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Beyond the Gross-Pitaevskii approximation: Local density versus correlated basis approach
for trapped bosons
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We study the ground state of a system of Bose hard spheres trapped in an isotropic harmonic potential to
investigate the effect of the interatomic correlations and the accuracy of the Gross-Pitaevskii equation. We
compare a local-density approximation, based on the energy functional derived from the low-density expansion
of the energy of the uniform hard-sphere gas, and a correlated wave-function approach, which explicitly
introduces the correlations induced by the potential. Both higher-order terms in the low-density expansion,
beyond Gross-Pitaevskii, and explicit dynamical correlations have effects of the order of percent when the
number of trapped particles becomes similar to that attained in recent experimNent<{).
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PACS numbgs): 03.75.Fi, 05.30.Jp, 32.80.Pj

The recent discovery of Bose-Einstein condensation of LDA theory.In the case of a uniform hard-spheres Bose
magnetically trapped alkali atoms has generated a huggas, a perturbation theory in the expansion parameter
amount of theoretical investigations. A review of the present=na®, wheren is the density of the system, leads to the
situation can be found in Ref§l,2]. Present experimental following low-density expansion for the energy dengiy:
conditions are such that the atomic gas is very dilute, i.e., the

average distance among the atoms is much larger than the E 2wn?ah? 128/ na®\ 2
range of the interaction. As a consequence, the physics v m +E T
should be dominated by two-body collisions, generally well
described in terms of thewave scattering length. The case 3
i . . . . na’)In(na®)+0O(n 1
of a positive scattering length is equivalent to consider a very 77 V3| (na?) a’)+0(na’)|. D

dilute system of hard spheres, whose diameter coincides with

the scattering length itself. So, the Gross-Pitaevs&P) The energy functional associated with the Gross-
theory for weakly interacting bosons seems the logical tooPitaevskii theory is simply obtained in the local-density ap-
to study these systems and most of the present days theorgiroximation by keeping only the first term in expansidn

ical work is founded on(or has its starting point jnthis

theory[3]. However, in very recent experiments the number h2 m

of trapped atoms has spectacularly increased readhiva-  Ecpl lﬁ]:j df{ﬁ|V¢(f)|2+§ r2ly|*+ |¢|4}
ues of the order f0and 10 atoms[4]. Therefore, it seems

logical to ask for a deeper study of the effect of the inter- 2

atomic correlations and of the accuracy of the Gross-

Pitaevskii scheme in this new scenario. First-order COIMeCy here thavave- “functiony is normalized to the total number
tions to the mean field have been evaluated in Rdf&].

e of atoms.
The dense condensate case was studied in a slave boson rep-By performing a functional variation [ ] one finds

resentation in Ref.6]. Exact quantum Monte Carlo methods the Euler-Lagrange equation, known as the Gross-Pitaevskii
[7,8] have been also employed, but only upNe= 10°. quation

Here we study the ground state of a system of Bose harg '
spheres trapped by a harmonic potential. More precisely, we 2 5
consider hard spheres with a diameter of 52.9 A, corre- _ﬁ_vz+m 2024 Amh a|¢|2 =i 3
sponding to thes-wave triplet-spin scattering length 8fRb, 2m m ’
in an isotropic harmonic trap characterized by an angular
frequencyw/2m=77.78 Hz. We also examine the lare  where u is the chemical potential. This equation has the
atomic sodium case of Ref4]. We use and compare two form of a nonlinear stationary Schiimger equation, and it
methods:(i) a local-density approximatiofLDA) based on has been solved for several types of traps using different
an energy functional derived by the low-density expansion ohumerical methodf10-13.
the energy of an uniform hard-sphere gas @ncd correlated A logical step further, in the spirit of LDA, is to include
basis function(CBF) approach, which explicitly takes into into the energy functional the next terms of correlation en-
account the dynamical correlations induced by the potentiakrgy (1). It is convenient to simplify the notation by express-
and which is not, in principle, limited to purely repulsive ing lengths and energies in harmonic oscillator units. The
interactions. spatial coordinates, the energy, and the wave function are
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rescaled as r=aygl, E=fwE,, and W(r)
=(N/a2 o) Y2y (r), where ayo=(h/mw)Y? and y(r) is
normalized to unity.

By taking into account the next terms of the correlation
energy, we obtain a modified Gross-Pitaev§kGP) energy
functional,

1 — 1— —
EMGP['ﬂl]:J d?{§|V,—¢1(r)|2+ 5"2|¢1(r)|2

_ 1128 _,
+2maN| Wy (1)]*| 1+— S [Na*|ya (1)1

+8| 5 — 3| Ny ()2

XIn[Na’| %(BP]H : 4)

and a corresponding modified Gross-Pitaevskii equation,

1 1. _ _ 128 _
— 5 Vit ot 4maN|ya(N)]*+ 52Ny ()]
_ Aar _
+8ma*N? ?—\/§>|¢1(r)|4
X {6 I[N a3y ()| 2]+ 2} | ¢ (1)
= ¢ (T), (5)

wherea=alao and u4 is the chemical potential in har-
monic oscillator units. Equatio(b) contains extra nonlinear
terms iny;.

CBF approachCorrelated basis function theory is a pow-
erful tool to study strongly interacting many-body systems
(for a review, see Refl14]). In particular, it was used to
study the hard-spheres homogeneous Fermi gas in order
ascertain the accuracy of low-density-type expansjabs

For N interacting bosons, di=0 temperature, described
by the Hamiltonian

H

ﬁZ
— o 2 ViE 2 Velr)+ 2 V(ry),  (§)
i i i<j

where V(1) is the confining potential an¥(r;;) is the
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where the Jastrow correlation functidi(r), depends on the
interparticle distance onlyf,;(r) is variationally determined
by minimizing the expectation value of Eqcgp
=(¢ceelH|¢cer/(¥cer ¥cer). Ecer may be evaluated
either by Monte Carlo techniques or by cluster expansions of
the needed one- and two-body densitigs,(r;) and
p2(ri,r2).

The energy per particle can be written Bgge/N=T,
+Ve+Veorr, Where

2
T =3ﬁ—f dri[V1p Y2 )2 ©
PN 2m 1 1F1 1 ’

1
VEZNJ drypa(ry)Vexdr), (10

and the correlation energy,.o,, is

fdrlf drapa(ry,ra)

h 1 42
~omY Infy(r) _Nﬁf drlf drapa(ry,ra)

1/2,
1(ry,

11

Vcorr:N E

V(rip)

XV Infyryp)-Vinp (11)
wherep, is normalized toN.

p, may be calculated by cluster expansion in powers of
the dynamical correlatiom(r)=f§(r)—1, and the integral
hypernetted-chaif(HNC) equationg17] may be used to sum
infinite classes of cluster diagrams.

Given the low density of the trapped bosons’ system, it
looks plausible to start from a lowest-order cluster expan-
sion. In this approximation  p%-9(ry,r,)

=p1(r)pa(ry)fi(ryp) and

V(LO):E

1 (LO)
corr NE dry drsz (ri,r)Vie(rip), (12

to

where V e(r)=V(r)+ (A2m)[V In f;(r)P is the Jackson-
Feenberg potential.

The minimization ofE{LS? with respect t, leads to the
lowest-order correlated Hartree (G§) equation,

2

h
2V + f drap1 (1) F2(S)Var(s) [p22(1)

interatomic potential, the CBF ground-state wave function is

l;bCBF(la---1N)=F(la---N)¢MF(la---1N)1 (7)

— up(r) (13

with s=|r—r4].

whereF (1, ... N) is a many—bodyorrelation operatorap-

The optimal choice for the Jastrow factor would be the

plied to the mean-field wave-functiopyr. The advantage one satisfying the Euler equatiafEcgr/5f,(r)=0. Other-
of using a correlated basis lies in the fact that nonperturbayise, parametrized functional forms may be chosen whose
tive effects, as the short-range repulsion for the hard spheregarameters are found through the minimization process. We
may be directly inserted into the correlation. adopt here the correlation function minimizing the lowest-
The simplest correlation operator has the Jastrow formprder energy of a homogeneous Bose gas with a healing
[16], condition at a distancd (taken as a variational parameter
For the hard-spheres casd,;(r<a)=0 and f;(r>a)
=u(r)/r, whereu(r) is solution of the Schinger-like

8
® equation—u”=K?u. f;(r) has the forn{18]

F(1,... ,N):L[j f3(rij),
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d sinK(r—a)] by normalizingy; to 1 at each iteration. When the number of
fs(r)= T SK(d=a)]’ (14 particles becomes very large the time step, which governs

the rate of convergence, should be taken accordingly small.

The number of iterations substantially increases and it is con-
where the healing conditiond,(r=d)=1 and f}(r=d) venient to start the convergence process from a reasonable
=0, are fixed by the relation: da¢(d—a)]=(Kd) ™. wave functionfor the GP and MGP equations we start from

ResultsWe begin by briefly discussing the boson hard-the ground-state harmonic-oscillator function, which mini-

spheres homogeneous case. It was shown in [R&f.that ~ mizes energy functional2), while, in the CHo case, we
the lowest-order cluster energy of an infinite system ofstart from the GP solutidn
bosonic hard spheres, correlated by the Jastrow fd&@y We find that the lowest-order approximation in the finite
asymptotically tends to the first term of low-density expan-System shows a behavior similar to the infinite case. In par-
sion (1) when the healing distance goes to infinity. We haveticular, the solution of Eq(13) provides an energyin re-
numerically checked this behavior. The situation changes ifluced unities very close to the Gross-Pitaevskii one when
all the many-body cluster terms are included via HNC sumthe healing distance becomes very large. In fact, Nor
mation, since the computed energy shows a clear minimuns-10° and a=4.33x 10 3, corresponding to thé’Rb scat-
in d. Some results are given in Fig. 1 for variowsalues. tering length, we obtaitE{"?/N=12.57, 12.28, and 12.11
The,?{l‘?g@i?s have been multiplied by P at x 4G 10, 12, and 15, respectively, while{®”/N=12.10.
=10 ", respectively. The figure shows the energy es—ry;g ingicates that many-body effects can be recovered only
timates computed by retaining different expansion tefites 5 )| HNC treatment also for a finite number of atoms.
local-density (L[) values correspond to the first term in EQ. However, the solution of the fully correlated HNC Hartree
(1), whereas the Lband LD, ones are obtained by adding equation, even if feasible in principle, is very cumbersome,
the second and third terms, respectiethe HNC energies  comptationally time consuming, and numerically delicate.
and, at the highest value, the exact energy, evaluated by agq this reason we have decided to estimate these effects by

diffusion Monte Carlo methofil9]. The quality of the HNC adopting a local-density-type approach ¥o,,,. We ap-
results is excellent as they practically coincide with the exacbroximatev ~VLD  \where
ones at all the densitigghe low density value at low and corr Teorr:
the Monte Carlo one at large. The convergence of expan- 1
sion (1) at largex appears to be rather poor, pointing to the Vtc',)”=ﬁf drlpl(rl)EE‘,’\,“&(pl). (16
relevance of successive contributions.

The Gross-Pitaevskii, the modified Gross-Pitaevskii, andEhom( ) is the HNC homogeneous gas energy per particle
the lowest-order correlated Hartree equations fqrhave HNCUP1

o ; at densityp;.
been solved by the steepest descent mef@6gfor the iso- A .
tropic harmonic-oscillator trap previously described. An ini- H 'I:[heeerrgnlr;_z;t]loréof the energy gives the HNC correlated
tial trial state is projected onto the minimum of the func- artr quation (Cc).
tional by propagating it in imaginary time. In practice, one

chooses an arbitrary time stég and iterates the equation _ —V3+1r_2+ ENOM (Xioc) + Xioc
2"

h
IET YN (Xi0e) | —
> 1HNC —

Mg Ua(r)

Yr(r tH A~y (ry, ) —AtHyy(ry,t) (15 = p1¢(r), 17)
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TABLE |. Chemical potentialg.,, ground-state energies per particle/H, and root mean-square radii
Rims. Of N 8Rb atoms in an isotropic traps(27=77.78 Hz) in TF approximation or solving the GEq.
(2)], the MGPI[Eq. (5)], and the correlated Hartree HNEQ. (17)] equations. Thé&=1.5x 10" row refers
to the Na case/27=230 Hz). Energies are in units éfw and lengths are in units @&, .

M1 E;/N Rims
N TF GP MGP HNC TF GP MGP HNC GP MGP HNC
10° 2.66 3.04 3.06 3.04 1.90 2.43 2.43 2.43 1.65 1.66 1.66
10t 6.67 6.87 6.92 6.89 6.87 5.04 5.08 5.04 2.44 2.45 2.44
10° 16.75 16.85 17.07 16.94 11.96 12.10 12.25 12.20 3.80 3.84 3.83
10° 42.07 42.12 42.97 42.53 30.05 30.12 30.66 30.48 6.01 6.10 6.06
10 105.68 105.70 108.75 107.20 75.49 75.52 77.48 76.85 9.52 9.74 9.64
1.5x 10 91.07 91.10 92.41 91.67 65.05 65.09 65.92 65.66 8.84 8.92 8.90
10° 265.46 265.47 275.89 273.58 189.61 189.63 196.45 194.74 15.08 15.44 15.38

where we have again introduced the scaled unities and thences between GP and MGP increase with the number of
local gas parametex;,.(r) = p1(r)a3=Na3|y,(r)|2. particles and are of the order of 4% for the chemical poten-

The calculations have been performed for ff&b scat-  tial and 2.5% for the energy ai=10'. The higher-order

tering length. The scaled energies per particle and the rodgMs in the low-density expansion always have a repulsive

mean-square radii are reported in Table I for particle numEfféct. The same behavior is shown by the HNC results,

bers from 16 to 1%. The table also shows the results ob- WhIiCh' however, are less repulsive than MGP at the |a#ge
. . S ; values.
tained by neglecting the kinetic-energy term in the Gross- We notice that if one uses the Gross-Pitaevskii solution to

Pitaevskii equation. This approach, loosely called the . ; :
Thomas-FermiTE) approximation, has been discussed in_perturbanvely estimate the MGP energy, then the correction

. b e _ is negative(at N=10", AE;=—4.54). The nonlinear char-
the literature and allows for deriving simple analytical ex- acter of Eq.(5) is responsible for this discrepancy.

pressiong 10]. The differences between this Thomas-Fermi The density profilgnormalized to unityfor N=107 par-

approach and a rigorous one have been recently discussggles is given in Fig. 2. For this large number of particles the
[21,22) for spatially inhomogeneous Bose condensatestr and GP densities are close, whereas the more repulsive
Local-density approximation has been uggg] to estimate  MGP and HNC solutions lower the central density, expand-
corrections to the Gross-Pitaevskii for the ground and exing the density distribution and providing a larger radius, as
cited states within the Thomas-Fermi approximation and reshown in Table I.
taining only the first correction in Eq1). The second cor- We have also considered a systemMf1.5x10° Na
rection is negative and partially cancels the first one. Foatoms @=27.5 A) in a spherical trap having a frequency of
instance, the cancellations go from15% for N=10* to 230 Hz. These conditions roughly correspond to those of the
~40% at N=10° if we just take the central densities, experiment described in Reff4]. The results are shown in
whereas the final energy is reduced-b#5% atN=10° and  the last row of the table and in Fig. 2. The effects of the
it is practically unaffected by the second correction at lowercorrelations are similar to those found in the lafyeRb
N values. cases. The energy increasesby % and the rms radius by
As expected, the Thomas-Fermi results are close to the-0.7% respect to GP. The HNC central density is slightly
Gross-Pitaevskii ones wheN becomes large. The differ- reduced.

025 | , 4 025
N=10

020 | 4 020

10°p,(1)

- 0.05

L 0.00
0

FIG. 2. Density profiles foN=10" Rb atoms and foN=1.5x 10’ Na atoms in different approachédotted line, Gross-Pitaevskii;
dashed line, modified Gross-Pitaevskii; solid line, hypernetted ch@ensities are normalized to unity and distances are in units,; gf
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In conclusion, we find that both higher-order terms in thetive interaction, has shown that a new branch of Bose con-
low-density expansion(beyond the Gross-Pitaevskii ap- densate may appear at higher densities. Correlated basis
proach and evaluated in local-density approximatanmd ex-  function theory may provide further insights into this prob-
plicit dynamical correlationginduced by the strong repul- lem having access to the full structure of the potential itself.
sion) have effects of the order of percent in the highkst The introduction of the hypernetted-chain energy func-
cases we have studied. In particular, correlations lower th&onal derived by the homogeneous hard-spheres system pro-
N=10° energy with respect to the mean field by 2.7%e  vides a quick and probably reliable way of embodying cor-
effect is larger in the density, lowered by6%). Theaver-  relation effects into the treatment of the trapped atoms. We
age value of the local gas paramet&[,., iS (Xoc) =2 see as a particular appeal of this approach the clear possibilty
x 104, and the homogeneous gas correction-i8.9% at  of extending it to nonspherical traps, as in real experiments.
the samex value. In more extreme conditiofkigherN val-  Moreover, as already stated, potentials other than the simple
ues or stronger trapping potentiatorrections beyond mean hard-sphere one may be easily handled.
field may become even larger and detectable.
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