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Beyond the Gross-Pitaevskii approximation: Local density versus correlated basis approach
for trapped bosons
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We study the ground state of a system of Bose hard spheres trapped in an isotropic harmonic potential to
investigate the effect of the interatomic correlations and the accuracy of the Gross-Pitaevskii equation. We
compare a local-density approximation, based on the energy functional derived from the low-density expansion
of the energy of the uniform hard-sphere gas, and a correlated wave-function approach, which explicitly
introduces the correlations induced by the potential. Both higher-order terms in the low-density expansion,
beyond Gross-Pitaevskii, and explicit dynamical correlations have effects of the order of percent when the
number of trapped particles becomes similar to that attained in recent experiments (N;107).
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The recent discovery of Bose-Einstein condensation
magnetically trapped alkali atoms has generated a h
amount of theoretical investigations. A review of the pres
situation can be found in Refs.@1,2#. Present experimenta
conditions are such that the atomic gas is very dilute, i.e.,
average distance among the atoms is much larger than
range of the interaction. As a consequence, the phy
should be dominated by two-body collisions, generally w
described in terms of thes-wave scattering length. The cas
of a positive scattering length is equivalent to consider a v
dilute system of hard spheres, whose diameter coincides
the scattering length itself. So, the Gross-Pitaevskii~GP!
theory for weakly interacting bosons seems the logical t
to study these systems and most of the present days the
ical work is founded on~or has its starting point in! this
theory@3#. However, in very recent experiments the numb
of trapped atoms has spectacularly increased reachingN val-
ues of the order 106 and 107 atoms@4#. Therefore, it seems
logical to ask for a deeper study of the effect of the int
atomic correlations and of the accuracy of the Gro
Pitaevskii scheme in this new scenario. First-order corr
tions to the mean field have been evaluated in Refs.@1,5#.
The dense condensate case was studied in a slave boso
resentation in Ref.@6#. Exact quantum Monte Carlo method
@7,8# have been also employed, but only up toN5105.

Here we study the ground state of a system of Bose h
spheres trapped by a harmonic potential. More precisely,
consider hard spheres with a diameter of 52.9 Å, co
sponding to thes-wave triplet-spin scattering length of87Rb,
in an isotropic harmonic trap characterized by an angu
frequencyv/2p577.78 Hz. We also examine the largeN
atomic sodium case of Ref.@4#. We use and compare tw
methods:~i! a local-density approximation~LDA ! based on
an energy functional derived by the low-density expansion
the energy of an uniform hard-sphere gas and~ii ! a correlated
basis function~CBF! approach, which explicitly takes into
account the dynamical correlations induced by the poten
and which is not, in principle, limited to purely repulsiv
interactions.
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f
ge
t

e
he
cs
ll

y
ith

l
ret-

r

-
-

c-

rep-

rd
e
-

r

f

al

LDA theory.In the case of a uniform hard-spheres Bo
gas, a perturbation theory in the expansion parametex
5na3, where n is the density of the system, leads to th
following low-density expansion for the energy density@9#:

E

V
5

2pn2a\2

m F11
128

15 S na3

p D 1/2

18S 4

3
p2A3D ~na3!ln~na3!1O~na3!G . ~1!

The energy functional associated with the Gro
Pitaevskii theory is simply obtained in the local-density a
proximation by keeping only the first term in expansion~1!:

EGP@c#5E dr F \2

2m
u¹c~r !u21

m

2
v2r 2ucu21

2p\2a

m
ucu4G ,

~2!

where thewave-functionc is normalized to the total numbe
of atoms.

By performing a functional variation ofEGP@c# one finds
the Euler-Lagrange equation, known as the Gross-Pitaev
equation,

F2
\2

2m
¹21

m

2
v2r 21

4p\2a

m
ucu2Gc5mc, ~3!

where m is the chemical potential. This equation has t
form of a nonlinear stationary Schro¨dinger equation, and it
has been solved for several types of traps using differ
numerical methods@10–13#.

A logical step further, in the spirit of LDA, is to include
into the energy functional the next terms of correlation e
ergy ~1!. It is convenient to simplify the notation by expres
ing lengths and energies in harmonic oscillator units. T
spatial coordinates, the energy, and the wave function
2319 ©1999 The American Physical Society
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rescaled as r5aHO r̄ , E5\vE1, and c(r )
5(N/aHO

3 )1/2c1( r̄ ), where aHO5(\/mv)1/2 and c1( r̄ ) is
normalized to unity.

By taking into account the next terms of the correlati
energy, we obtain a modified Gross-Pitaevskii~MGP! energy
functional,

EMGP@c1#5E dr̄ H 1

2
u¹ r̄c1~ r̄ !u21

1

2
r̄ 2uc1~ r̄ !u2

12pāNuC1~ r̄ !u4F11
1

p

128

15
@Nā3uc1~ r̄ !u2#1/2

18S 4p

3
2A3DNā3uc1~ r̄ !u2

3 ln@Nā3uc1~ r̄ !u2#G J , ~4!

and a corresponding modified Gross-Pitaevskii equation,

F2
1

2
¹ r̄

2
1

1

2
r̄ 214pāNuc1~ r̄ !u215p1/2ā5/2N3/2

128

15
uc1~ r̄ !u3

18pā4N2S 4p

3
2A3D uc1~ r̄ !u4

3$6 ln@Nā3uc1~ r̄ !u2#12%Gc1~ r̄ !

5m1c1~ r̄ !, ~5!

where ā5a/aHO and m1 is the chemical potential in har
monic oscillator units. Equation~5! contains extra nonlinea
terms inc1.

CBF approach.Correlated basis function theory is a pow
erful tool to study strongly interacting many-body syste
~for a review, see Ref.@14#!. In particular, it was used to
study the hard-spheres homogeneous Fermi gas in ord
ascertain the accuracy of low-density-type expansions@15#.

For N interacting bosons, atT50 temperature, describe
by the Hamiltonian

H52
\2

2m (
i

¹ i
21(

i
Vext~r i !1(

i , j
V~r i j !, ~6!

where Vext(r i) is the confining potential andV(r i j ) is the
interatomic potential, the CBF ground-state wave function

cCBF~1, . . . ,N!5F~1, . . . ,N!cMF~1, . . . ,N!, ~7!

whereF(1, . . . ,N) is a many–bodycorrelation operatorap-
plied to the mean-field wave-functioncMF . The advantage
of using a correlated basis lies in the fact that nonpertur
tive effects, as the short-range repulsion for the hard sphe
may be directly inserted into the correlation.

The simplest correlation operator has the Jastrow fo
@16#,

F~1, . . . ,N!5)
i , j

f J~r i j !, ~8!
s

to

s

a-
s,

where the Jastrow correlation function,f J(r ), depends on the
interparticle distance only.f J(r ) is variationally determined
by minimizing the expectation value of ECBF
5^cCBFuHucCBF&/^cCBFucCBF&. ECBF may be evaluated
either by Monte Carlo techniques or by cluster expansion
the needed one- and two-body densities,r1(r1) and
r2(r1 ,r2).

The energy per particle can be written asECBF /N5Tr

1Ve1Vcorr , where

Tr5
1

N

\2

2mE dr1@¹W 1r1
1/2~r1!#2, ~9!

Ve5
1

NE dr1r1~r1!Vext~r1!, ~10!

and the correlation energy,Vcorr , is

Vcorr5
1

N

1

2E dr1E dr2r2~r1 ,r2!FV~r 12!

2
\2

2m
¹W 2 ln f J~r 12!G2

1

N

\2

2mE dr1E dr2r2~r1 ,r2!

3¹W ln f J~r 12!•¹W ln r1
1/2~r 1!, ~11!

wherer1 is normalized toN.
r2 may be calculated by cluster expansion in powers

the dynamical correlation,h(r )5 f J
2(r )21, and the integral

hypernetted-chain~HNC! equations@17# may be used to sum
infinite classes of cluster diagrams.

Given the low density of the trapped bosons’ system
looks plausible to start from a lowest-order cluster exp
sion. In this approximation r2

(LO)(r1 ,r2)
5r1(r1)r1(r2) f J

2(r 12) and

Vcorr
(LO)5

1

N

1

2E dr1E dr2r2
(LO)~r1 ,r2!VJF~r 12!, ~12!

where VJF(r )5V(r )1(\2/m)@¹W ln fJ(r)#
2 is the Jackson-

Feenberg potential.
The minimization ofECBF

(LO) with respect tor1 leads to the
lowest-order correlated Hartree (CHLO) equation,

F2
\2

2m
¹21Vext~r !1E dr 1r1~r1! f J

2~s!VJF~s!Gr1
1/2~r !

5mr1
1/2~r ! ~13!

with s5ur2r1u.
The optimal choice for the Jastrow factor would be t

one satisfying the Euler equationdECBF /d f J(r )50. Other-
wise, parametrized functional forms may be chosen wh
parameters are found through the minimization process.
adopt here the correlation function minimizing the lowe
order energy of a homogeneous Bose gas with a hea
condition at a distanced ~taken as a variational parameter!.
For the hard-spheres case,f J(r ,a)50 and f J(r .a)
5u(r )/r , where u(r ) is solution of the Schro¨dinger-like
equation2u95K2u. f J(r ) has the form@18#



f
e

PRA 60 2321BEYOND THE GROSS-PITAEVSKII APPROXIMATION: . . .
FIG. 1. Energy per particle~in
units of \2/2ma2) for homoge-
neous hard spheres in function o
x. The symbols correspond to th
low-density expansion results@Eq.
~1!# obtained by keeping only the
first term (LD0) or by adding the
second (LD1) and the third (LD2)
ones, and to the diffusion Monte
Carlo ~DMC! and HNC energies.
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f J~r !5
d

r

sin@K~r 2a!#

sin@K~d2a!#
, ~14!

where the healing conditions,f J(r>d)51 and f J8(r 5d)
50, are fixed by the relation: cot@K(d2a)#5(Kd)21.

Results.We begin by briefly discussing the boson har
spheres homogeneous case. It was shown in Ref.@18# that
the lowest-order cluster energy of an infinite system
bosonic hard spheres, correlated by the Jastrow factor~14!,
asymptotically tends to the first term of low-density expa
sion ~1! when the healing distance goes to infinity. We ha
numerically checked this behavior. The situation change
all the many-body cluster terms are included via HNC su
mation, since the computed energy shows a clear minim
in d. Some results are given in Fig. 1 for variousx-values.
The energies have been multiplied by 103(2,1) at x
51026(25,24), respectively. The figure shows the energy
timates computed by retaining different expansion terms@the
local-density (LD0) values correspond to the first term in E
~1!, whereas the LD1 and LD2 ones are obtained by addin
the second and third terms, respectively#, the HNC energies
and, at the highestx value, the exact energy, evaluated by
diffusion Monte Carlo method@19#. The quality of the HNC
results is excellent as they practically coincide with the ex
ones at all the densities~the low density value at lowx and
the Monte Carlo one at largex). The convergence of expan
sion ~1! at largex appears to be rather poor, pointing to t
relevance of successive contributions.

The Gross-Pitaevskii, the modified Gross-Pitaevskii, a
the lowest-order correlated Hartree equations forc1 have
been solved by the steepest descent method@20# for the iso-
tropic harmonic-oscillator trap previously described. An in
tial trial state is projected onto the minimum of the fun
tional by propagating it in imaginary time. In practice, o
chooses an arbitrary time stepDt and iterates the equation

c1~r1 ,t1Dt !'c1~r1 ,t !2DtHc1~r1 ,t ! ~15!
-

f

-
e
if
-
m

-

t

d

by normalizingc1 to 1 at each iteration. When the number
particles becomes very large the time step, which gove
the rate of convergence, should be taken accordingly sm
The number of iterations substantially increases and it is c
venient to start the convergence process from a reason
wave function@for the GP and MGP equations we start fro
the ground-state harmonic-oscillator function, which min
mizes energy functional~2!, while, in the CHLO case, we
start from the GP solution#.

We find that the lowest-order approximation in the fin
system shows a behavior similar to the infinite case. In p
ticular, the solution of Eq.~13! provides an energy~in re-
duced unities! very close to the Gross-Pitaevskii one wh
the healing distance becomes very large. In fact, forN

5105 and ā54.3331023, corresponding to the87Rb scat-
tering length, we obtainE1

(LO)/N512.57, 12.28, and 12.11

at d̄510, 12, and 15, respectively, whileE1
(GP)/N512.10.

This indicates that many-body effects can be recovered o
by a full HNC treatment also for a finite number of atom
However, the solution of the fully correlated HNC Hartre
equation, even if feasible in principle, is very cumbersom
computationally time consuming, and numerically delica
For this reason we have decided to estimate these effect
adopting a local-density-type approach toVcorr . We ap-
proximateVcorr;Vcorr

LD , where

Vcorr
LD 5

1

NE dr1r1~r1!EHNC
hom ~r1!. ~16!

EHNC
hom (r1) is the HNC homogeneous gas energy per part

at densityr1.
The minimization of the energy gives the HNC correlat

Hartree equation (CHHNC),

F2
1

2
¹ r̄

2
1

1

2
r̄ 21E1,HNC

hom ~xloc!1xloc

]E1,HNC
hom ~xloc!

]xloc
Gc1~ r̄ !

5m1c1~ r̄ !, ~17!
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TABLE I. Chemical potentialsm1, ground-state energies per particle E1 /N, and root mean-square rad
Rrms , of N 87Rb atoms in an isotropic trap (v/2p577.78 Hz) in TF approximation or solving the GP@Eq.
~2!#, the MGP@Eq. ~5!#, and the correlated Hartree HNC@Eq. ~17!# equations. TheN51.53107 row refers
to the Na case (v/2p5230 Hz). Energies are in units of\v and lengths are in units ofaHO .

m1 E1 /N Rrms

N TF GP MGP HNC TF GP MGP HNC GP MGP HNC

103 2.66 3.04 3.06 3.04 1.90 2.43 2.43 2.43 1.65 1.66 1.
104 6.67 6.87 6.92 6.89 6.87 5.04 5.08 5.04 2.44 2.45 2.
105 16.75 16.85 17.07 16.94 11.96 12.10 12.25 12.20 3.80 3.84 3
106 42.07 42.12 42.97 42.53 30.05 30.12 30.66 30.48 6.01 6.10 6
107 105.68 105.70 108.75 107.20 75.49 75.52 77.48 76.85 9.52 9.74
1.53107 91.07 91.10 92.41 91.67 65.05 65.09 65.92 65.66 8.84 8.92 8
108 265.46 265.47 275.89 273.58 189.61 189.63 196.45 194.74 15.08 15.44 1
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where we have again introduced the scaled unities and
local gas parameter,xloc( r̄ )5r1( r̄ )a35Nā3uc1( r̄ )u2.

The calculations have been performed for the87Rb scat-
tering length. The scaled energies per particle and the
mean-square radii are reported in Table I for particle nu
bers from 103 to 108. The table also shows the results o
tained by neglecting the kinetic-energy term in the Gro
Pitaevskii equation. This approach, loosely called
Thomas-Fermi~TF! approximation, has been discussed
the literature and allows for deriving simple analytical e
pressions@10#. The differences between this Thomas-Fer
approach and a rigorous one have been recently discu
@21,22# for spatially inhomogeneous Bose condensa
Local-density approximation has been used@1,5# to estimate
corrections to the Gross-Pitaevskii for the ground and
cited states within the Thomas-Fermi approximation and
taining only the first correction in Eq.~1!. The second cor-
rection is negative and partially cancels the first one.
instance, the cancellations go from;15% for N5104 to
;40% at N5106 if we just take the central densities
whereas the final energy is reduced by;15% atN5106 and
it is practically unaffected by the second correction at low
N values.

As expected, the Thomas-Fermi results are close to
Gross-Pitaevskii ones whenN becomes large. The differ
he

ot
-

-
e

i
ed
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-
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r

r
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ences between GP and MGP increase with the numbe
particles and are of the order of 4% for the chemical pot
tial and 2.5% for the energy atN5107. The higher-order
terms in the low-density expansion always have a repuls
effect. The same behavior is shown by the HNC resu
which, however, are less repulsive than MGP at the largN
values.

We notice that if one uses the Gross-Pitaevskii solution
perturbatively estimate the MGP energy, then the correc
is negative~at N5107, DE1524.54). The nonlinear char
acter of Eq.~5! is responsible for this discrepancy.

The density profile~normalized to unity! for N5107 par-
ticles is given in Fig. 2. For this large number of particles t
TF and GP densities are close, whereas the more repu
MGP and HNC solutions lower the central density, expan
ing the density distribution and providing a larger radius,
shown in Table I.

We have also considered a system ofN51.53107 Na
atoms (a527.5 Å) in a spherical trap having a frequency
230 Hz. These conditions roughly correspond to those of
experiment described in Ref.@4#. The results are shown in
the last row of the table and in Fig. 2. The effects of t
correlations are similar to those found in the largeN Rb
cases. The energy increases by;1% and the rms radius by
;0.7% respect to GP. The HNC central density is sligh
reduced.
;
FIG. 2. Density profiles forN5107 Rb atoms and forN51.53107 Na atoms in different approaches~dotted line, Gross-Pitaevskii
dashed line, modified Gross-Pitaevskii; solid line, hypernetted chain!. Densities are normalized to unity and distances are in units ofaHO .
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In conclusion, we find that both higher-order terms in t
low-density expansion~beyond the Gross-Pitaevskii ap
proach and evaluated in local-density approximation! and ex-
plicit dynamical correlations~induced by the strong repul
sion! have effects of the order of percent in the highestN
cases we have studied. In particular, correlations lower
N5108 energy with respect to the mean field by 2.7%~the
effect is larger in the density, lowered by;6%). Theaver-
age value of the local gas parameter,xloc , is ^xloc&52
31024, and the homogeneous gas correction is;3.9% at
the samex value. In more extreme conditions~higherN val-
ues or stronger trapping potentials! corrections beyond mea
field may become even larger and detectable.

In this respect, correlated basis function theory may pla
prominent role. In addition, it allows for a fully microscop
investigation for any type of potential. This is particular
interesting in view of its application to atoms having neg
tive scattering lengths, as7Li. In this case the potential ex
hibits an attractive part and the Gross-Pitaevskii equation
a metastable solution only ifN does not exceed some critic
valueNc . A recent study@23#, which makes use of an effec
v.

-

ich
e

a

-

as

tive interaction, has shown that a new branch of Bose c
densate may appear at higher densities. Correlated b
function theory may provide further insights into this pro
lem having access to the full structure of the potential its

The introduction of the hypernetted-chain energy fun
tional derived by the homogeneous hard-spheres system
vides a quick and probably reliable way of embodying c
relation effects into the treatment of the trapped atoms.
see as a particular appeal of this approach the clear poss
of extending it to nonspherical traps, as in real experime
Moreover, as already stated, potentials other than the sim
hard-sphere one may be easily handled.

ACKNOWLEDGMENTS

One of us~A.F.! wants to thank Ennio Arimondo, Stefan
Fantoni, and Riccardo Mannella for several stimulating d
cussions. This research was partially supported by DGIC
~Spain! Grant No. PB95-1249, the agreement CICY
~Spain!-INFN ~Italy!, and the Accio´n Integrada program
~Spain-Italy!.
i-

cl.

. A
@1# F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Re
Mod. Phys.71, 463 ~1999!.

@2# A.S. Parkins and D.F. Walls, Phys. Rep.303, 1 ~1998!.
@3# L.P. Pitaevskii, Zh. Eksp. Teor. Fiz.40 ~1961! @Sov. Phys.

JETP 13, 451 ~1961!#; E.P. Gross, Nuovo Cimento20, 454
~1961!.

@4# D.M. Stamper-Kurnet al., Phys. Rev. Lett.81, 500 ~1998!.
@5# L. Pitaevskii and S. Stringari, Phys. Rev. Lett.81, 4541

~1998!.
@6# K. Ziegler and A. Shukla, Phys. Rev. A56, 1438~1997!; 57,

1464~E! ~1998!.
@7# W. Krauth, Phys. Rev. Lett.77, 3695~1996!.
@8# M. Holzmannet al., Phys. Rev. A59, 2956~1999!.
@9# A.L. Fetter and J.D. Walecka,Quantum Theory of Many

Particle Sytems~McGraw-Hill, New York, 1971!.
@10# M. Edwards and K. Burnett, Phys. Rev. A51, 1382~1995!.
@11# F. Dalfovo and S. Stringari, Phys. Rev. A53, 2477~1996!.
@12# P. Capuzzi and E.S. Herna´ndez, Phys. Rev. A~to be pub-

lished!.
@13# E. Cerboneschi, R. Mannella, E. Arimondo, and L. Salasn
 ,

Phys. Lett. A249, 495 ~1998!.
@14# S. Fantoni and A. Fabrocini, inMicroscopic Quantum Many-

Body Theories and Their Applications, edited by J. Navarro
and A. Polls, Lecture Notes in Physics Vol. 510~Springer-
Verlag, Berlin, 1998!, p. 119.

@15# A. Fabrocini, S. Fantoni, A. Polls, and S. Rosati, Nuovo C
mento A56, 33 ~1980!.

@16# R. Jastrow, Phys. Rev.98, 1479~1955!.
@17# E. Krotscheck, Nucl. Phys. A465, 461 ~1987!.
@18# V.R. Pandharipande and K.E. Schmidt, Phys. Rev. A15, 2486

~1977!.
@19# J. Boronat~private communication!.
@20# K.T.R. Davies, H. Flocard, S. Krieger, and M.S. Weiss, Nu

Phys. A342, 111 ~1980!.
@21# E. Timmermans, P. Tommasini, and K. Huang, Phys. Rev

55, 3645~1997!.
@22# P. Schuck and X. Vin˜as ~private communication!.
@23# A. Parola, L. Salasnich, and L. Reatto, Phys. Rev. A57, R3180

~1998!.


