̃.

But R(Ck)5(( i 51
m̃ai)

221<(( i 51
m̃1/Am̃)2215m̃21.

Then, sinceR(r) is a convex function,R(r)<(pkR(Ck)
<m̃21.

3. R„r…<R„rzz„1/n… Ĩ …

R(r)<R„r̃uu(1/ñ) Ĩ … follows from the fact that (1/ñ) Ĩ is a
separable state, andR( r̃)5R(r) is the minimum of the rela-
tive robustnessR( r̃uurs).

4. R„r…<2zlz „C 2
^C 2

…

Proof: The partially transposedrTB of any inseparable
density matrixr in C 2

^C 2 always has a negative eigenvalu
l @11#, for a certain eigenvectorun&5cosuu11&1sinuu22&.
~Here we choose the local basis$u i j &% i , j 51,2 to be that de-
fined by the Schmidt decomposition ofun&). For rs
[ cos2uu11&^11u1sin2uu22&^22u it can be checked that
2un&^nu12rs>0, which implies that

1

112ulu ~r12ulurs! ~C3!

is a separable state.

5. R„r…<C„r…„C 2
^C 2

…

Proof: The robustnessR(C) and the concurrenceC(C)
are equal for any pure state ofC 2

^C 2, and in @15# it was
proved that one can always find a realization$Ck ,pk% of
four pure states forr such thatC(Ck)5C(r) ;k. Then,
using the convexity ofR(r), we find that for this realization

R~r!<(
k51

4

pkR~Ck!5 (
k51

4

pkC~Ck!5C~r!. ~C4!

6. R„r„p,q1 ,q2 ,u……5„12p…sin 2u2pq2 if rTB>” 0 „C 2
^C 2

…

Proof: ^FurTBuF&5 1
2 @pq22(12p)sin 2u# for uF&

[(1/A2)(u12&2u21&). Then a necessary condition for

1

11t
~r1trs! ~C5!

to be separable for a separablers is that ^Fu(r1trs)
TBuF&

>0, that is,2^FurTBuF&<t^Furs
TBuF&. But in Appendix B

it was proved that̂ Furs
TBuF&< 1

2 , so thatt>(12p)sin 2u
2pq2. Moreover one can check thatrs[

1
2 u12&^12u

1u21&^21u with weight t5(12p)sin 2u2pq2 makes the
density matrix in Eq.~C5! separable.

7. R„rzz„1/n…I …>nzmin„ˆlk‰,0…z

Proof: For anyr consider the spectral decomposition
rTB,
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rTB5 (
k51

n

lkuCk&^Cku, ~C6!

where we takelk<lk11 ~and we take into account als
eigenvectors with vanishing eigenvalue!, and supposel1

,0. Then@r1nul1u(1/n)I #TB5(k51
n (ul1u1lk)uCk&^Cku is

manifestly non-negative definite„which is a necessary
condition for the separability of 1/(11nul1u)@r
1nul1u(1/n)I #…, whereas for anye.0,

K C1US r1~nul1u2e!
1

n
I D TBUC1L 52

e

n
,0. ~C7!

If l1>0 no significant bound is obtained.

8. R„rzz„1/n…I …<n/2

For N52 the boundR„ruu(1/n)I …<n/2 is a consequenc
of the fact that for any pure state of a two-party syst
R„Cuu(1/n)I …5na1a2<n/2, and of the convexity of
R„ruu(1/n)I … as a function ofr, that the reader can easil
prove. Its generalization toN-party systems,

RS rUU 1

n
I D<S 11

n

2D N21

21, ~C8!

can be derived from the previous result and we will expl
it only for N53, theN.3 case following straightforwardly
Consider a pure stateCABC shared by Alice, Bob, and
Claire. If we first think of Bob and Claire as a single par
then we have seen that the state
m

.

.

1

11n/2S uCABC&^CABCu1
n

2

1

n
I D ~C9!

is separable if considered as belonging to a two-party s
tem, that of Alice as one party and Bob and Claire as
other, and therefore can be expressed as a convex com
tion (kpkuck

A&^ck
Au ^ ufk

BC&^fk
BCu of pure states that are

product inH A
^H BC. Now mixing any of these pure state

with an amountn/2 of (1/n)I we obtain a proper separab
state:

1

11n/2S ucA&^cAu ^ ufBC&^fBCu1
n

2

1

n
I D ~C10!

5
1

11n/2F ucA&^cAu ^ S ufBC&^fBCu1
n

2

1

n
I BCD

1
n

2

1

n
~ I A2ucA&^cAu! ^ I BCG , ~C11!

where I i is the identity matrix in H i . Indeed, @1/(1
1nBnC/2)#@ ufBC&^fBCu1(n/2)(1/n)I BC# is a separable
state inH B

^HC, whereas@1/(nA21)#(I A2ucA&^cAu) is a
mixed state inH A, so that the right-hand side of Eq.~C11! is
a convex combination of two manifestly separable sta
Then, by adding an amountn/2 of the separable (1/n)I to the
state in Eq.~C9! we make it separable, and therefore mi
ing the initial pure stateCABC with an amountn/21(1
1n/2)(n/2)5(11n/2)221 of (1/n)I is sufficient to wash
out its quantum correlations.
in,
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