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In the quest to completely describe entanglement in the general case of a finite number of parties sharing a
physical system of finite-dimensional Hilbert space an entanglement magnitude is introduced for its pure and
mixed states: robustness. It corresponds to the minimal amount of mixing with locally prepared states which
washes out all entanglement. It quantifies in a sense the endurance of entanglement against noise and jamming.
Its properties are studied comprehensively. Analytical expressions for the robustness are given for pure states
of two-party systems, and analytical bounds for mixed states of two-party systems. Specific results are obtained
mainly for the qubit-qubit systentqubit denotes quantum hitAs by-products local pseudomixtures are
generalized, a lower bound for the relative volume of separable states is deduced, and arguments for consid-
ering convexity a necessary condition of any entanglement measure are put fo&Sla50-294709)03701-4

PACS numbds): 03.67—a

I. INTRODUCTION 3
E(¥)=-, a’log,a?. 2
Entanglemenf1,2] is arguably the most nonclassical fea- =1
ture of quantum mechanics. For it to show up, the physical
system has to consist of different local parts, which we willConsider now two pure states with different Schmidt coeffi-
call local subsystemsn one-to-one correspondence with dif- cients, |¥,)#|W¥,), which have the same entropy of en-
ferent physicists, which we will capparties Each party acts tanglement, E(¥,)=E(¥,). As we will see, there are
locally on its respective local subsystem. Each local subphysically meaningful entanglement magnitudes which
system will, in general, consist of further pariscal partial  quantify differently these two states. Any such magnitude,
subsystemsr objects which may be entangled among them- together with the entropy of entanglement we chose to start
selves, locally. We are only concerned here with nonlocalvith, determines the two largest Schmidt coefficients and
entanglement, involving more than one local subsystem. Théhus characterizes entanglement for pure states completely
system might also be partitioned intmnlocal subsystems (provided they are bijectiye
which are shared by several partisee Appendix A As the local subsystems become more complex, involving
Entanglement refers thus to states shared by more thafore states and more partial subsystems, as the number of
one party. It is behindor depending on the definitions, |ocal subsystems and thus parties grows, so does the number
equivalent to nonlocality, nonseparability, and the existenceof entanglement magnitudes needed to completely character-
of nonclassical or quantum correlations, as seen by the pajze entanglemer].
ties. It plays a central role in quantum communication and The measures of entanglement proposed up to now are
quantum computation. A huge effort is being put into quan-examples of entanglement magnitudes. Foremost is the en-
tifying entanglement. This is an extremely difficult undertak- tanglement of formation or creatidi6]. Others are the en-
ing, mainly because of the intricate interplay between classitanglement of distillatiod6] and the relative entropy of en-
cal and quantum correlations. What one would like to have isanglement[7], but several more have been proposed
a minimal set of independent, physically meaningful magni-recently (e.g., entanglement of assistar{@&). It has been
tudes, which completely characterize entanglement. argued that for pure states there is a unique measure of en-
Consider, e.g., a two-party system consisting of two threetanglement9], but certainly one sole magnitude will, in gen-
state local subsystemgach one being, say, a spin 1 par-eral, not be enough for characterizing entanglement com-
ticle). As far as entanglement is concerned, any pure state gfietely.

this system is completely determined by two of the three The aim of this contribution is to propose an entangle-

coefficients of its Schmidt decompositi¢8]: ment magnitude which we will caibbustnessind to study it
in some detail. It has several appealing features. Its definition
|TYy=a,|1)®|1)+a,/2)®|2)+a;3|3)®|3), is simple and valid for any state of a composite system com-

posed by any finite humber of local subsystems of finite
3 dimension. It is based on a simple physical operation: mixing
a;=0, 2 ai2:1' (1)  with locally prepared states. It does not increase on average
i=1 when the parties, classically communicated, act locally on
the subsystems. Th®bustnesgjuantifies the endurance of
say, the two largest ones. Thus two independent magnitudestanglement with respect to local mixing by asking about
will suffice to completely characterize its entanglement. Supthe minimal amount of entanglement-free mixing needed to
pose one chooses one of them to be the entropy of entangledpe out all entanglement. It can be interpreted as a quanti-
ment[4], fication of intelligent jamming of entanglement, intelligent
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meaning that the parties know the entangled state and thygobability p,, for k=1, ... . The state of the syster@

tailor the jamming accordingly, so that a minimal amountihe parties obtain from such a device depends on the amount
suffices. An auxiliary and useful magnitude will be - of extra informationS, supplies together with the prepared
dom robustnesswhich can be interpreted as the robustnessyysiemo. Thus, if(a) no extra information is supplied, then

of entanglement with respect to mixing with white noise. yhe state 00 is p, whereas this is not the case(f) 3, casts

While we explain and analyze robustness a few more genera| message stating which specific stat@ has been prepared

results will be presented: convexity of entanglement Me3j, such an event having am priori probability p,. These

sures is put on firmer grounds, a set of necessary and sufli,q sjtyations lead to states ofthat are clearly inequivalent
cient conditions for consistency with the fundamental law ofgy e in 5 statistical sense, and this fact is exemplified if one
guantum information processind0] is presented, and a adopts a utilitarian approach: consider any functiofp)
weak version for the composition law of entanglement Magyefined on the set of states that quantifies somehow some
nitudes for a state describing a system which consists of WPsources contained in [Alternatively u(p) could quantify
uncorrelated npnlocal gntangled subsystems is suggested.the cost of preparing the state and so ofl. Then, in situa-

The paper is organized as follows. In Sec. I, after aNdiion (a) the parties obtain a stafe, from which they can
lyzing some features of mixing, we introduce, following extract, maybe after some manipulations, an ampup of

[11], local pseudc_mmlx'_turean_d prove their existence fpr_ the resources, whereas in situatidn) the expected amount of
most general, finite-dimensional, case, thus generalizing lo-

- . resources the parties can extract is an average, over the
cal descriptions of entanglement. A universal local pSGUdOFealization Y pof the amounts u(py), i.e 9 (Y)
mixture is given for any state of this general caRelative _sl ( ) the extra informat/igrfks’u .Iie.’d 'ﬁ) ether
robustnessand random robustnesare also introduced and .~ k=1PkH{Pi: o bplied tog
their physical meaning discussed. In Sec. Il we introduceW"[h Q _allowmg for a conditional treatment of this system
robustnessand prove eight general properties that make it adependlng C C(_)ncr'et@K.the p.art|es get. Mor'eover,
potentially useful entanglement magnitude. In Sec. IV awhatever is done (@ in situation(@) in order to use it as a

number of results for the robustness of two-party systems arg >ource, the very same manipulations can be dong)in

presented, whose proofs can be found in Appendixes B ar]{]egardless of the extra information supplied, obtaining, in a

C. They include explicit expressions for the robustness anatat|st|cal sense, the same results atjnso that one gets,

the random robustness of any pure state, and bounds fg'n averageat least as many resources in céseas in case

mixed states. For the two simplest two-party systems mor d). Therefore
accurate results are presented and a numerical method for the
computation of the robustness is discussed. We present an
application of some of the results of the preceding section irz

Sec. V by obtaining a universal lower bound for the relatlve,[ion of p, one could reach the same conclusion by noticing

volume of separa_ble states, thus completmg RE). thatY is not the only realization which leads pg and that
One of the main questions concerning entanglement megy

i =miny. !
sures is, what are the necessary and what are the sufficie l}ere may be cheaper ones, that js(Y)=minyu(Y")

” ; =u(p)], whereY' is any realization op.)
conQ|tlons_ they have to fulfill> Much progress has bee Notice, moreover, that since the only difference between
achieved in the last few yearsee, e.g.[7-9]) although

) . e k . ... situation (a) and (b) consists of the extra information sup-
many questions still remain, in particular concerning additiv-

) . . ) lied in (b), if this extra information is irreversibly lost by
ity. We hope this and further studies of robustness will als he parties, the largest amount of resources that they can
contribute to the understanding of these issues.

obtain fromQ becomesu(p), even if initially the expected
amount has beep(Y).

Let us translate the above considerations to the case
whereu is any measure of entanglement, which we will do
A. Mixing of shared states and local operations with a concrete example. SuppoSeprepares two particles

tn the global state, with probability p, and then sends one

w(p)<wp(Y). ()

Were u(p) a quantification of the minimal cost of prepara-

II. LOCAL PSEUDOMIXTURES

Since the mixing of states that are shared by several pa
ties will play a major role throughout this contribution, we
find it convenient to begin with a few comments on how one

can obtain a density matrix from one of iesalizations with- i f the state oD f t ithout Al
out resorting to nonlocal operations. This will, as a by- lon ot the state ok. Irom apy 1o p, can occur without Alice
and Bob having to put the two particles back together, so that

product, lead to a new condition any measure of entangle: . .
ment has to satisfy. to all effects it can be regarded as a local process. Then, in

We will call a set of state$p,}_, , with associated particular, we have argued that any measéref the en-
tanglement of a shared stgtehas to be a convex function
""" ! (see alsd7]), that is,

o Alice and the other to Bolfand thusQ is a two-party
system. What we want to remark here is that the loss of the
extra information supplied in cagb), which forces a transi-

that is known to supply a syste® in the statep, with |
Ep)= 2 Piclpy) @
we will not call it an ensemble because we construe the gtate

from it by dismissing information, not by choosing randomly one if P:ELzlkaky otherwise one would be creating, on aver-
item out of an ensemble of statespopulated proportionally tp, . age, entanglement by means of local operati(ss losing
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information is something one can always do localljotice
that the entanglement of assistari8g is concave, not con-
vex (it also is generally nonvanishing for separable s)ates
We interpret it as a measure of the entanglement wfhen
supplemented with further informatiofassistegl and thus

more as a measure for maximally entangled ensembles of P
pure states realizing a density matrix, rather than as a proper T
measure for a single system described by the density matrix
alone.
Once a possib'e way dﬁoca”y) Obtaining a state from FIG. 1. Local pseudomixture for the entangled stateSince

any of its information-supplied realizations has been disihere always exists a; € S and a finitet>0 such thajpg =[1/(1

cussed, we would like to address a question motivated by th&t)1(p+tps) belongs toS, one can expresp in terms of two
fact that a mixture of shared states, even if they all are enseparable states and the weiglats p=(1+1)pg —tps .

tangled, may contain no entanglement at all, so that the pro- ) . .

cedure of mixing often implies the disappearance of quantunRSeudomixtures introduced [11], we would like to know
correlations: specifically, given an arbitrary entangled stat@hether one can always express any spe¢e(H) as

of a composite system shared Ryparties, we would like to _ + -

know whether it is always possible to wash out all its quan- p=(110ps —tps, Ost<e )
tum correlations by mixing it with an adequate separablg,

+ - -
C ' . : or somep, ,p; € S(H), that is, whether one can always
state. This will be our starting point to derive an entangle-describe gs s‘f;ste aé a) local pseudomixt(ee[13] for ay
ment magnitude: theobustnes®of entangled states.

recent proof foN=2). Notice that expressing. andpg in
Eq. (7) asfinite statistical mixtures of pure product states
B. Erasing quantum correlations by mixing with a separable W)= ®:\‘=1|\p>, W) e H' [14], one gets

state: A local description of entangled states
| <o

Consider a composite syste@ with N local subsystems _
such that the dimensiamof its Hilbert spaceH is finite. Let p‘k; "W (Yid, ®
us recall that, according to whether they can be expressed as
a convex combination of pure product states or not, one cawhere >2%r=1 andreR. That is, a statg of Q is
distinguish between separable and entangled states. Thus fexpressed as a sum of pure product states, in a similar way to
{H'}i_y . N the Hilbert spaces of the local subsystemshow separable states are as statistical mixtures, but with the
(H=®[L "), separable statgs, can be written as difference that now the probabilistic weighpg in Eq. (5)
have been replaced by real numbegs still restricted by
5) >I1=%r=1. It is this resemblance with mixtures that moti-
vates calling the right hand sides of Eqg) and (8) local
pseudomixtureghe adjectivdocal reflecting the fact that all

wherep, >0, p =1 andl\lfk>=®iN:1|\PL> e, |‘I’L> sta_:_ehs mtervirxng in tsucr: edxptretssmfns are se_:parable. ]
e H'. We will now introduce the concept of robustness of a eorem LAny entangied statp of a generic composite

: tem (with finite-dimensional Hilbert spagecan be ex-
state p e 7(’H) relative to a separable stajee S(H) [by SyS . .
T(H) we denote the set of states @f and byS(H) C T H) ?rgssed ||n terntw)s of tho §eparab|e_sta;tes an+d a nﬁon-negatlve
that of separable states of the same sy$tem inite real numberips ,ps ,t}, asp=(1+t)ps —tps (see

A Fig. ).
Definition: Given a statep e 7(H) and a separable state ] . -
p.eS(H), we call robustness of p relative to Proof: In Appendix C an explicit upper bound for the

pe, R(p||ps), the minimals=0 for which random robustness of any state

PSZEK Pl V) (P,

1 n\N-1t -~
R(pHﬁl)$(l+§) —1=F, 9)

p(s (p+sps) (6)

“1+s
will be obtained. Then one can write

is separable. It might be infinite.

We will single_out a payticular case of the relative robust- p:(“_*t*)p; —TEI, p;rzi,, p+TE| . (10
ness and name it accordingly. n i n
Definition: We callrandom robustnesgf p its robustness
relative to the(separablemaximally random state (d)!. wherep_ in Eq. (7) is (L)l andp_ is separable by con-
ThusR(p||ps) is the minimal amount op that has to be  struction.[J
mixed with p in order to wipe out all the entanglement ini-  Notice that this means, in particular, thatr(ll' e S is not

tially contained inp. Notice thatR(p||ps) is zero if, and on the frontier ofS andZ\ S, but in the interior ofS, as was
only if, p is separable itself. Our previous question, whichproved in[12]. Our proof, which is independent of that pre-
Theorem 1 will answer, reduces now to see whether one casented in[12], provides offhand an explicit pseudomixture
always find a separablp; such thatp has finite relative for any statep and implies, from a physical point of view,
robustnessR(p||ps). Equivalently, in terms of the local thatone can always erase all quantum correlations by mixing
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B. Some properties of robustness

' Next we will discuss eight properties the robustness of a
d state satisfies. Some of them are necessary if one wants to

guarantee that an entanglement magnitude cannot be in-
creased locally(that is, by means of the combined use of
local transformations and classical communicatidiaf.
[7,9]). Another assures that the magnitude allows one to dis-
tinguish between separable and entangled states. The last
property is a weak version of a composition law, which re-
places additivity.

Recall that the robustness has been defined for states of a
the subseSC 7, asp=1/[1+R(p||S)] is the maximal weight of generic composite system, so_that it can be applieq to states
in a convex combinatiopp+ (1—p)p involving an elemenp, shared by' an unre_strlctg(dbut finite) number of parties\.

e S such that it belongs to the subs@t We associate parties with local subsystems, so that a local
subsystem consists of all the physical objearticles, for
instance a party holds and can act on. We also require each
of these local sets of objects to have a Hilbert spicCeof
inite dimensionn;, so thatp will be annxn matrix acting

FIG. 2. An optimal local pseudomixture for the statés such
that the weightt=R(p||ps) is minimal. Thus the robustness
R(p||S) is a geometrical quantity that relates the elempeatZ with

with the maximally random state. Let us remark that mixing

with (1/n)I can be regarded as a model for the study of th

effect of white noise on the quantum correlations containe C N an e TN .

in an entangled state. We will come back to the study of th&" 1= ®i=1C", withn=dim(H) =I1;_ ;. In analogy with

random robustness in Sec. IVB. where it will be Computedpure product states, l\E)rod.uct operators will be those that can
) ! — 1 i 1 H 1

for any pure state of a two-partje., N=2) system and for P€ expressed &8=®;_,0 ' with O' an operator irtt’, and

any state of two-party systems of dimensios 6, whereas @ product subspace Gi will be a spaceHCH such that

for any mixed state of a generic two-party system lower and+= ®iN: ,H' with H' a subspace of{'. The robustness of a

upper bounds will be presented. Finally, the random robuststate, from now on simpl{R(p), satisfies the following con-
ness will be used in Sec. V to obtain an explicit lower boundditions.

for the volume of separable states. (i) If range(p) CHCH, thenR(p) is independent of the
Hilbert space/H or H, p acts or?
ll. ROBUSTNESS OF SHARED STATES (i) R(p)=0; R(p)=0=pes.
(iii) R(p)=R(U_pU|) for any unitary product operator
A. Definition of robustness U= N 1Ui
= U
We have established so far that for any statthere is at (iv) R(Trg[p])<R(p), where Tg[.] is a partial trace

least one separable stag such thatR(p||ps) is finite. In  over O, O denoting any subset, local or not, of the whole
addition we have seen that thpg can be chosen to be inde- set of objects held by the parties.

pendent ofp. We now prove the existence .of a minimal (V) R(p®ps)=R(p), wherep, is any separable state.
value of R(p||ps) as a function ofpse S. This quantity, (vi) R(p)<ZypxR(py), where{p,,pi} is any realization
R(p||S), will prove to be, on average, nonincreasing underof p, i.e., p=3pypx.

any transformation of the shared system involving only local  (vii) R(p)==,pcR(py) if as a result of a local, not nec-
operations on the subsystems and classical communicatiasssarily complete, von Neumann measuremeriiecomes
between the parties. Analogously R(p||ps), R(pl||S) is  the statep, with probability p, .

the minimal amount of any separable state that has to be (vijii) mM(R(px),R(py))=<R(px® py) <M (R(py).R(py)),

mixed with p in order to wash out its quantum correlations, where m and M are two known functions oR(p,) and
and has a neat geometrical meanisge Fig. 2 Notice that R(py).

no metric in7 has been used to defif{p||S). _ . The meaning of propertyi) is that the robustness of a
Let us consider, then, a stateof Q and all its possible  state is not an intensive quantity in the dimensioof the
pseudomixturegpg ,ps .t} of separable states. Hilbert space of the shared systed since it is independent

Lemma 1. There always exists a non-negative of n. The following example should clarify the meaning of
t(p;ps .ps) satisfying Eq.(7) which is the minimal one. (i): the two-party pure entangled stafd@)=(1/y2)(|1)

Proof: It follows from the fact that f; ,ps) must belong  ®|1)+|2)®]|2)), where|1) and|2) are two normalized or-
to a compact subset @x S [since they are constrained by thogonal vectors, has a density matrik)(¥| that can act,
Eq.(7)] and thatt(p;ps ,p5 )=0 is a continuous function of for instance, orc?®C? [a two-qubit(quantum bit syster)

them.[d or on C3®C3 [a two-qutrit (quantum trif systen]. What
Definition: We call (absolut¢ robustnessof pe7 the  property(i) assures is tha('W') does not depend on whether
guantity | W) is the state of two qubits or of two qutrits, and it is not
obviously satisfiedlater on, for instance, it will be seen that
R(pIIS)Emir;R(pllps)- (11)
Ps€

o ] ] 2The support or range of a density matrix is the subspace spanned
Definition: We call a local pseudomixture with by its eigenvectors of nonvanishing eigenvalue. The dimension of
t(p;ps ,ps)=R(p||S) an optimal one. the range is the rank.
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the random robustness p¥), R(¥||(1/n)l), does depend
onn].

A genericp in H= ®, 17-(' may have support only on a
product subspace of.. Let us callHCH the smallest of
such product subspace® € @, H' can be constructed by
computing, for each party, its local statep'=Trg gi[ p],

and by taking7'CH' to be the subspace spanned by the

eigenvectors op' with nonvanishing eigenvalyieTaking up
the previous example involvingg¥) e C*®C3, one can see
that the projection of W )(¥| onto the product subspad¢
=(]1),|2))®(|1),|2))=C?®C? by means of the product
projectorP = (|1){1|+|2){2])® (| 1){1|+|2)(2|) leaves the
state unchanged, that B|W){W|P=|W¥){¥|, and no other
product projector of equal or smaller rank does so.

If we now show that any optimal local pseudomixture of

p, {ps .ps t=R(p)}, satisfies that botp, and p; have
support only on™, then it will be irrelevant, in terms of
R(p), whetherp acts on the wholé{ or only on.

Theorem 2. For any optimal pseudomixture of
p, {p<.ps R(p)}, if H is the smallest product subspace
supportingp andP is a projector onto it, therers P= ps
andPps P=p, .

ROBUSTNESS OF ENTANGLEMENT

145

ULpU{=[1+R(p)IULps U[~R(p)Ups U!, (14

which has t=R(p). Mutatis mutandis we see that
R(U,_pUL) cannot be smaller thaR(p). O

In order to discuss properti¢sr) and(v), recall that if to
Q, in the statep, we add a set of object® in the statep,
then the state 0oQUQ is p®p (assumingQ and Q are
uncorrelatefl On the other hand, fo©C Q a subset of ob-
jects, if p is the state ofQ then that ofQ is Troal el
whereas if we thronQ away the remaining state is Jie].

Point (iv) states that the robustness of the statef a
composite systen® does not increase when throwing away
any subset of object®C Q.

Theorem 4. RTrg[ p])<R(p).

Proof: It will suffice to analyze the case a® being a
single object held by one party, since for a genegl
=U;;Q" one can proceed stepwise, each step involving
only one object. Take the@= Q™! (relabeling the parties
and objects, if necessaryso that the partial trace is taken
over the factor space( ! of H1. A rank one product pro-
jector |UNW| (|¥)y=o],|P), |[PHeH) wil be
transformed into  Tgi | WWV|]1=Troul|[¥ (P ]®

Proof Notice first that for a normalized pure product state® 2|\1r')<\1f |, which is a productin general not purestate
[W)=@L,[ W), its projection onto a product subspace is, if of O\ Q1. Therefore Tp1ps] is a separable state i, is

not zero, another pure product statgb)=P|V¥)=
QN PPh=eN  |®"), with (O|®)<1. Then, since any

so, and the expression

separable statg, can be expressed as a convex combi- P =Troulp]=[1+R(p)]Tro1{ps1-R(p)Tro1ips ]

nation of projectors onto pure product staté¥,),

Le., ps=Zipd Wi(Wil, and PW(Wy|P=[Py)(Dy

= PP, where 0<q=(P|P<1 and |Dy)
=(1/\Jqy)|®,) is a normalized pure product statenless
P|¥,)=0), the renormalized restriction gfs on H, ps
=PpPITHPpP] (T PpsP]1=Zprak=1) is a sepa-
rable density matrix as well. Then

R(p) T Ppg Pp; .
(12)

p=PpP=[1+R(p)]TPps Plp -

Now suppose that at least onemf andp, (and thus, in

fact, both, sayp, , has support not contained . Then
Tr[Pps P]<1 and we automatically obtain a new local
pseudomixture involving_ # p , with t=Tr{Pps P]R(p)
<R(p), which is a contradiction, for we started from an
optimal one.d

Property(ii) says that the robustness of a statedicates
whetherp is entangled or separable. To s@¢, notice that
R(p) =0 implies thatp=p_ , which is separable, and that if
p is separable, then by choosipg to bep one gets a local
pseudomixture fop, with t=0.

(15
is a local pseudomixture, not necessarily optimal, for the
state p’ of O\QY' with t=R(p). Consequently,
R(Trou{p))<R(p). O

Property(v) assures that the robustness of the state of a
shared system is not an intensive quantity in the number of
objectsQ consists of. Indeed, this follows from the fact that

R(p) is left unchanged if we give the parties new objegts
provided they are in a separable stateand uncorrelated
with the objects ofQ. Notice that we need only prove that
R(p®ps)<R(p), since Theorem 4 will do the rest.

Theorem 5. Ro® pg) <R(p).

Proof: For p=[1+R(p)]p< —R(p)ps an optimal lo-
cal pseudomixture of the state @, the state ofQUQ,
p® pg, admits the following decomposition:

(16)

p®ps=[1+R(p)lps ®ps—R(p)ps ®ps,

which is a local pseudomixture, not necessarily optirhal.

Definition: Given a realizationY ={p,py}x=1,... 1, We
call the quantity=}_,pR(py) the (averagé robustneswf
Y, R(Y).

Property(iii) states that any two states related by a unitary Property (vi) refers to the convexity oR(p), and it

product transformation have the same robustness.
Theorem 3. Ro) = R(ULpUL)
Proof. Notice that R(ULpUL) cannot be greater than
R(p), since by transforming an optimal local pseudomixture,

p=[1+R(p)]ps —R(p)ps .

by U, we find the local pseudomixture

13

means that the robustness of any realization pof Y
={pk.Pxtk=1,...1, is not smaller than that op itself. It
suffices to provévi) for | =2, sincel >2 can be achieved by
iterating this case.

Theorem 6.
_p)R(p2)1 pE[O,l]

Proof: For eachp, (k=1,2) consider an optimal local
pseudomixture, say

Ropi+(1—p)p2]<pR(py)+(1
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p=[1+R(p)1psk—R(p)ps- 17 =AwpAlUTIApA]]. Notice thatSp,<1. Thus the realiza-
' ' tion Y ={py,Px}x=1, ..., and the averaged final state are
Thenp=pp,+(1—p)p, can be reexpressed as in general unnormalized. _ o
Theorem 7. If the (unnormalized realization Y
p=(1+t)p —tps (19 ={pk.Pxlk=1,...) describes the potential final states of a
S S general local measurement performed @nin the statep,
which is a local pseudomixture, not necessarily optimal, withthenR(p)=R(Y).

Proof: One can check that fgise S, any resulting state
1 psk IS separable as welbs is to be expected, otherwise we
pe= m{p[1+ R(pl)]p;l-i- (1-p)[1+ R(Pz)]pg,z} €S, yvould get some entanglement out of a sepaJrrabIe state, even
in a statistical sengeThen, forp=[1+R(p)]ps —R(p)p
(19 an optimal local pseudomixture of we can write

{[1+R(p)JAps Al—R(p)Awps AL},
(22
which implies that if p,=[1+ R(pk)]p;k— R(pK) psk
_ _ < - is an optimal local pseudomixture, thenR(py)
y(f)n | R[Dp Peut(1=pP)pe]<t by the definiion of = 2o i A  ATUTHAWAL.  Therefore  R(Y)
Let us explain propertyi) a bit further. Recall the device = ZkPR(pI) =2k TTAWAIR(p) <R(p) Tr[ZA{Ap; ]
S introduced in Sec. Il A. If Alice and Bob are each given a<R(p)Tt[lps ]=R(p). O
particle which together are, with equal probability, either in ~ We want to stress here that propertigsand (iii )—(vii)
state p;=|W W Wq| or p,=|V,)(¥,|, with |¥;)=|1) must be satisfied by any magnitu;icép)_consistent with the
®|1) and |¥,)=(1/V2)(|1)@|1)+|2)®|2)), then if they funda_tmental_ law of_quantum mformatlor_] processjig,9], _
get them in the separable state=|¥,)(¥,| together with a tha_t is, nonincreasing under chal actions of the parties,
message stating this fact, their shared state has null robusthich are allowed to communicate classically. Properties
ness. However, if they destroy the message and forget itdii)—(vii) must be obviously satisfieldor property(vi), see
content, the new state of the systempis 3(p;+ p,), which  discussion in Sec. Il A whereas propertyi) is also neces-
can be checked to be entangled and consequently contaifid"y, but it can be proved to follow from propertigis)—(v).
some robustness. This means Alice and Bob have increasd¥ptice that propertiesii )—(vii), which we claim to be a set
the robustness of their system by acting locally. Notice, howof necessary and sufficient properties a magnitudbas to
ever, that if the process is repeated many tirfeesh repeti-  fulfill in order to be consistent with the fundamental law of
tion consisting of first getting a couple of particles alongduantum information processindo not mention the fact that
with a message stating their global state, and then destroyiri§j€ Parties can share information using a classical channel.
the message and forgetting its conjemin average the ro- _he reason for this is t.hat the use of classical communication
bustness of the freshly obtained couples }R(p,)  Simply allows for a wise selection of a local action condi-
+1R(p,), Whereas the robustness of the state the couplgéoned to the result of previous local measurements, each of
finally end up in isR(p) < 3[R(p,) +R(p,)]. Therefore(vi)  these local actions not increasing, on average, the magnitude
states that one cannot, in a statistical sense, increase the #6- Propertiediii)—(vii) are sufficient because any operation
bustness of a shared state by mixing. the parties can perform locally on the local subsystems can
Let us now discuss propertyii), which assures that the P€ decomposed into elementary steps taken into account in
output of a local measurement gn is a realizationy  (iii)=~(vii). o _
={px,Ptk-1...; (of the averagedfinal statep;=S pyp) Finally, property(viii) is a very weak version of a com-

that cannot have more robustness tparso that the robust- POSItion law? Consider a state of the form®py, where,
ness of a systen® cannot be increased, on average, by per_for_lnstance.px may be the global state of a no_nlocal system
forming a local measurement on it. Whl_ch consists of four particles s_hared by Allqe, Bob, and
Although property(vii) refers to a local, not necessarily Claire, whereap, may be that of five other particles shared
complete, von Neumann measureméiiat is, one imple- by Alice and Denis. The I_ack of correlanon_s betwq_g(rqnd
mented by a set of orthogonal product projectors, not necegy allows on one hand Alice, Bob, and Claire to mixwith
sarily of rank one but which correspond to a resolution of the2 separable statgg, with weight R(p,) and on the other
identity), we will prove it for local measurements of the most Alice and Denis to mixp, with a separable statg;, with
general nature. In addition to being complete or incompleteweight R(p,). These operations transform,®p, into
they may include the temporary use of ancill&zcal posi- p;x® p;—’y, a separable state different from any separable
tive operator valued measuremeffOVM's)] and classical
communication between the parties, and contemplate condi-=—
tional rejection of the system ergnding on the output. A SAdditivity of the robustness, that isR(pc®py)=R(py)
general local measurement is Implemgnted byT a set R(py), would be a particular form of a composition law. We
{Awtk=1,..., of product operators that satisfy<® A Ax  already know, however, that the robustness is not an additive quan-
<I. As a result of such a measurement the state of the sysiy, as will be shown elsewhere, though a function of it could well
tem becomes, with probability pk:Tr[AkpAE], Pk be additive.

1
5= [PR(p)ps1+(1-P)R(p)pssleS, (20 T THALAT
Ps t[p (pl)ps,l ( p) (Pz)PS,z] < 20 Pk TI’[AkPAE]

t=pR(p1)+(1—-p)R(py). (21
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state associated witR(p,® p,). WhetherR(p,®py) is de-
termined or not byR(p,) andR(py), we will now show that
the knowledge ofR(p,) and R(py) leads to bounds on

R(px®py), which is what propertyviii) announces. These

bounds are

max(R(px),R(py))<R(px® py)<R(px) + R(py)

+2R(py) R(Py)1 (23

and can be obtained as follows: the lower bound results from

taking the partial trace over the Hilbert space of eithgor
py in an optimal local pseudomixture fer,®p,, and is a
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IV. ROBUSTNESS AND RANDOM ROBUSTNESS
OF TWO-PARTY SYSTEMS

So far all our considerations have referred to composite
systems with an unrestricted number of parfiesWe con-
sider in what follows a composite syste@h shared by two
parties, Alice and Bob, so that from now d=2. Recall
that, as beforel{'=C" is the Hilbert space of all the physi-
cal objects party can act locally on.

A. Robustness of two-party systems

We present here a list of bounds and exact results con-
cerning the robustness of states of a two-party system. A

consequence of propertyv), whereas to deduce the upper method for numerically computing thi§ quantity for the two
bound one needs to take into consideration the tensor produgtmplest two-party systems is also discussed. These results
of two optimal local pseudomixtures for the two sharedmake the robustness of states of two-party systems useful as

statesp, and py, [x=R(px), Y=R(p,)], which is a local
pseudomixture forp,®p,, not necessarily optimal, with
weightt=x+y+2xy,
Px®@py=[(1+X)pgx—Xpsx]®[(1+Y)pgy—Ypsy]
=(1+X)(1+Y)pex®@pgyt XYpsx®psy

- {X(1+ Y)P;X®P;y+ ( 1+ X)yp;—,x®ps_,y}'
(24)

C. Numerical computations and convexity

We end the exposition of general properties of the robust-
nessR(p) by mentioning a property of the relative robust-

an entanglement magnitude. And thus, for instance, from its
expression for pure states one can see that robustness, to-
gether with the entropy of entanglement, can be used to com-
pletely characterize the entanglement of pure states of a two-
qutrit system(see the Introduction

1. Robustness of pure states of two-party systems

It turns out that for two-party systems with Hilbert space
C™®C™ a set of m—1 ordered non-negative parameters
{ai}i=1, . m-1 suffices to completely specify any element of
the set of locally inequivalent pure stafes,

(C™eC™{|0)})/R"
Uuimy) X U(m)

(28)

nessR(p“pS) which is most valuable for the numerical com- (that is the space of the OrbitS, in the subset of normalized

putation of the absolute robustness of a stateR(p),
namely, thatR(p||ps) is a convex function ops.
Indeed, if
p=(1+Ry)pg— Rupsk=[K]

(k=12 (25

is the local pseudomixture fqr that, involving the separable

state pgx, has minimum non-negative weightRy
=R(p||psx) [cf. Eq.(6)], then the convex combination

! (P 2P (26)
p/Ri+(1—p)/Ry\ Ry R

is another local pseudomixture far, involving ps=pps;
+(1—p)ps2, with weight t=[1/p/R;+(1-p)/R;].
Since [p/R;y+(1-p)/R,I[PRy+(1-p)R,]=p?+(1—p)?

R(pllps)<t=pR(p||ps) +(1-p)R(p||pss). (27)

elements of the complex vector spat8=C™, of the action
of all unitary product transformatiopsThis set{a;} can eas-
ily be obtained for any normalized vectp¥) from its or-
dered Schmidt decomposition,

m m
(w)y=2 ali)eli), a=a;=0, 3 af=1, (29

after excludinga,,. It will be more convenient, however, to
keep allm coefficients. Then, in terms §&;}, the robustness
R of the pure stateV is

m 2
RI¥({a}b)]= iElai> -1 (30)

This result is proved in Appendix B, and indicates how
R(W¥) can be systematically computed: given a rank one pro-
jector corresponding to a pure stages |V )(¥|, one needs
only to perform a partial trace over any of the two patrties,
and get the eigenvalues of the remaining matrix. These ei-
genvalues ar@’, so that the sum of their square roots will

This means that iR(p) is computed by searching in the immediately lead tdr(V').

set of separable stateS for the absolute minimum of

R(p||ps) as a function ofpg, then the search can finish as
soon as a local minimum is found, for any local minimum of

Notice that the sets

R(p||ps) is also the absolute one. We will use this fact in 4 general, any two states andp, are said to be locally equiva-

Sec. IV A to explain a way of numerically computirir( p)
for states of the two simplest two-party systems.

lent if they are related by a unitary product transformation, i.e., if
P1= ULPZUI :
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CMeCMm Chig(Ch2 Another upper bound for the robustness comes from the
- and (31)  fact that for pure states af?®C? the concurrenceC(¥)
X X
Um) Um) Uny) Utnz) (see[15]) equals the robustness, and it reads

for anynq,n, satisfyingm=min(n,,n,) are equivalengsince R(p)<C
the Schmidt decomposition di¥') e C"1®C"2 contains at (p)=C(p),
mostm terms, so that Eq(30) is also valid for any state in
C"M®C" if m=min(ny,ny).

One can check that, as previously announced,nier3 Finally, we have computed the robustness for a family of
the entropy of entanglemef( V) given in Eq.(2) and the  mjyed states: consider the rank one proje¢td d|, where
robustnesfR (W) are independent functions of the two great‘|0)5c039|1>®|1>+sin6|2)®|2), 9e[0,7/4], and the (sepa-
est Schmidt coefficienta; anda,, and that there is a one- rable diagonal state
to-one correspondence between (@,) and (E,R), so that

(39

where C(p) was explicitly computed for any state of this
system in[15].

(E,R) can be used to label unambiguously the elements of qga 0 0 O
the set of locally inequivalent pure states of a two-quitrit sys-
tem, and therefore suffices to completely characterize their 0 % 0 O 3
entanglement.
g pp= 0 , 0;i=0, 2| q=1,
2. Bounds for the robustness of mixed states 0 O > 0
of two-party systems
It can be provedsee Appendix Cthat for any state of a 0 0 0 @ (35)
two-party system the following inequalities hold:
then, for any Gsp=<1, the statgp=ppp+(1—p)|0)(6| has
) A -~ ~ 1~ robustness
min{ { —-1,0]|<R(p)sminim—1R| p||=| | |,
aj, n

0 if p'e=0

(32 =
Rip) (1-p)sin 20— paq, otherwise.

(36)

where\; is the jth negative eigenvalue of'e,> a; is the o ) .
biggest coefficient of the Schmidt decomposition of the ei- ) AWernle_r sta}te with li'_de“t)F [16]is |/(;Cﬂ|1|y equwlilent ;0
gemector coresponding o, it ank oyt 7 1S fom gt~z =i
=Trg[p]®Tralp] (i.e., the dimension of the minimum prod- P ' Yy WE P

~ . . L~ =2F—1 for entangled Werner states, that is, for Werner
uct spaceHCH such thatp is entirely supported in it m states with fidelityF >3
=min(rank p”], rankp®]), andp andT are the restric- ?

tions of p and| to H. 4. Numerical computation of the robustness for mixed states
of two qubits and of a qubit-qutrit system

3. Robustness of a two-qubit system In C2®C? and C2®C? one can easily check whether a

For the simplest two-party system, tié®C? case, we statep is separable by computing the eigenvalueg &fand
present simpler bounds for the robustness of a general mixezkeing whether they are all non-negative, since for these sys-
state and an exact result for a class of mixed states, whictems p e S&p'8=0 [17,18. Therefore given @ which is
includes all Werner states. These results are proved in Agknown to be entangled, one can choose a separablegstate
pendix C. and computdR(p||ps) by requiring thas in Eq. (6) be mini-

First, for A the negative eigenvalue ¢f'® and |n) its  mum with p(s) '8=0. Consequently to findR(p) one can
corresponding eigenvector, witin)=cosf|1)®|1)+singl2)  perform, say, a conditional random walk, in the 16r 369
®|2) (#<[0,7/4]) its ordered Schmidt decomposition, the dimensional real vector space of Hermitiax 4 (or 6x6)

following inequalities hold for any state: matricesspg, searching for the minimum of its trace re-
quiring
A
——=<R(p)<=2|\|, (33 ps=0, (37
cogd
T
which in particular means that whenever #s3, R(p) ps°=0, (38)

=2|\|. The lower bound corresponds to E&2), and the
upper bound can be seen to be an improvement on that in Eq.

(32) l:l)y tak|n~g into account the resuit in Eq14) and that and that at each stepdiminishes. Condition$37) and (38)
IN|<3 [12], m=2 for any entangleg. assure thaps is a separable state, and then condit{88)
assures thgtl/(1+s)](p+sps) is also separable. For each
sp, satisfying condition$37)—(39), sis greater than or equal
5,Ts is the partial transposed gf with respect to the partg  t0 R(p||ps), and from the convexity of this functiofsee
(which has the same spectrum @2, its eigenvectors also having Sec. Ill Q) we know the search will finish as soon as a local
the same Schmidt coefficients minimum is reached fos, for it is the global one.

(p+spg) B=0, (39
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In C2®C? the effectiveness of this method is notably en- 3. Random robustness of a two-qubit system
hanced by the fact that, as a consequence of some results of and of a qubit-qutrit system

[11],Ta statep Qf this system is entangled if, and only if, Because inC2®C2 and C2®C2 the conditionp™®=0 is
detp '8<0, that is, not only necessary but also sufficient ferto be separable
peSedetpe=0. (40) [17,18, the lower bound in Eq(42), which was based on
this condition, becomes an equality:

Then, whereas the eigenvalues @f must be computed to
check constrain(37), for constraintg38) and(39) one only 1
needs to compute the determinant @f® and that of p R(PH !
+spg) TB.

sps) B. Random robustness of two-party systems

The random robustness of two-party systems, that we V- APPLICATION: EXPLICIT LOWER BOUND
shall compute exactly for pure states of a sys@tmeC" FOR THE VOLUME OF SEPARABLE STATES

and for any state of the systeti$eC? andC*®C?, and for In [12] the space of stateBwas endowed with a measure,
which we will present lower and upper bounds for any stat§o which it was proved that the volume of the set of sepa-
in any system, is a quantity that will be very useful for two e statess was nonzero compared to that of the whole set
different purposes. We proved in Sec. IIB that any state ofyt sates7. We will next give an alternative proof of this
any composite system can be expressed in terms of two Sepgssyit by computing an explicit lower bound for this volume.
rable statesps andp; , and a non-negative numbei.e., as  Following the proposal ifil2], the set of states of a generic

a local pseudomixture. Moreover, we provided an explicitsystemQ can be viewed as a Cartesian product of two sets:
offhand example of local pseudomixture for any state

However, we did not prove this last result, and this is what T-PXA (45)
we will do with the help of the random robustness of mixed '
states. On the other hand, this quantity will allow us to obtain ) -
an explicit lower bound for the volume of separable states ofvhere P is the set of complete familiefP},, .., of or-
a generic composite system in Sec. V. thogonal rank one projectoréi.e., =;_ P =1, T PPy/]
= Ok ,Pﬁz P.), andA is the convex subset ®®" gener-

1. Random robustness of pure states of two-party systems ated by all possible convex combinations of the poixts
eR", x;=(0,...,0,2,0,...,0), i=1,...n [that is,A is
the convex hull generated Hy;}i—; .., and thus a subset
of the (n—1)-dimensional hyperplane which contaips}].
For v the measure induced @by the Haar measure on the
unitary groupU(n) and£,,_, the Lebesgue measure induced
onACR" !, itwas argued ifi12] that a natural measure on
Tis u=vXL,_,. We have then found the following lower
which manifestly depends not only on the two largest coefhound for the ratio of the volume of the sefsand 7 of an
ficientsa; anda, (that is, on the state itsglfbut also on the  N-party system witm-dimensional Hilbert space:
dimensionn=n;n, of the Hilbert space of the systefuf.

=n|min(\,0)]. (44)

Given a pure stat® of a two-party systend"1® C "2 with
ordered nonlocal parametefa;}i_;,, [M=min(ny,ny)], its
random robustness {g\ppendix B

) =niNza;a,, (41)

1
i
nin;

property (i) of R(p)]. Notice that for any dimensions the V(S) 1\ (~D(N-1)
most robust pure state, as far as white noise is concerned, has —= ( 15n2 , (46)
a;=a,=1/\/2, and thus is locally equivalent to a singlet V(D) \1+nf2

state in aC2®C? product subspace @f™®C"2.
which indeed confirms that the volume of separable states is

2. Bounds for the random robustness of mixed states nonzero for any finite.
of two-party systems Proof: Consider the function

For any p of a two-party system with Hilbert space
C"®C" of dimensionn=n;n,, and for\ the smallest ei-
genvalue ofp 8, the following bounds holdAppendix O: 0P IAN)=

n

1 if S APeS
2 AP 47)

n|min()\,0)|sR(p 0 otherwise,

1I n 42
— =—

n 2’ 42
where{A,} e A. Then the ratio of the volume¥(S) and

The upper bound is of some interest, for it indicates hovvv(Tj is, with the proposed measure=vx L on T
any state of a two-party system can be offhand explicitly_ 5. A' "

written in terms of a local pseudomixture, and it can be gen-
eralized to theN-party case, where it reads

N-1 fu(n)deAdA O (P {AW})

- 43) v(s)

J’__
12

=

n! (48)

4

VD ol as
as was already mentioned at the end of Sec. I B. u(n) A
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Consider now another

<O{Py}.{A}). Then

function E({P},{A\})

V(S) J'U(n)du LdA E{Pu{A)

=
| au] as
u(n) A

(D~
If one can choose this functidf to be independent dfP,},

(49

then the integral over the unitary group in the numerator of

Eq. (49 will factor out and will be canceled by that in the

denominator. As we will argue, the following one does the

job:

_ 1 if {Aded,

:({Ak}):[o otherwise, 50
where Ap=convexhully;e R"y;=px+(1-p)z,
i=1,...n}, with z=(l/h,...,1h) and p=[1/(1

+n/2)]N"%. Then one can see that, since the simpigxhas
edgesp times smaller tham,

JAdAE({Ak})=fA dA=p”‘1LdA, (51)

p

from where the lower bound easily follows.

To see that any sta®,_; APy is separable for any fam-
ily {P.} provided that{A,}eA, (that is, to see that
=¥), one can resort to the upper bound for the rando
robustness Eq(C8) computed at the end of Appendix C.
Since R(p||(1N))<(1+n/2)N"1—1=1, we find that ap,
independent op, such that

1
pp+(1—p)ﬁl (52)

belongs to the set of separable sta®sis p=1/(1+1)
=[1/1+n/2]N"1. Each point{A,}eA, has components
A=0qp+(1—p)/n for someq,=0 such thatt}_,q,=1.
Then

n n n

P
> AP=pY AP+ (1-p) > X
k=1 k=1 k=1 N

(53

n
22 Ak
k=1

1
pPk“'(l_p)ﬁl}
which is a convex combinatiolE|_,qypsx Of separable
statesps xk=pPx+ (1—p)(1/n)I, and therefore is also sepa-

rable.
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APPENDIX A: NOTATION

Entanglement appears in composite systems, where
divisions—and yet subdivisions—into constituent parts eas-
ily proliferate. These may imply working with a multitude of
Hilbert spaces which, together with having to deal with dif-

n{erent types of states, easily leads to confusion. We have

chosen to label symbols such & H, p (standing for
physical systems, Hilbert spaces, states) @iith a superin-
dex to refer to a specific local subsystem, the parties being
called after the name of a physicist—Alice, Bob, etc.—
following the tradition. On the other hand, subindices will
denote different elements of a collection of states.

The following list contains some of the symbols we have
used, along with a short explanation of their meaning. In
some cases we indicate how they are related to each other.
See also the example in Fig. 8, physical system, com-
posed ofN local subsystems}, Hilbert space ofQ, of
dimensionn; W¥,®, ..., pure states ofQ; p, mixed
state of Q, or exceptionally of a nonlocal subsystem of
Q; Q' local subsysten (i=1,...N), i.e., subsystem
where partyi can act without further adéhe indexi will
often be a capital letter instead of a number, thati is

=A,B,C,...); H', Hilbert space ofQ', of dimension
ni; W', states of QY uM,0'=9, oM H
=H (II'_;n;=n); Q"J, local partial subsystem or part

of the local subsysternj=1,... N;; H"J, Hilbert space
of Q'; Uz\ilgi'jIQi, ®;\';1Hi'j=Hi; Q\Q, sys-

tem obtained fromQ@ by dismissing a(local or nonlocal

subsystemQ;  py.ty, ..., elementk of a collection of
states, weights, etétypically k=1, ... ]); 7, set of states;
S, set of separable states;, separable state, i.epze S.

APPENDIX B: ROBUSTNESS AND RANDOM
ROBUSTNESS OF PURE STATES
OF TWO-PARTY SYSTEMS
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m 2 aAm+1
R(“P({ai})):(izl ai) -1 (Bl) 21 <|] |ere’rk><ere’rk|k|>
will take two steps. In the first step a local pseudomixture \/mamﬂ 2 ]r
{pd p 1}, such that=(3;a;)2— 1, will be explicitly con- - 1+’Rk '21 - (ai+ak—aj—a|)}.
r= m+1

structed for?. In the second one it will be proved that this
local pseudomixture {pJ ,pot} is optimal, so that
'f(‘l’;_P;r ,ps ) isR(¥). Then from Eq(B1) it will be easy to  Now, since 6<i,j,k,/<m+1 (and recalling thata,,,
obtain the random robustness bf, >2ay), the quantity|a;+ay—a;— | is always smaller
thana,,,,. Taking this into account, and also the fact that

(B10)

1
R(\I’({ai})’_| =na;a, (B2)
n i=j %
To further illustrate the issue, the cad®= C 2 will be treated k=1
in more detail. a;+ ap— a;— a;=0«{ and/or (B11)
i=1
1. Proof of Eq. (B1) . k%
J:
Consider, thus, a pure stalee C"®C™, and its ordered
Schmidt decomposition: we are left with the only nonvanishing elements
m m a.a
(w)=2 alii), a=a.,=0, X a’=1, (83 (iilpdlii)=(iilpdiiy= TR (B12)

where, from now onjef)=|e)®|f)eC™®C™ and, unless This provesp, = ps and thus thap, is separable.
otherwise specified|i)}i—1 ... m is an orthonormal basis in Let us now see that there is no separable gtagich that
C™. We are interested in statistically mixir§f with pure
product states in such a way that the final mixture is sepa- 1 —— (| TN W] +1tpy) (B13)
rable and the statistical weight of the separable part is mini- 1+t ps)
mal. Let us deﬁneREEiijaiaj=(2iai)2—1 and also
is separable with<<R. Recall that a necessary condition for
1 o p to be separable is that its partial transpositidn (in the
Ps =§i2¢j aiaylij )i, (B4 ilbert spaceH' of partyi, i=A,B in this casg be non-
negative[17], that is,
ps=TrR(IW)¥|+Rog). (B5) peS=pTi=0 Vi (B14)

Thenpg andt must necessarily satisfy
Notice thatp, is a separable state by construction, since it

has been built as a convex combination of projectors onto T
product vectorgij). Next it will be shown thatp] is a 1+t(|\1’><\1’|+tps) B ®)=0 (B19)
separable state as well.
Consider the following convex combination: for any|®) e C™®C™. Define a set of Bell states:
R * * + 1 i i + +
pPs= am+1r§=:1 leef )eer |, (B6) |‘Dij>EE(|'J>+|J'>)7 Pij —|‘b <q)ij|v (B16)

where the components ¢f,) e C™ are

Jai 27

1
|(I)ij>EE(|ij>_|ji>)a Pij=[®i(P;[. (B17)
1+ R)Mex m+1air) J=+—-1), (B7)

(ile)=

Then the spectral decomposition pP)(¥|™® can be ex-

(i|ef) is just the complex conjugate ¢f|e,), and the coef- pressed in terms ob;j , @;;, andii):
ficients ; are defined by m m
UYNW|Te= D, a?|ii )i aa;(P;; —Pyj).
aj=2aj_1+1, (B8) vl E i+ .Z Z ! Pi
(B19)
=0. B9
“1 (B9) Now, from Eq.(B15) for |®)=|®d;;),
To see thaps =p, and that thereforp_ is separable, con-
sider the matrix element & '™ |e,ef }(e,ef|: <(I> 1+t(|\If)<\lf|TB+tpS > 0, (B19
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which immediately leads to

a;a;

Tr(PplB)= —. (B20)

Then, taking into account thﬁipiaiaj:%(iia?—l), we
get

S TH(Pyp)= 5
=i Hhs et

It will next be proved thaEi,PiTr(PiijB)s%, which im-
plies, together with Eq(B21), thatt=R. Thus the proposed
local pseudomixture is an optimal one, aR@¥V) =R.

Define the projectoM=Z,; ;-;P;; and consider a sym-
metric unitary product transformatido ,® U, .

Theorem B.1[M,U,®U,]=0.

Proof: For anyi,j,M|ij)=Pyij)=3(lij)—]ji)), and, if
Uliy=2i/by[i"),

MU, & U,lij)= > bjbl,M[i"'j’)
i',j’
i ] 1 11! A
=2 bl ()=
i’

1
=U,0U,5(lii)=lji))

=U,oUM|ij). (B22)
This proves the theorem, sin¢gj)}i -1
the whole Hilbert spacd.]

Theorem B.2 (necessary condition for separability).

m IS a basis of

.....

1
peSzTr[pM]$§. (B23)

Proof: Recall that if p is separable, then it can be ex-
pressed as a convex combinationmdt necessarily orthogo-
nal) projectors onto product vectorff,g,), that is, p
=3Pl f3i{f gy Consider the following quantity:

Mig=(fg|M|fg). (B24)

It will be proved thatM ;=<3 for any product vectotfg),
and that therefore

1
T pM]= 2k PMpg=<35- (B25)

Indeed, by noticing that Theorem B.1 implies tML,anag
=Mygq, since

TU,®U, [fg)(fglu teu M]=Ti|fg)(fg|M],
(B26)

instead ofM ¢, we can computé/ 5, where
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1 §1
0 g2
= B2
|1§> m—1 ® B27)
0 &m

for some|g)=U,|g), whereU, is such tha1)=U,|f).

m

(10IM[1g)= 2 (19IPy[19)=2, (1/Py/10)

ik

| =

a 1 1
O R |
2 [iloF=3Kale)f=5. O

(B28)

N

J

2. Proof of Eq. (B2)

Now the result

=naja,, (B29)

1
—1
n

where n=n4n, is the dimension of the Hilbert spack
=CM®C"™ of the two-party system, follows straightfor-
wardly from the previous considerations. Indeed, with
=min(n,,ny), R,=n;n,a;a,, andR given by Eq.(B1) (R,
=R by constructiol, the separable state (4 can be writ-
ten as a convex combination pf from Eq. (B4) and an-

other manifestly separable staig

R(‘I’({ai})

ng n

P

=1j=1

i)

=Rir(i§l ,2‘1 a‘i""JliJ><iJ’IJrz,l ;1 ci i )i

= R%[Rps +(R = R)ps], (B30)
where
a;a,—aa; (=0) if i,jsm

C”E|a1a2 otherwise, (B3Y)
and

~ 1 e

ps= Rr_R21 2}1 cilij)ijles. (B32)
Then [U(1+R)][|¥)X¥|+R,(1n)I]=[1/(1+R)][(1

+R)pd + (R —R)pd, wherep! was defined in Eq(BS), is
manifestly separable, whereas one could check that for any
e>0

1 €
(o[ F)(W|Te+ (R~ €) 18| D1p) = — ~<0,
(B33
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so that, recalling the necessary condition for separability disand

cussed in Eq(B14), R, is the minimum amount of (bjl )

that mixed with |[¥)(¥| makes it separable, that is, ai 0 0 aa
ROW[[(1M)1)=R;. 1 0 aja O
Ps =75 (B36)
s 1+R| O 0 aa, O

3. Pure state of the smallest composite system

2
' : a;a a
Let us finally consider, as an example, a pure state of the 132 0 0 2

smallest composite system: a system of two qubits. In thisg check thapy = ps as given by Eq(B6) let us specify it
case the Hilbert space &°®C?, and the ordered Schmidt 5. o example:
decomposition allows us to express with an adequate choice

of basis any pure stat¢ as 13
Ps:_z |erer><eref|7 (B37)
a 3k=l
0 where
[T)=a4|1)®|1)+a,/2)®[2)= ol (B34
a.1/2 a1/2
1 1
a
2 lecef)=| ,, [2mJ & 4, [—2md
Then, using the definitions given in Appendix BR a ex 3 r ay ex 3 r
=2a1a2, (838)
0O 0 0 O More explicitly,
=l yen -1 0 o )¢ LS
Ps =735 + =5 ) =
0 00O
(B35  with N, given by
|
2md —2J
a3 ad%aj 2exp{ =" ] a3} 2exp{ — T } a,a,
27 —2m] —2m]
af’za%’zexp{ 3 r] a,a, alazexpl' 3 Zr] a}’zag’zexpl’ 3 rJ
B40
312,112, ) 27T 2mJ 2,302, ) 27T (840
aya; exp ——r a;aex TZr a,a; a;a;"exp =1
2md —2J
a,a, a}’zag’zexp{Tr] a}’zag’zexp{ 3 r} a3
|
The sum over now reproduces EqB36) immediately so 0
that ps=p< . Some of the expressions used in proving that 1 1
the local pseudomixturép ,p5 ,R} is optimal read for our |Dy=— .| Py=—= . (B42
example V2| 1 V2| -1
0
|W)(W|Te=af|11)(11 +a3|22)(22 + a;8,(P1,~ P1p) and Eq.(B21) is
al o0 0 o0
T a:a;
0 0 aa, O Ba1 Tr(Pip )= - (B43)
|0 aa 0 0} (B4Y)
0 O 0 a) which, taking into account th&fg|P,,|fg)<3 for any prod-

uct vector|fg) (Theorem B.2, and consequently TRH3,p)
<1 for any separablep, implies that R(W)=R=(a;
and +a,)?—1.
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Now R,=4a;a, and the maximally random state in 2 R(p)<m-1, wherem=min(rank[p”], rank [p®])
C?®C? can be decomposed, following Theorem B.2, as a ~
mixture of two separable states as follows: Proof: For HCH the product subspace spanned by the
eigenvectors op”® pB with nonvanishing eigenvalue, any

0 0 0 0 rank one projector in a convex combination@happens to
1 1]//0 aa 0 o project into, that is, ifp=2pk|11fk)<~\1’k|,jhenlq’kle H.
7 =1lo o0 aa o But R(W)=(Z_,"a)?—1=(3,_,"1m)2—1=m—1.
' 192 Then, sinceR(p) is a convex functionR(p)<ZpR(¥ )
0o 0o 0 0 <m-1.
a;a, 0 O 0 ~
0 00 0 3. R(p)<R(p||(1/n)T)
' o0 ol (B44) R(p)=<R(p||(1/)T) follows from the fact that (})T is a
0 0 0 aa, separable state, ErR(E) =R(p) is the minimum of the rela-
tive robustnesfR(p||ps).
so that
4. R(p)<2|A| (C?®C?
1000 Proof: The partially transpose@'® of any inseparable
-~ 1/0 0 0 O density matrixp in C?>®C? always has a negative eigenvalue
=310 0 0 o (B45) X [11], for a certain eigenvectom)=cosf|11)+ sing|22).
(Here we choose the local bagisj)}i -1, to be that de-
0 001 fined by the Schmidt decomposition dh)). For pg
. = co$611)(11] +sirPg22)(22 it can be checked that
in Eq. (B32). —|n){n|+2ps=0, which implies that
. 1
APPENDIX C: MAINLY BOUNDS FOR ROBUSTNESS W(p+2|)\|p5) (C3
AND RANDOM ROBUSTNESS OF MIXED STATES + |)\|

OF TWO-PARTY SYSTEMS

1. Imin({N;/af 1}, 0)|<R(p)

Proof: Assume that in the spectral decomposition of 5.R(p)<C(p)(C*®C?)

Ts Te— -
p'®, p'B=3]_ \|W;)}(¥|, at least one eigenvalue, say  proof: The robustnes&(¥) and the concurrence(W)

Aj, is negative. Calling the nonlocal coefficients of the or-re equal for any pure state 6£®C2, and in[15] it was
dered Schmidt decomposition of the corresponding eigenproved that one can always find a realizatiph, ,p,} of
vector |W;), {a;;}, one finds that, forpse S, if (Wil(p four pure states fop such thatC(¥,)=C(p) Vk. Then,

+tPs,),TB|\I’i> is to be non-negativéwhich is a necessary using the convexity oR(p), we find that for this realization
condition for[1/(1+t)](p+tps) to be separab)e thent=

—)\j/<\1’j|p18|\l’j>. We will next prove thaf(¥;|p)|<a
for any product vector|p), and therefore(\lfj|p13|\lfj>
sail, which implies the lower bound for the robustness of
ipS. g&tg%g:je contrary, nov;<0 exists, no significant bound g R(p(p,qy,q,,6))=(1—p)sin 20—p if p'e£0 (C22C2)
' . T — i

Theorem C.LIf |W)=SM.ali)®|i) is the ordered  Proof (®|p'8|®)=3[pa,—(1—p)sin20] for [D)
Schmidt decomposition of the normalized vectp¥) =(12)(|12)—|21)). Then a necessary condition for
eCM®C™ [ie., m=min(h,n,), a;=a;,,=0, and

is a separable state.

4 4
R(p>$k§1 ka(\Ifk>=k§1 pPC(¥)=C(p). (C4

. 1
{li)}i=1 ... m are othonormal vectolsand |p)=|p;)®|p2) 1—(p+tps) (CH)
eCM®C" is any normalized product vector, th@|p)| tt
<a,.

to be separable for a separalplgis that(®|(p+tps) '8|D)
=0, that iS,—<CI)|pTB|<I)>S'[<<1)|pIB|(I)>. But in Appendix B
m m . T 1 .
it was proved tha{®|p B|®)=<3, so thatt=(1—p)sin 20
Sgl ailplv‘pZ"salgl [Pa;Pil —p. Moreover one can check thaps=3|12)(12
(Cy)  +|21)(21] with weight t=(1—p)sin 20—pg, makes the
density matrix in Eq(C5) separable.

m m
<a \/Zl |p1il? \/Z,l |p2il? 7. R(p||(2/m)1)=n|min({\},0)]
Proof: For anyp consider the spectral decomposition of
<a;V(plp)=a; . O (€2 p's

Proof: For p;;=(i|p1) andp,;=(i|p), one gets
m

21 ajP1,P2;

(W [p)|=
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n 1 ni
pTe= 2, MYV, (o) Trmiz VO (€9

where we taken,<\y;; (and we take into account also is separable if considered as belonging to a two-party sys-
eigenvectors with vanishing eigenvaluand suppose\;  tem, that of Alice as one party and Bob and Claire as the
<0. Then p+n|A | (1M 1TTB=Z0_, (|A 1| + N [T (P is other, and therefore can be expressed as a convex combina-
manifestly non-negative definitéwhich is a necessary tion EkPkW’Q(l//mB@éWEC)WEﬂ of pure states that are
conditon for the separabilty of 1/@En|\)[p product inH”®H "~. Now mixing any of these pure states

+n|\¢[(1/n)1]), whereas for ang>0, with an amountn/2 of (1/)l we obtain a proper separable
state:
< NI M .-
" " o el 1| c10

If X4=0 no significant bound is obtained.

1 ni
8. R(p||(1n)1)=n/2 =Tara | V@] (959" +5 o BC)

For N=2 the boundR(p||(1/n)l)<n/2 is a consequence N1

of the fact that for any pure state of a two-party system + = = (1A= | yA (A @ 1BC], (C11)
R(¥||(1/n))=naa,<n/2, and of the convexity of 2n

R(p||(1/n)1) as a function ofp, that the reader can easily o o o
+ngnc/2)][| BN $BC|+ (n/2)(1)I1BC] is a separable
1 n\N-1 state inHB®HC, whereag 1/(na—1)1(1*— "W ¢")) is a
Ripl|gls|1+3) -1 (C®  mixed state if{*, so that the right-hand side of E€11) is

a convex combination of two manifestly separable states.
can be derived from the previous result and we will explainThen, by adding an amount2 of the separable (4! to the
it only for N=3, theN>3 case following straightforwardly. state in Eq.(C9) we make it separable, and therefore mix-
Consider a pure stat&#“BC shared by Alice, Bob, and ing the initial pure state?~BC with an amountn/2+ (1
Claire. If we first think of Bob and Claire as a single party, +n/2)(n/2)=(1+n/2)?>—1 of (1h)l is sufficient to wash
then we have seen that the state out its quantum correlations.

[1] E. Schrdlinger, Naturwissenschaftet8, 807 (1935; 23, 823 [9] S. Popescu and D. Rohrlich, Phys. Rev58, R3319(1997).

(1939; 23, 844(1935. [10] M. B. Plenio and V. Vedral, e-print quant-ph/9804075.

[2] A. Einstein, B. Podolski, and N. Rosen, Phys. R&¥, 777  [11] A. Sanpera, R. Tarrach, and G. Vidal, Phys. Rev58\ 826
(1935. (1998.

[3] E. Schmidt, Math. Ann63, 433 (1906 see also A. Ekert and [12] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein,
P. L. Knight, Am. J. Phys63, 415 (1995. Phys. Rev. A58, 883(1998.

[4] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma- 3] M. Kuna, Acta Phys. Slov48, 1 (1998.
cher, Phys. Rev. 53, 2046(1996. [14] P. Horodecki, Phys. Lett. 232, 333(1997.

[5] N. Linden and S. Popescu, Fortsch. PM&.567 (1998. [15] W. K. Wootters, Phys. Rev. Letg0, 2245(1998.

[6] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A4, 3824(1996.

[7] V. Vedral and M. B. Plenio, Phys. Rev. 37, 1619(1996.

[8] D. P. DiVincenzo, C. A. Fuchs, H. Mabuchi, J. A. Smolin, A.
Thapliyal, and A. Uhlmann, e-print quant-ph/9803033.

[16] R. F. Werner, Phys. Rev. A0, 4277(1989.

[17] A. Peres, Phys. Rev. Leff7, 1413(1996.

[18] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A
223 1 (1996.



