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Three-party entanglement from positronium
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The decay of orthopositronium into three photons produces a physical realization of a pure state with
three-party entanglement. Its quantum correlations are analyzed using recent results on quantum information
theory, looking for the final state that has the maximal amount of Greenberger, Horne, and Zeilinger like
correlations. This state allows for a statistical dismissal of local realism stronger than the one obtained using
any entangled state of two spin one-half particles.
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[. INTRODUCTION the latter violates some experimentally verifiable inequali-
ties, called Bell inequalities, that any theory according to the

Entanglement or quantum correlations between man}ocal-realistic assumptions ought to satisfy. It is then possible
space-separated subsystems has been recognized as ondogiesign real experiments testing QM against (fét a de-
the most intrinsic properties of quantum mechanics and protailed discussion see Reb]). Correlations of linear polar-
vides the basis for many genuine applications of quantunizations of pair of photons were measured in 1982 showing
information theory. It is, then, quite natural to look for physi- SI'ong agreement with quantum mechanics predictions and
cal situations in which quantum entangled states are O%ﬂOIatmg Bell inequalities]6]. Nowadays, Bell inequalities

tained. Most of the theoretical and experimental effort has s ave been tested _thoroughly in favor of Q. .
More recently, it has been pointed out that some predic-

far been devoted to unveil physical realizations of quantum. . :
ions for quantum systems having quantum correlations be-

states descnbmg two quantum cor_related subsystems. T \Ween more than two particles give a much stronger conflict
search for physmal systems dlsplaymg clean three-party ®Between LR and QM than any entangled state of two par-
tanglement is not simple. In this paper, we shall analyzeticles. The maximally entangled state between three $pin-

decays of particles as a natural scenario for fulfilling such Ebarticles, the so-called Greenberger, Horne, and Zeilinger
goal. More precisely, we shall show that the decay of ortho-(GHz) state[8]

positronium into three photons corresponds to a highly en-

tangled state. Let us now review what entanglement can be 1

used for and why it is interesting to look for quantum corre- |GHZ) = E(|000>+|113>) 2
lation between more than two particles.

In 1935 Einstein, Podolsky, and Roskt, starting from  shows some perfect correlations incompatible with any LR
three reasonable assumptions of locality, reality, and commodel(see Ref[2] and also Ref[9] for more details It is
pleteness that every physical theory must satisfy, argued thgfen of obvious relevance to obtain these GHZ-like correla-
quantum mechaniod®QM) is an incomplete theory. They did tions. Producing experimentally a GHZ state has turned out
not question quantum mechanics predictions but rather quago be a real challenge yet a controlled instance has been
tum mechanics interpretatid2]. Their argument was based produced in a quantum optics experimé&h®].
on some inconsistencies between quantum mechanics and Entanglement is then important for our basic understand-
their local-realistic premised.R) that appear for quantum ing of quantum mechanics. Recent developments on quan-
states of bipartite systemfy) e Hy, ® H,. It was in 1964  tum information have furthermore shown that it is also a
when Bell[3] showed that any theory compatible with LR powerful resource for quantum information applications. For
assumptions cannot reproduce some of the statistical predigistance, teleportatiofl 1] uses entanglement in order to ob-
tions of QM, using a gedankenexperiment proposed in Reftain surprising results, which are impossible in a classical
[4] with two quantum correlated spi-particles in the sin- context. A lot of work has been performed trying to know

glet state how entanglement can be quantified and manipulated. Our
aim in this paper consists on looking for GHZ-like correla-

1 tions, which are truly three-party pure state entanglement, in

|s)=—=(]01)—|10). (1)  the decay of orthopositronium to three photons. The choice

V2 of this physical system has been motivated mainly by several

reasons. First, decay of particles seems a very natural source
In his derivation, as it is well-known, quantum correlationsof entangled particles. Indeed, positronium decay to two
or entanglement have a crucial role. Actually, the singletphotons was one of the physical systems proposed a long
state is known to be the maximally entangled state betweetime ago as a source of two entangled space-separated par-
two particles. The conflict between LR and QM arises sinceicles[12]. On a different line of thought, some experiments
for testing quantum mechanics have been recently proposed
using correlated neutral kaons coming from the decay #f a
*Email address: acin@ecm.ub.es meson[13]. In the case of positronium, three entangled pho-
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tons are obtained in the final state, so it offers the opportuguantum numbers so that the ground states ‘&g with
nity of analyzing a quantum state showing three-party corred?¢=0"", for the p-Ps and®S,;+ 3D, havingJP¢=1"",
lations similar to other experiments in quantum optics. for the o-Ps.

The structure of the paper goes as follows. We first re- Positronium is an unstable bound state that can decay to
view the quantum states emerging in both para- and orthogshotons. Since an-photon state transforms adc|ny)
ositronium decays. Then, we focus on their entanglement(—1)"|ny) under charge conjugation, which is an exact
properties and proceed to a modern analysis of the threeliscrete symmetry for any QED process such as the decay of
photon decay state of orthopositronium. Using techniquepositronium, we have that the ground statepePs (0-Ps)
developed in the context of quantum information theory, wedecays to an evefodd number of photon§l5]. The analy-
show that this state allows in principle for an experimentalsis of the decay of positronium to photons can be found in a
test of QM finer than the ones based on the use of the singlgtandard QED textbookl14]. Parapositronium lifetime is
state. We have tried to make the paper self-contained angbout 0.125 ns, while for the case of orthopositronium the
easy to read for both particle physicists and quantum infortifetime is equal to approximately 0.14s [16].
mation physicists. The former can find a translation of some The computation of positronium decays is greatly simpli-
of the quantum information ideas to a well-known situation,fied due to the following argument. The scale that controls
that is, the positronium decay to photons, while the latter cafne sirycture of positronium is of the order @ ~ am. On
see an application of the very recent techniques obtained fGhe other hand, the scale for postrinomium annihilation is of
three-party entangled states, which allow to design @ QM Vgne order ofm. Therefore, it is easy to prove that positronium
LR test for a three-particle system in a situation differentyecays are only sensitive to the value of the wave function at
from the GHZ state. the origin. As a consequence, it is possible to factor out the
value of the wave function from the tree-level QED final-
state computationl4]. A simple computation of Feymann
diagrams will be enough to write the precise structure of
A. Positronium properties momenta and polarizations that describe the positronium de-
gays. Furthermore, only tree-level amplitudes need to be
computed since higher corrections are suppressed by one
power of @. Let us now proceed to analyze the decays of
p-Ps ando-Ps in turn.

II. POSITRONIUM DECAYS

Let us start remembering some basic facts about positr
nium. Positronium corresponds teae~ bound state. These
two spin4 particles can form a state with total spin equal to
zero, parapositroniumptPs), or equal to one, orthopositro-
nium (o-Ps). Depending on the value of its angular momen-
tum, it can decay to an even or an odd number of photons as B. Parapositronium decay

we shall see shortly. N .
Positronium binding energy comes from the Coulomb at- Parapositronium ground state decays into two photons.

traction between the electron and the positron. In the nonrePe€cause of the argument mentioned above, the determination
ativistic limit, its wave function i 14] of the two-photon state coming from tigePs decay is sim-

ply given by the lowest-order Feynmann diagramedfe™

1 —y7y. Since positronium is a nonrelativistic particle to a
Y(r)=——e ("3 very good approximation, the three momentae6fande™
mra’ are taken equal to zero, and the corresponding spinors are
5 replaced by a two-component spin. This implies that the tree-
3 f d°p e“S'F‘Tf( ) level calculation of the annihilation gf-Ps into two photons
(2m)%? P is equal to, up to constants,

M(eTe —yy)~xTMox_, (5)

d°p .. 8a’
:J 3/2elp'r 2422 ®)
(2) m(1+a"p?) where (see Ref.[14] for more details y. is the two-

component spinor describing the fermion§!= x"i o, and
wherea=2/(ma), i.e., twice the Bohr radius of atomic hy- M, gives
drogen, andnis the electron mass. Note that the wave func-
tion takes significant values only for three momenta such that
p=1l/a<m, which is consistent with the fact that the system  p,= > (¥ x €$) Kl ,=A(Ki, A 1;ka,M2) 252, (6)
is essentially nonrelativistic. perm
The parity and charge conjugation operators are equal to

where e =¢*(k;,\;) stands for the circular polarization
vector associated to the outgoing photoand I, is the

2 X 2 identity matrix. More precisely, for a photon having the
whereL and S are the orbital and spin angular momentum. three-momentum  vectork= |k|k=|K|(sin # cose,sin @sin
Positronium states are then classified according to theseé,cos6), the polarization vectors can be chosen

Upz(_l)L+l, Ucz(_l)L+S’ (4)
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. \ where
€(k,\)=— —=(cos6 cos¢—i\ sin¢,cosp sin ¢ .
2 =K xer. (14)
+ik cosg, —sing), () Using EQq.(8) we can rewriteM 5 in the following way:
here==*1 and they obe 4 = oa A -

" Yo Ms=0-V(Ky,N1;Ka,M 23Kz, N 3), (15)
k-e(k,N)=0, kxe(kN)=—ine(k,N), where

g(Ri’)\i)'g(ki’7\1)2_%(1_)\‘)\1&'&1)' @) V={(\1— AN+ \g) € (ky, N[ €* (ky,\p) - € (kg \3)]

From the expressions of the polarizaton vectors and the (), —\.)(Ag+Xp)e* (ky,Ao)[€* (Ka,Na)- € (Ky,Np)]
three-momentum and energy conservation, it follows that the

scalar termA is +(A3—= AN+ Ny) g*(ﬁaﬂ\a)
< < i X[ €* (kg Np)- €% (kp No) 1) 16
Ak Nai—kho)= = 50+ )y), © Lt ha) o na] (o
Notice that the helicity coefficient\—X;)(\;+\y) for the
and it verifies cyclic permutations ofjk explicitly enforces the vanishing
of the (+ ++) and (— — —) polarizations,

Ak, +1;—k,+1)=—A(k,—1;—k,—1), A

\7(R1,+;&2,+;R3,+):\7(&1,_?kza_?Rsv_):O-
0. (10 (17

Ak, +1;—k,—1)=—A(k,+1;—k,—1)

The two fermions in the parapositonium ground stateFUrthermore, itis easy to see that

i i —0S =0)= 11 - a N - A P
are in the singlet s.tate,|S—0,SZ_—0>—1/\_/§(|2, 2) Vi(Ry,— Ky, 4 ke +) =26 (Ryo— ) (1—Ry-Ra),
—|—3,3)), and then, using the previous relations foand
tl?gr.](ii), the two-photon state results of tipePs desintegra- Viky,+ ko, — kg, —)=26% (ky, +)(1—ky-ke), (18)

and similar expressions for the other cyclic terms.
I >:i(|++>_|__>) (11) The originale*e™ in the orthopositronium could be in
P V2 ' any of the three triplet states. It can be shown, using Egs.
an , that when the initial positronium state |i
(12) and (15), th hen the initial itroni iS
The two-photon state resulting fromp-Ps decay is thus =1S,=1)=|3,3), the decay amplitude is proportional to
equivalent to a maximally entangled state of two spipar-  V;+iV,, while the same argument givesV,+iV, for |S
ticles. This is a well-known result and was, actually, one of=1S,=—-1)=|—-3,-3) and — J2v, for |S=1S,=0)
Lhe _phys;ical system first ||3ro_posed a; ac\jsource ofMparti(I:_Ieg 1N2(|3, - 5 +|-1,1)). Now, considering the explicit
aving the quantum correlations needed to test QM vs Péxpressions of the polarization vectof®), with 6= =/2

[12]. without loss of generality, and E¢L8), it is easy to see that

the three-photon state coming from thePs decay is, up to
C. Orthopositronium decay normalization,

The ground state of orthopositronium h#€=1"" and, N o
due to the fact that charge conjugation is conserved, decays |#o(Ki,Kz,k3))=(1—ki-ko)([++—)+|——+))
to three photons. Repeating the treatment performed for the
p-Ps annihilation, the determination of the three-photon state
resulting from theo-Ps decay requires the simple calculation
of the tree-level Feynmann diagrams corresponding to

+(1—ky ka)(|[+ = +)+|—+-))

+(1—ka ka) (| =+ +)+[+——)),

ete”—yyy. Its tree-level computation gives, up to con- (19
stants,
when the third component of the orthopositronium sgin
M(eTe = yyy)~xTMax_, (12) s equal to zero, and
and the 2<2 matrix M 5 is equal to[14] |1(Ky,Kp,ka)) = (1= Ky Ko) (| + + =)= = —+))

e w2 2 +(1—ky-kg)(|+—+)—|—+—))
Mo= 3 [(5-& -8 B vl =+)=l=+)
cyclic perm.

S +(1—ko-kg)(|— ++)—|+——))
+(€5 O3+ €5:0))01] 0, (13 20
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whenS,=+1.

The final state of the-Ps decay is, thus, an entangled ti’ijZ URURUR b, - (22
state of three photons, whose quantum correlations depend
on the angles among the momenta of the outgoing three ph¢srom this expression it is not difficult to build polynomial
tons. For the rest of the paper we will consider the firstcombinations of the coefficient;,, which are invariant un-
family of states §,=0) although equivalent conclusions are der |ocal unitary transformationgl7,18. These quantities
valid for the second one. In the next SeCtianAWGAWi” analyz%re good candidates for being an entang|ement parameter_
the entanglement properties of the statagk,,k,,ks)), us-  For example, one of these invariants is
ing some of the quantum information techniques and com-

paring them to the well-known cases of the singlet and GHZ 2
state. > iy aky bk tii kot 1k, = TT(PR), (23

wherepa=trgc(| ¢){#|) is the density matrix describing the

[ll. ENTANGLEMENT PROPERTIES local quantum state oA (and the same happens fBrand
The quantum correlations of the three-photon entangleg)'. In Ref. [18] the six linearly mdepende.n.t ponno_rmaI n-
variants of minor degree were four@d trivial one is the

state obtained from the-Ps annllhllat|on depend on t_he po- norm) and a slightly modified version of these quantities was
sition of the photon detectors, i.e., on Fhe p'hoton dlrectlons(,leSO proposed in Ref19]. In the rest of the paper we will
we are going to measure. Our next aim will be to ch_oosenot consider the norm, so the space of entanglement param-
from the family of states given by E@19), the one that, in eters of the normalized states belonginges H,o H, has
some sense, has the m_aximum. amount of C_;HZ-Iike correlaaimension equal to five 2=
trlggesﬁtl:]eglz(ljtiro? t?\g ;Tlljsdyvﬁ tfr:r;[eTsaegytgn'p;;%?;%instome A particularly relevant polynomial invariant is the square
PRSI i " concurrencey, introduced in[20]. There is strong evidence
The set Of_Sta_teWO(kl: kz,k3)) form a six-parameter de- 4t somehow it is a measure of the amount of GHZ state
pendent family in the Hilbert spack,®H,®H,, SO that  character of a stafd 9-22. It corresponds to the modulus of
each of its components is equivalent to a state describing,q hyperdeterminant of the hypermatrix given by the coef-
three sping particles or three qubit& qubit, or quantum bit, ficientst;, [23], which from Eq.(21) corresponds to
is the quantum version of the classical bit and corresponds to )
a spins particle. Two pure states belonging to a generic (| ¢)) = |Hde(t;; )|
composite syster’rﬂ-l?”, i.e., N parties each having a
d-dimensional Hilbert space, are equivalent as far as their
entanglement properties go when they can be transformed
one into another by local unitary transformations. This argu-
ment gives a lower bound for the entanglement parameters a Xttt et (24)
generic statd¢)eH 5" depends on. Since the number of UrfaTalao alsfs Halata
real parameters for describing it i§ 2!, and the action of an

element of the group of local unitary transformationsWhere€opo=€11=0 andey,=—ey=1. This quantity can be
U(2)®N is equivalent to the action of U(XSU(2)*N shown to be symmetric under permutation of the indices

which depends on I8+ 1 real parameters, the number of Lk

entanglement parameters is bounded By 2-(3N+1). Because of the interpretation of the square concurrence as

For our case this counting of entanglement parameters givéas measure of the GHZ-like correlations, we will choose the
six, since we haviN=3, and it can be proved that this is position of the photon d.etector_s, from the set of stale,
y ’ Be ones that are associated with a maximum square concur-

indeed the number of nonlocal parameters describing a stal ) . .9
in H,0H,®H, [17]. rence. In Fig. 1 is shown the variation of the square concur-
22 rence with the position of the detectors. It is not difficult to

The above arguments imply that six independent quanti i )
ties invariant under the action of the group of local unitarysee that the state of EGL9) with maximum square concur-

transformations will be enough, up to some discrete symmetence corresponds to the calsg ky=k;-ks=ka ks=—3,
try, to describe the entanglement properties of any thred-€-, the most symmetric configuration. The normalized state

= 2 €i1i5€i5i,€)1i5€) 34k kg €koky

qubit pure state. Given a generic Stif# c H 5 >: obtained from Eq(19) for this geometry is
e e
[#)=2 tliik), k=12 (29 V6

+|=F )+ ][+ —)). (25

where|i),|j),|k) are the elements of a basis in each sub-Note that the GHZ state has an square concurrence equal to
system,A, B, and C, the application of three local unitary %, while the value of the square concurrencé2®) is lower,
transformationsJ”, UB, andUC transforms the coefficients

tjj into (| ) = 15. (26)
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which is the minimum decomposition in terms of product
states built from local basé$our of the coefficients;;, are
made equal to zejo

An alternative decomposition, that will prove to be fruit-

Square
concurrence

0.08 S ful for the rest of the paper, consists of writing the state as a
0.06 . sum of two product states. This decomposition is somewhat
0.04 ST ' reminiscent of the form of the GHZ state, which is a sum of
0. 020 / /7 .@«.. just two prodL_Jct states, and is only possible_ when the square
120 ™ Q.. concurrence is different from zefd 9,21 as it happens for
~Z our statefsee(26)]. The state then can be written as

Second angle

1
0

1
0

1

“ 0

2
FIG. 1. Variation of the square concurrence with the position of |¢> = 3 ®

the photon detectors, that are represented by two ar(glede-
grees, the third one has to sum up to 360°. We have takerD
when the position of the detectors, i.e., the photon trajectories, are 1
incompatible with momentum conservation. >

It is arguable that the most symmetric geometry was natu-

rally expected to produce a maximum square concurrence >

state. Indeed, GHZ-like quantum correlations do not singu-

larize any particular qubit. =«(]000) +|aaa)), (30)
Let us also mention that the state we have singled out has

some nice properties from the point of view of group theory.where

It does correspond to the sum of two of the elements of the

coupled basis resulting from the tensor product of three spin- . 1

3 particles,3®3® 3, [24] |0)= 0

+
@l
®

o] G o1
®

o] G o1

|y =1N2(3,+5)+[3,-3)), (27) and

where

®
i

1
2
343 =N+ + =)+ = +)+| =+ +)), 3
2

5,-35)=1NB(|=—+)+|=+=)+|+==)). (28  we omit the details for the explicit computation of this ex-

pression since they can be found in R¢i9,21]. It is worth
The quantum correlations of E(5) will be now analyzed. noticing thato-Ps decay is hereby identified to belonging to
an interesting type of states already classified in quantum
IV. USEFUL DECOMPOSITIONS information theory{21]. o
The above decomposition allows for an alternative inter-
In this section, the staté25) will be rewritten in some pretation of the initial state as an equally weighted sum of
different forms that will help us to understand better its non-two symmetric product states. Note that the Bloch vector,

local properties. First, let us mention that for any ge”ericﬁ=(sin0cos¢,sin05in¢,cos€), representing the first local

three-qubit pure state and by performing change of |0Ca§pinor appearing in Eq30) is pointing to thez axis, i.e.,
bases, it is possible to make zero at least three of the coeffi-

cientst; of Eq. (21) [19,25. A simple counting of param- n;=(0,0.1), Wh”oe the second_ 'S _IocaAted in K& plane with
eters shows that this is in fact the expected number of zero&n angle of 120° with the axis, |.e.,n2:(_\/§/2,0,—(1/2)).
This means that by a right choice of the local bases, any staty Performing a new unitary transformation, E§0) can be
can be written with the minimum number of coefficieqfg, ~ WNten as

i.e., we are left with all the nonlocal features of the state, o[ ¢
having removed all the “superfluous” information due to |¢>:_H )
local unitary tranformations. For the case of the staf it 3|\s
is easy to prove26] that it can be expressed as

Cc C

®
S

S S

+ ® &
c c

S

J
ol D

wherec=cos 15°, ang=sin 15°. Now, the two Bloch vec-

1 J3 tors are in theXZ plane, pointing to thed=30° and ¢
|y)=—=(]001)+|010)+|100)) + —-|111), (29)  =150° directions. The GHZ state corresponds to the particu-
2\3 2 lar casec=1 ands=0.
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V. QUANTUM MECHANICS VS LOCAL REALISM also satisfies thad’bc=ab’'c=abc’'=—a’b’c’=-1 and

. . no LR model is able to take into account this perfect corre-
The quantum correlations present in some three-qubit

pure states show, as it was mentioned in the Introduction, lation result because of E432) [2]. This is a new feature

) . L at does not appear for the case of a two maximally en-
much stronger disagreement with the predictions of a local- . . . o
L . tangled state of two spig-particles. In this sense it is often
realistic model than any two-qubit entangled state. In fact

contrary to the case of the singlet state, no LR model is ablt’galld that a most dramatic contrast between QM and LR
emerges for entanglement between three subsystems.

to reproduce all the perfect correlations predicted for the Let us go back to the state given by the orthopositronium
maximally entangled state of three quifify. The state25) decay(25). Our aim is to design an experimental situation

emerging fromo-Ps decay is not a GHZ state, although it : .
has been chosen as the one with the maximum tangle iwhere a conflict between QM and LR appears, so we wil
order to maximize GHZ-like correlations. In this sectiongwe {Bok for the observables that give a maximal violation of Eq.
will show how to use it for testin ljantum mechanics(33)' Such observables will extremize that expression. Using
. - 949 , - the decompositiori31), the expectation value of three local
against local-realistic models, and then we will compare its .
; o : observables is
performance against existing tests for the maximally en-
tangled states of two and three sginparticles. We start _ A= ~- n-
reviewing some of the consequences derived from the argu- (abc)=(¢l(na- )@ (Np- ) ® (- 9)[ )
ments proposed in Refl]. 4 H _ -~
=— = ) )
o|, Lk (ccosé;+ssin b, cosg;)
A. QM vs LR conflict
Given a generic quantum state of a composite system + [I (=ccosé,+Sssing cose)
shared byN parties, there should be an alternative LR theory i=ab,c
that reproduces all its statistical predictions. In this LR

model, a state denoted by will be assigned to the system + sin g;(c%e” %+ 5%l )

specifying all its elements of physical reality. In particular, i=ab,.c

the result of a measurement depending on a set of parameters

{n} performed locally by one of the parties, say will be + sing;(c2e'%i+s2e 1% |, (34)
specified by a functiora, ({n}). The same will happen for i=ab.c

each of the space-separated parties and, since there is no  _ _

causal influence among them, the result measuredl can-  wherec=c?—s? and s=2sc. Because of the symmetry of
not modify the measurement @ For example, if the mea- the state under permutation of parties, the Stern-Gerlach di-
surement is of the Stern-Gerlach type, the parameters labélections are taken satisfyingn,=n,=n.= (sin #cose,

ing the measurement are given by a normalized vet@nd  sjngsin ¢,cosb) and N, =Ny =Ng = (sing'cosg’,
a,(n)=a are the LR functions describing the outcome. sin@’'sin¢’,cosd’). Substituting this expression in E3),

The LR model can be very general provided that someve get the explicit functiori( 8, ¢,6’,¢") to be extremized.
conditions must be satisfied. Consider a generic pure stafeor the case of the GHZ state described above, the extreme
belonging toH,® H,®H, shared by three observefs B,  values were obtained using two observables with 6’
and C, which are able to perform Stern-Gerlach measure= /2, i.e., in theXY plane. Since Eq(31) is the GHZ-like
ments in any direction. Since the outcomes of a Sterndecomposition of the initial state, we take= ¢’ = /2 and it
Gerlach measurement are ontyl, it is easy to check that is easy to check that in this case
for any pair of measurements on each subsystem, described

by the LR functionsa anda’, b andb’, c andc’, and for all of of )
their possible values, it is always verified EY) = =0, V¢, ¢".
T C I PR
a’'bc+ab’c+abc’ —a’'b'c’'=x2. (32
Mantaining the parallelism with the GHZ case, it can be seen
It follows from this relation that that all the partial derivatives vanish when it is also imposed
¢=m/2 and¢’'=0. In our case the calculation of E(B3)
—2<(a'bct+ab’c+abc’'—a’'b'c’y=<2. (33) gives —3, so a conflict between local-realistic models and

guantum mechanics again appears, and then the three-photon
This constraint is known as the Mermin inequali7] and  state coming from the orthopositronium decay can be used,
has to be satisfied by any LR model describing three spaceéa principle, to test QM vs LR with the set of observables

separated systems. given by the normalized vectors
Let us now take the GHZ staf@). It is quite simple to see
that if the observablea anda’ are equal tar, and oy (the N,=Nn,=n.=(0,1,0, Ny =ny =n,=(1,0,0. (35

same for partie8 andC), the value of Eq(33) is —4, so an

experimental condition is found that allows to test quantumThere is an alternative set of anglésand ¢’ that makes
mechanics against local realism. Note that this is the maxizero all the partial derivatives éf the combination of local
mal violation of inequality(33). Moreover, the GHZ state observable$33) is equal to~ —3.046 for
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\/m which accounts_for t_he change in the ratio of the probabilities

&’ =arctar( _ ) ~126° of the two theories, i.e., it reflects how the LR belief changes
10 ' with the experimental results. Like in a game, our aim is to

destroy as fast as we can, the LR faith of our friend by
choosing an adequate experimental situation. It can be said,
for example, that he will give up when, for examplB,
=10". Since the world is quantunm=qn, and the number
of experimental tests needed to obt&@in- 10* is equal to

This second set of parameters will be seen to produce in the
end a weaker dismissal of LR.

1 r( 217+ 2741
¢= —arctan) ———

= e ) ~24°. (36)

4

Our next step will be to carry over the comparison of this Mo(A,1)= q
QM vs LR test against the existent ones for the maximally qlogio ?) +(1-qg)logyd (1—q)/1—r]
entangled states of three and two spirparticles, i.e., the
GHZ and singlet state. It is quite evident that the described 4
test should be worse than that obtained for the GHZ state. It - K(q,r)’ (40
is less obvious how this new situation will compare with the
singlet case. beingK(q,r) the information distancf29] between the QM
and LR binomial distribution for the outcomel1. The more
B. Comparison with the maximally entangled states separate the two probability distributions are, measured in
of two and three spin+ particles terms of the information distance, the fewer the number of

experimentag is.

Let us come back to the three-party entangled state com-
from the orthopositronium decai25) under the local

"measurements described by E85). As it has been shown
above, a contradiction with any LR model appears for the
combination of the observables given by the Mermin in-

the stat<_a(25) and the o_b;ervable@S). . ._equality. In our case quantum mechanics gives the following
Imagine a local-realistic physicist who does not believe '”predictions:

guantum mechanics. He assigns prior subjective probabilities

to the validity of LR and QM,p, and py, expressing his (a’bc)=(ab’c)=(abc’)=—2, (a’b’c’)=+1,

personal belief. Take for instancp,/pq=100. His LR (41)
theory is not able to reproduce exactly all the QM statistical

results of some quantum states. Consider the expectatigghd this implies thaty;=prob(@’bc=+1)=prob@b’c=
value of some observabl@ with two outcomes=1 such  +1)=probabc'=+1)=% and g,=prob@’b’c’=+1)
that(O)=E, is predicted for some quantum state, while LR =1 This is the QM data that our LR friend has to reproduce
gives(0)=E, #E,. Since the value of the two possible out- as well as possible. Because of the symmetry of the state he
comes aret 1, the probablity of havingd=+1 isq=(1  will assign the same probability; to the eventsa’bc=
+Eg)/2 for QM andr=(1+E,)/2 for LR. An experimental +1, ab’c=+1, andabc’'=+1 andr, to a’b’c’=+1.

test of the observabl® now is performed times yieldingm  However, his model has to satisfy the constraint given by Eq.
times the result+ 1. The prior probabilitie, and p, are  (33), so the best he can do is to saturate the bound and then
modified according to the Bayes theorem and their ratio has

changed to 3r;=r,=0=<r;<3. (42)

We will now estimate the “strength” of the QM vs LR
test proposed above, being the “strength” measured by th?ng
number of trials needed to rule out local realism at a give
confidence level, as Peres did in R¢28]. A reasoning
anologous to the one given in R§28] will be done here for

!

Pr_pr p(m|g) 37 Now, according to the probabilities andr, his LR model
Pg  Pq p(mlom)’ predicts, we choose the experimental test that minimizes Eq.
(40), i.e., we consider the eveatbc=+1 (a’'b'c’'=+1)

where whennp(dy,r1) <np(dz,rz) [Np(ds,r1)>np(dz.r2)], and
the experimental results will destroy his LR belief after

n np(qs1,r1) [Np(qs,r,)] trials. The best value our LR friend
p(m| )= ( m) rmMa—r)h=m (389)  can assign t@, is the solution to
n JT1)=n ), 43
is the LR probability of havingntimes the outcome-1, and p(dz.12)=Np(dz.r2) 43
we have the same fqu(m|qw), beingr replaced byd. Fol-  yith the constraint(42), and this condition means that
lowing Peres[28], the confidence depressing fact® de- (315 andh,~161 trials are needed to have a depressing
fined factor equal to 1f) Repeating the same calculation for the
m o observables given by E@36), the number of trials slightly
D= P(mlow _ (4 1—q) (39)  Increasesnp~166, despite the fact that the violation of the
p(M[Lr) r 1-r ’ inequality is greater than the obtained for E85).
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TABLE I. Comparison of the strength of the QM vs LR test, Violation of inequality

which can be performed for the maximally entangled states of two 2
and three spir particles and for the three-photon entangled state 15
reulting from the orthopositronium annihilation. ’

1
State Number of trials 0.5

GHZ ~32 25 50 75 100 125 150 175 ~ndle
Positronium staté€25) ~161 -0.5
Singlet ~200 .

FIG. 2. Violation of the Mermin inequality33) with the angles
In Ref.[28] the same reasoning was applied to the maxi<in degreesfor the family of stateg44). We have substracted 2 to
mally entangled state of two and three spinparticles, the combination of the expected values of E83), so a positive
showing thatnp=200 in the first case, andy~32 for the  value means that a conflict between QM and LR appears.
latter (see Table )l Our result then implies that the three-
photon entangled state produced in the orthopositronium deized the results. We have shown only the cases where the
cay has, in some sense, more quantum correlations than anymber of trials is less than 200, since this is the value ob-

entangled state of two spihparticles. tained for the singlet. Note that the cade-120°, which
corresponds to Eq25), is very close to the region where
C. Generalization of the results there is no improvement compared to the maximally en-

It is easy to generalize some of the results obtained for théangled state of wo qubits.
ytog All these results can be understood in the following way:

entangled state resulting from thePs decay. As it has been he smaller the angle between the two local statesthe

mentioned, this state can be understood as an equally. .

: ' . . : igher the overlap of the statey(5)) with the product state
we|gh_ted sum of two symmetric product states, since it CarP1aving each local Bloch vector pointing in the direction of
be written as Eq(31). The Bloch vectors of the two local he x axis, which corresponds to the statd 1) in Eq. (45).

states appearing in this decomposition form an angle OI(rhis means that the quantum state we are handling is too
120°. It is clear that the conclusions seen above depend 0#]
W

the angle between these vectors, i.e., with their degree ose 1o a prod.uct staf25], and thus, no violation of the
: . ermin inequality can be observed.

nonorthogonality. The family of states to be analyzed can be

parametrized in the following way:

A leelalelel ).

VI. CONCLUDING REMARKS

Cs Cs
®

5

lp(8)=as , In this paper we have analyzed the three-particle quantum
correlations of a physical system given by the decay of the
orthopositronium into a three-photon pure state. After ob-

where § is the angle between the two local Bloch vectors,@ining the state describing the polarization of the three pho-
cs=cos@—5/4) andss=sin(m—5/4), anday is a positive  tons (25, some of the recent techniques developed for the
number given by the normalization of the state. An alternaStudy of three-party entanglement have been applied. The

tive parametrization of this family is, using E9) and Particular case where the three photons emerge in the most
defining 8" = 5/4 symmetric configuration corresponds to the state with the

maximum square concurrence. We have shown that this state

Ss

|4(8)) =2 sirP8’'cosd’ (|00 +|010) +|100)
Number of trials
+c0s6'[11D)]. (45) 200

The expectation value of three local observables for this
set of states follows trivially from Eq(34). Using this ex-
pression it is easy to see that the combination of the expec
tation values of Eq(33) has all the partial derivatives equal 100
to zero for the set of observables given in E8f) indepen-
dently of 6. For these observables, the dependence of expres 50
sion (33) with the degree of orthogonality between the two
product states is given in Fig. 2. There is no violation of the Angle
Mermin inequality for the case in whicB<85°. In this situ- 120 130 140 150 160 170 180
ation one can always find a LR model able to reproduce the FiG. 3. Number of trials needed to rule out local realism as a
QM statistical prediction given by E¢33) and the observ-  function of the angles (in degreesfor the family of stateg44).
ables(35). We can now repeat all the steps made in order to/alues greater than 200 are not shown since in these cases there
determine the number of trials needed to rule out local realalways exists a two-qubit entangled state that gives the same resull,
ism as a function of the anglé In Fig. 3 we have summa- i.e., it has the same “strength” for ruling out local realism.

150
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allows a priori for a QM vs LR test, which is stronger than Compton scattering to measure the photon polarizafi®ils
any of the existing ones that use the singlet state. In thislowever, the Compton effect just gives a statistical pattern
sense, orthopositronium decays into a state which carriedepending on the photon and electron polarizations, which is
stronger quantum correlations than any entangled state dfot a direct measurement of the polarizations. Further work
two spin4 particles. is needed to modify our analysis of QM vs LR to accommo-
Bose symmetrization has played a somewhat negativéate for such indirect measurements. Finally, it is hard to see
role in reducing the amount the GHZ-ness of th®s decay how to implement a switching procedure in the measuring
state. Indeed, the natural GHZ combinatien+ —)+|— — apparatus in order to rule out the locality loophole, although
+) emerging from the computation of Feynmann diagramst is thought that this loophole has been closed by recent
has been symmetrized due to the absence of photon taggifperimentq32]. The detection loophole cannot be closed,
to our statgl+ + =)+ |+ —+)+|—++)+|—-—+)+|—+ S0 one has to assume the fair sampling hypothesis.
—)+|+——), inducing a loss of tangle. The quantum optics To summarize, orthopositronium decay provides, without
realization of the GHZ state does avoid symmetrizationusing any postselection procedure, an entangled state of three
through a geometric taggind.0]. It is, thus, reasonable to Space-separated photons with more quantum correlations
look for pure GHZ states in decays to distinct particles, sghan any entangled state of two particles. Indeed it can be
that tagging would be carried by other quantum numbers, agised in principle to test quantum mechanics against local
e.g., charge. It is, on the other hand, peculiar to note thatealism, although many experimental difficulties have yet to
symmetrization in thek®K® system is responsible for its P& Overcome. The techniques shown in this paper can be
entanglement|¢ —)+|— +)) [13]. gasny ex.tended to the ana_1Iy3|s of the entanglement Pproper-
Let us briefly discuss the experimental requirements“es of different three-particle entangled states obtained in

needed for testing quantum mechanics as it has been dggher experimental settinjperhaps the same state, due to its

scribed in this paper. The preparation of positronium in anic€ Properties from the point of view of group thedp)].

given polarization state can be performed using magnetic
mixing as it has been described in REBO]. The circular
polarizations of the three photons resulting from an orthop- We acknowledge J. Bernabeu for suggesting positronium
ositronium decay have to be measured. The positions of thas a source of three entangled particles and reading carefully
three detectors are given by the maximization of the squarthe paper. We also thank A. Czarnecki, D. W. Gidley, M. A.
concurrence and their clicks have to detect the coincidencg8kalsey, and V. L. Telegdi for comments about the measure-
of the three photons. The energy of these photons is of theent of the photon polarizations in the orthopositronium de-
order of 1 Mev. Polarization analyzers with a good efficiencycay. We acknowledge financial support by CICYT Project
would allow us to acquire statistical data showing quantuniNo. AEN 98-0431, CIRIT Project No. 1998SGR-00026, and
correlations that would violate the Mermin inequality dis- CEC Project No. 1ST-1999-11053, A.A. by a grant from
cussed above. Unfortunately, as far as we know, no sucMEC (AP98. Financial support from the ESF is also ac-
analyzers exist for this range of energi#ss is not the case knowledged. This work was concluded during the 2000 ses-
for optic photong A possible way out might be to use sion of the Benasque Center for Science, Spain.
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