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Three-party entanglement from positronium
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The decay of orthopositronium into three photons produces a physical realization of a pure state with
three-party entanglement. Its quantum correlations are analyzed using recent results on quantum information
theory, looking for the final state that has the maximal amount of Greenberger, Horne, and Zeilinger like
correlations. This state allows for a statistical dismissal of local realism stronger than the one obtained using
any entangled state of two spin one-half particles.
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I. INTRODUCTION

Entanglement or quantum correlations between m
space-separated subsystems has been recognized as o
the most intrinsic properties of quantum mechanics and p
vides the basis for many genuine applications of quan
information theory. It is, then, quite natural to look for phys
cal situations in which quantum entangled states are
tained. Most of the theoretical and experimental effort has
far been devoted to unveil physical realizations of quant
states describing two quantum correlated subsystems.
search for physical systems displaying clean three-party
tanglement is not simple. In this paper, we shall anal
decays of particles as a natural scenario for fulfilling suc
goal. More precisely, we shall show that the decay of ort
positronium into three photons corresponds to a highly
tangled state. Let us now review what entanglement can
used for and why it is interesting to look for quantum cor
lation between more than two particles.

In 1935 Einstein, Podolsky, and Rosen@1#, starting from
three reasonable assumptions of locality, reality, and c
pleteness that every physical theory must satisfy, argued
quantum mechanics~QM! is an incomplete theory. They di
not question quantum mechanics predictions but rather q
tum mechanics interpretation@2#. Their argument was base
on some inconsistencies between quantum mechanics
their local-realistic premises~LR! that appear for quantum
states of bipartite systems,uc&PHd1

^ Hd2
. It was in 1964

when Bell @3# showed that any theory compatible with L
assumptions cannot reproduce some of the statistical pre
tions of QM, using a gedankenexperiment proposed in R
@4# with two quantum correlated spin-1

2 particles in the sin-
glet state

us&5
1

A2
~ u01&2u10&). ~1!

In his derivation, as it is well-known, quantum correlatio
or entanglement have a crucial role. Actually, the sing
state is known to be the maximally entangled state betw
two particles. The conflict between LR and QM arises sin

*Email address: acin@ecm.ub.es
1050-2947/2001/63~4!/042107~10!/$20.00 63 0421
y
e of
o-
m

b-
o

he
n-
e
a
-
-

be
-

-
at

n-

nd

ic-
f.

t
n

e

the latter violates some experimentally verifiable inequa
ties, called Bell inequalities, that any theory according to
local-realistic assumptions ought to satisfy. It is then poss
to design real experiments testing QM against LR~for a de-
tailed discussion see Ref.@5#!. Correlations of linear polar-
izations of pair of photons were measured in 1982 show
strong agreement with quantum mechanics predictions
violating Bell inequalities@6#. Nowadays, Bell inequalities
have been tested thoroughly in favor of QM@7#.

More recently, it has been pointed out that some pred
tions for quantum systems having quantum correlations
tween more than two particles give a much stronger con
between LR and QM than any entangled state of two p
ticles. The maximally entangled state between three sp1

2

particles, the so-called Greenberger, Horne, and Zeilin
~GHZ! state@8#

uGHZ&5
1

A2
~ u000&1u111&) ~2!

shows some perfect correlations incompatible with any
model ~see Ref.@2# and also Ref.@9# for more details!. It is
then of obvious relevance to obtain these GHZ-like corre
tions. Producing experimentally a GHZ state has turned
to be a real challenge yet a controlled instance has b
produced in a quantum optics experiment@10#.

Entanglement is then important for our basic understa
ing of quantum mechanics. Recent developments on qu
tum information have furthermore shown that it is also
powerful resource for quantum information applications. F
instance, teleportation@11# uses entanglement in order to o
tain surprising results, which are impossible in a classi
context. A lot of work has been performed trying to kno
how entanglement can be quantified and manipulated.
aim in this paper consists on looking for GHZ-like correl
tions, which are truly three-party pure state entanglemen
the decay of orthopositronium to three photons. The cho
of this physical system has been motivated mainly by sev
reasons. First, decay of particles seems a very natural so
of entangled particles. Indeed, positronium decay to t
photons was one of the physical systems proposed a
time ago as a source of two entangled space-separated
ticles @12#. On a different line of thought, some experimen
for testing quantum mechanics have been recently propo
using correlated neutral kaons coming from the decay off
meson@13#. In the case of positronium, three entangled ph
©2001 The American Physical Society07-1
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A. ACÍN, J. I. LATORRE, AND P. PASCUAL PHYSICAL REVIEW A63 042107
tons are obtained in the final state, so it offers the oppo
nity of analyzing a quantum state showing three-party co
lations similar to other experiments in quantum optics.

The structure of the paper goes as follows. We first
view the quantum states emerging in both para- and orth
ositronium decays. Then, we focus on their entanglem
properties and proceed to a modern analysis of the th
photon decay state of orthopositronium. Using techniq
developed in the context of quantum information theory,
show that this state allows in principle for an experimen
test of QM finer than the ones based on the use of the sin
state. We have tried to make the paper self-contained
easy to read for both particle physicists and quantum in
mation physicists. The former can find a translation of so
of the quantum information ideas to a well-known situatio
that is, the positronium decay to photons, while the latter
see an application of the very recent techniques obtained
three-party entangled states, which allow to design a QM
LR test for a three-particle system in a situation differe
from the GHZ state.

II. POSITRONIUM DECAYS

A. Positronium properties

Let us start remembering some basic facts about pos
nium. Positronium corresponds to ae1e2 bound state. These
two spin-12 particles can form a state with total spin equal
zero, parapositronium (p-Ps), or equal to one, orthopositro
nium (o-Ps). Depending on the value of its angular mome
tum, it can decay to an even or an odd number of photon
we shall see shortly.

Positronium binding energy comes from the Coulomb
traction between the electron and the positron. In the non
ativistic limit, its wave function is@14#

C~r !5
1

Apa3
e2(r /a)

5E d3p

~2p!3/2
eipW •rWC̃~pW !

5E d3p

~2p!3/2
eipW •rW

A8a3

p~11a2p2!2
, ~3!

wherea52/(ma), i.e., twice the Bohr radius of atomic hy
drogen, andm is the electron mass. Note that the wave fun
tion takes significant values only for three momenta such
p&1/a!m, which is consistent with the fact that the syste
is essentially nonrelativistic.

The parity and charge conjugation operators are equa

UP5~21!L11, UC5~21!L1S, ~4!

whereL and S are the orbital and spin angular momentu
Positronium states are then classified according to th
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quantum numbers so that the ground states are1S0, with
JPC5021, for the p-Ps and3S113D1, havingJPC5122,
for the o-Ps.

Positronium is an unstable bound state that can deca
photons. Since an-photon state transforms asUCung&
5(21)nung& under charge conjugation, which is an exa
discrete symmetry for any QED process such as the deca
positronium, we have that the ground state ofp-Ps (o-Ps)
decays to an even~odd! number of photons@15#. The analy-
sis of the decay of positronium to photons can be found i
standard QED textbook@14#. Parapositronium lifetime is
about 0.125 ns, while for the case of orthopositronium
lifetime is equal to approximately 0.14ms @16#.

The computation of positronium decays is greatly simp
fied due to the following argument. The scale that contr
the structure of positronium is of the order ofupW u;am. On
the other hand, the scale for postrinomium annihilation is
the order ofm. Therefore, it is easy to prove that positroniu
decays are only sensitive to the value of the wave functio
the origin. As a consequence, it is possible to factor out
value of the wave function from the tree-level QED fina
state computation@14#. A simple computation of Feymann
diagrams will be enough to write the precise structure
momenta and polarizations that describe the positronium
cays. Furthermore, only tree-level amplitudes need to
computed since higher corrections are suppressed by
power of a. Let us now proceed to analyze the decays
p-Ps ando-Ps in turn.

B. Parapositronium decay

Parapositronium ground state decays into two photo
Because of the argument mentioned above, the determina
of the two-photon state coming from thep-Ps decay is sim-
ply given by the lowest-order Feynmann diagram ofe1e2

→gg. Since positronium is a nonrelativistic particle to
very good approximation, the three momenta ofe1 ande2

are taken equal to zero, and the corresponding spinors
replaced by a two-component spin. This implies that the tr
level calculation of the annihilation ofp-Ps into two photons
is equal to, up to constants,

M~e1e2→gg!;x1
c†M2x2 , ~5!

where ~see Ref. @14# for more details! x6 is the two-
component spinor describing the fermions,xc†[xTis2, and
M2 gives

M25 (
perm

~eW1* 3eW2* !• k̂I 232[A~ k̂1 ,l1 ; k̂2 ,l2!I 232 , ~6!

where eW i* [eW* ( k̂i ,l i) stands for the circular polarizatio
vector associated to the outgoing photoni and I 232 is the
232 identity matrix. More precisely, for a photon having th
three-momentum vectorkW5ukW uk̂5ukW u(sinu cosf,sin u sin
f,cosu), the polarization vectors can be chosen
7-2
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THREE-PARTY ENTANGLEMENT FROM POSITRONIUM PHYSICAL REVIEW A63 042107
eW~ k̂,l!52
l

A2
~cosu cosf2 il sinf,cosu sinf

1 il cosf,2sinu!, ~7!

wherel561 and they obey

k̂•eW~ k̂,l!50, k̂3eW~ k̂,l!52 ileW~ k̂,l!,

eW~ k̂i ,l i !•eW~ k̂ j ,l j !52 1
2 ~12l il j k̂i• k̂ j !. ~8!

From the expressions of the polarizaton vectors and
three-momentum and energy conservation, it follows that
scalar termA is

A~ k̂,l1 ;2 k̂,l2!52
i

2
~l11l2!, ~9!

and it verifies

A~ k̂,11;2 k̂,11!52A~ k̂,21;2 k̂,21!,

A~ k̂,11;2 k̂,21!52A~ k̂,11;2 k̂,21!50. ~10!

The two fermions in the parapositonium ground st

are in the singlet state,uS50,Sz50&51/A2(u 1
2 ,2 1

2 &
2u2 1

2 , 1
2 &), and then, using the previous relations forA and

Eq. ~5!, the two-photon state results of thep-Ps desintegra-
tion is

ucp&5
1

A2
~ u11&2u22&). ~11!

The two-photon state resulting fromp-Ps decay is thus
equivalent to a maximally entangled state of two spin-1

2 par-
ticles. This is a well-known result and was, actually, one
the physical system first proposed as a source of parti
having the quantum correlations needed to test QM vs
@12#.

C. Orthopositronium decay

The ground state of orthopositronium hasJPC5122 and,
due to the fact that charge conjugation is conserved, de
to three photons. Repeating the treatment performed for
p-Ps annihilation, the determination of the three-photon s
resulting from theo-Ps decay requires the simple calculati
of the tree-level Feynmann diagrams corresponding
e1e2→ggg. Its tree-level computation gives, up to co
stants,

M~e1e2→ggg!;x1
c†M3x2 , ~12!

and the 232 matrix M3 is equal to@14#

M35 (
cyclic perm.

@~eW2* •eW3* 2dW 2•dW 3!eW1*

1~eW2* •dW 31eW3* •dW 2!dW 1#•sW , ~13!
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dW i5kW i3eW i* . ~14!

Using Eq.~8! we can rewriteM3 in the following way:

M3[sW •VW ~ k̂1 ,l1 ; k̂2 ,l2 ; k̂3 ,l3!, ~15!

where

VW 5$~l12l2!~l21l3! eW* ~ k̂1 ,l1!@eW* ~ k̂2 ,l2!•eW* ~ k̂3 ,l3!#

1~l22l3!~l31l1!eW* ~ k̂2 ,l2!@eW* ~ k̂3 ,l3!•eW* ~ k̂1 ,l1!#

1~l32l1!~l11l2! eW* ~ k̂3 ,l3!

3@eW* ~ k̂1 ,l1!•eW* ~ k̂2 ,l2!#%. ~16!

Notice that the helicity coefficient (l i2l j )(l j1lk) for the
cyclic permutations ofi jk explicitly enforces the vanishing
of the (111) and (222) polarizations,

VW ~ k̂1 ,1; k̂2 ,1; k̂3 ,1 !5VW ~ k̂1 ,2; k̂2 ,2; k̂3 ,2 !50.
~17!

Furthermore, it is easy to see that

VW ~ k̂1 ,2; k̂2 ,1; k̂3 ,1 !52eW* ~ k̂1 ,2 !~12 k̂2• k̂3!,

VW ~ k̂1 ,1; k̂2 ,2; k̂3 ,2 !52eW* ~ k̂1 ,1 !~12 k̂2• k̂3!, ~18!

and similar expressions for the other cyclic terms.
The original e1e2 in the orthopositronium could be in

any of the three triplet states. It can be shown, using E
~12! and ~15!, that when the initial positronium state isuS
51,Sz51&5u 1

2 , 1
2 &, the decay amplitude is proportional t

V11 iV2, while the same argument gives2V11 iV2 for uS
51,Sz521&5u2 1

2 ,2 1
2 & and 2A2V3 for uS51,Sz50&

51/A2(u 1
2 ,2 1

2 &1u2 1
2 , 1

2 &). Now, considering the explicit
expressions of the polarization vectors~7!, with u5p/2
without loss of generality, and Eq.~18!, it is easy to see tha
the three-photon state coming from theo-Ps decay is, up to
normalization,

uc0~ k̂1 ,k̂2 ,k̂3!&5~12 k̂1• k̂2!~ u112&1u221&)

1~12 k̂1• k̂3!~ u121&1u212&)

1~12 k̂2• k̂3!~ u211&1u122&),

~19!

when the third component of the orthopositronium spinSz ,
is equal to zero, and

uc1~ k̂1 ,k̂2 ,k̂3!&5~12 k̂1• k̂2!~ u112&2u221&)

1~12 k̂1• k̂3!~ u121&2u212&)

1~12 k̂2• k̂3!~ u211&2u122&)

~20!
7-3
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whenSz561.
The final state of theo-Ps decay is, thus, an entangle

state of three photons, whose quantum correlations dep
on the angles among the momenta of the outgoing three
tons. For the rest of the paper we will consider the fi
family of states (Sz50) although equivalent conclusions a
valid for the second one. In the next sections we will analy
the entanglement properties of the statesuc0( k̂1 ,k̂2 ,k̂3)&, us-
ing some of the quantum information techniques and co
paring them to the well-known cases of the singlet and G
state.

III. ENTANGLEMENT PROPERTIES

The quantum correlations of the three-photon entang
state obtained from theo-Ps annihilation depend on the po
sition of the photon detectors, i.e., on the photon directi
we are going to measure. Our next aim will be to choo
from the family of states given by Eq.~19!, the one that, in
some sense, has the maximum amount of GHZ-like corr
tions. In order to do this, we first need to introduce so
recent results on the study of three-party entanglement.

The set of statesuc0( k̂1 ,k̂2 ,k̂3)& form a six-parameter de
pendent family in the Hilbert spaceH2^ H2^ H2, so that
each of its components is equivalent to a state describ
three spin-12 particles or three qubits~a qubit, or quantum bit,
is the quantum version of the classical bit and correspond
a spin-12 particle!. Two pure states belonging to a gene
composite systemH d

^ N , i.e., N parties each having a
d-dimensional Hilbert space, are equivalent as far as t
entanglement properties go when they can be transfor
one into another by local unitary transformations. This ar
ment gives a lower bound for the entanglement paramete
generic stateuf&PH 2

^ N depends on. Since the number
real parameters for describing it is 2N11, and the action of an
element of the group of local unitary transformatio
U(2)^ N is equivalent to the action of U(1)3SU(2)^ N,
which depends on 3N11 real parameters, the number
entanglement parameters is bounded by 2N112(3N11).
For our case this counting of entanglement parameters g
six, since we haveN53, and it can be proved that this
indeed the number of nonlocal parameters describing a s
in H2^ H2^ H2 @17#.

The above arguments imply that six independent qua
ties invariant under the action of the group of local unita
transformations will be enough, up to some discrete sym
try, to describe the entanglement properties of any thr
qubit pure state. Given a generic stateuf&PH 2

^ 3:

uf&5(
i , j ,k

t i jk u i jk &, i , j ,k51,2, ~21!

where u i &,u j &,uk& are the elements of a basis in each su
system,A, B, and C, the application of three local unitar
transformationsUA, UB, andUC transforms the coefficient
t i jk into
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t i jk8 5( Uia
A U j b

B Ukg
C tabg . ~22!

From this expression it is not difficult to build polynomia
combinations of the coefficientt i jk , which are invariant un-
der local unitary transformations@17,18#. These quantities
are good candidates for being an entanglement param
For example, one of these invariants is

( t i 1 j 1k1
t i 1 j 2k2
* t i 2 j 2k2

t i 2 j 1k1
* 5tr~rA

2 !, ~23!

whererA5trBC(uf&^fu) is the density matrix describing th
local quantum state ofA ~and the same happens forB and
C). In Ref. @18# the six linearly independent polynomial in
variants of minor degree were found~a trivial one is the
norm! and a slightly modified version of these quantities w
also proposed in Ref.@19#. In the rest of the paper we wil
not consider the norm, so the space of entanglement pa
eters of the normalized states belonging toH2^ H2^ H2 has
dimension equal to five.

A particularly relevant polynomial invariant is the squa
concurrence,t, introduced in@20#. There is strong evidence
that somehow it is a measure of the amount of GHZ st
character of a state@19–22#. It corresponds to the modulus o
the hyperdeterminant of the hypermatrix given by the co
ficients t i jk @23#, which from Eq.~21! corresponds to

t~ uf&)5uHdet~ t i jk !u

5U( e i 1i 2
e i 3i 4

e j 1 j 2
e j 3 j 4

ek1k3
ek2k4

3t i 1 j 1k1
t i 2 j 2k2

t i 3 j 3k3
t i 4 j 4k4

U, ~24!

wheree005e1150 ande0152e1051. This quantity can be
shown to be symmetric under permutation of the indic
i , j ,k.

Because of the interpretation of the square concurrenc
a measure of the GHZ-like correlations, we will choose t
position of the photon detectors, from the set of states~19!,
the ones that are associated with a maximum square con
rence. In Fig. 1 is shown the variation of the square conc
rence with the position of the detectors. It is not difficult
see that the state of Eq.~19! with maximum square concur
rence corresponds to the casek̂1• k̂25 k̂1• k̂35 k̂2• k̂352 1

2 ,
i.e., the most symmetric configuration. The normalized st
obtained from Eq.~19! for this geometry is

uc&5
1

A6
~ u112&1u221&1u121&1u212&

1u211&1u122&). ~25!

Note that the GHZ state has an square concurrence equ
1
4 , while the value of the square concurrence of~25! is lower,

t~ uc&)5 1
12 . ~26!
7-4
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THREE-PARTY ENTANGLEMENT FROM POSITRONIUM PHYSICAL REVIEW A63 042107
It is arguable that the most symmetric geometry was na
rally expected to produce a maximum square concurre
state. Indeed, GHZ-like quantum correlations do not sin
larize any particular qubit.

Let us also mention that the state we have singled out
some nice properties from the point of view of group theo
It does correspond to the sum of two of the elements of
coupled basis resulting from the tensor product of three s
1
2 particles,1

2 ^
1
2 ^

1
2 , @24#

uc&51/A2~ u 3
2 ,1 1

2 &1u 3
2 ,2 1

2 &), ~27!

where

u 3
2 ,1 1

2 &51/A3~ u112&1u121&1u211&),

u 3
2 ,2 1

2 &51/A3~ u221&1u212&1u122&). ~28!

The quantum correlations of Eq.~25! will be now analyzed.

IV. USEFUL DECOMPOSITIONS

In this section, the state~25! will be rewritten in some
different forms that will help us to understand better its no
local properties. First, let us mention that for any gene
three-qubit pure state and by performing change of lo
bases, it is possible to make zero at least three of the co
cientst i jk of Eq. ~21! @19,25#. A simple counting of param-
eters shows that this is in fact the expected number of ze
This means that by a right choice of the local bases, any s
can be written with the minimum number of coefficientst i jk ,
i.e., we are left with all the nonlocal features of the sta
having removed all the ‘‘superfluous’’ information due
local unitary tranformations. For the case of the state~25! it
is easy to prove@26# that it can be expressed as

uc&5
1

2A3
~ u001&1u010&1u100&)1

A3

2
u111&, ~29!

FIG. 1. Variation of the square concurrence with the position
the photon detectors, that are represented by two angles~in de-
grees!, the third one has to sum up to 360°. We have takent50
when the position of the detectors, i.e., the photon trajectories,
incompatible with momentum conservation.
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which is the minimum decomposition in terms of produ
states built from local bases~four of the coefficientst i jk are
made equal to zero!.

An alternative decomposition, that will prove to be frui
ful for the rest of the paper, consists of writing the state a
sum of two product states. This decomposition is somew
reminiscent of the form of the GHZ state, which is a sum
just two product states, and is only possible when the squ
concurrence is different from zero@19,21# as it happens for
our state@see~26!#. The state then can be written as

uc&5
2

3F S 1

0D ^ S 1

0D ^ S 1

0D

1S 1

2

A3

2

D ^S 1

2

A3

2

D ^S 1

2

A3

2

D G
[a~ u000&1uaaa&), ~30!

where

u0&[S 1

0D
and

a[S 1

2

A3

2

D .

We omit the details for the explicit computation of this e
pression since they can be found in Refs.@19,21#. It is worth
noticing thato-Ps decay is hereby identified to belonging
an interesting type of states already classified in quan
information theory@21#.

The above decomposition allows for an alternative int
pretation of the initial state as an equally weighted sum
two symmetric product states. Note that the Bloch vec
n̂5(sinu cosf,sinu sinf,cosu), representing the first loca
spinor appearing in Eq.~30! is pointing to thez axis, i.e.,
n̂15(0,0,1), while the second is located in theXZ plane with
an angle of 120° with thez axis, i.e.,n̂25„A3/2,0,2(1/2)….
By performing a new unitary transformation, Eq.~30! can be
written as

uc&5
2

3 F S c

sD ^ S c

sD ^ S c

sD 1S s

cD ^ S s

cD ^ S s

cD G , ~31!

wherec5cos 15°, ands5sin 15°. Now, the two Bloch vec-
tors are in theXZ plane, pointing to theu530° and u
5150° directions. The GHZ state corresponds to the part
lar casec51 ands50.

f
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V. QUANTUM MECHANICS VS LOCAL REALISM

The quantum correlations present in some three-q
pure states show, as it was mentioned in the Introductio
much stronger disagreement with the predictions of a lo
realistic model than any two-qubit entangled state. In fa
contrary to the case of the singlet state, no LR model is a
to reproduce all the perfect correlations predicted for
maximally entangled state of three qubits@2#. The state~25!
emerging fromo-Ps decay is not a GHZ state, although
has been chosen as the one with the maximum tangl
order to maximize GHZ-like correlations. In this section w
will show how to use it for testing quantum mechani
against local-realistic models, and then we will compare
performance against existing tests for the maximally
tangled states of two and three spin-1

2 particles. We start
reviewing some of the consequences derived from the a
ments proposed in Ref.@1#.

A. QM vs LR conflict

Given a generic quantum state of a composite sys
shared byN parties, there should be an alternative LR theo
that reproduces all its statistical predictions. In this L
model, a state denoted byl will be assigned to the system
specifying all its elements of physical reality. In particula
the result of a measurement depending on a set of param
$n% performed locally by one of the parties, sayA, will be
specified by a functional($n%). The same will happen fo
each of the space-separated parties and, since there
causal influence among them, the result measured onA can-
not modify the measurement onB. For example, if the mea
surement is of the Stern-Gerlach type, the parameters la
ing the measurement are given by a normalized vectorn̂ and
al(n̂)[a are the LR functions describing the outcome.

The LR model can be very general provided that so
conditions must be satisfied. Consider a generic pure s
belonging toH2^ H2^ H2 shared by three observersA, B,
and C, which are able to perform Stern-Gerlach measu
ments in any direction. Since the outcomes of a Ste
Gerlach measurement are only61, it is easy to check tha
for any pair of measurements on each subsystem, desc
by the LR functionsa anda8, b andb8, c andc8, and for all
their possible values, it is always verified

a8bc1ab8c1abc82a8b8c8562. ~32!

It follows from this relation that

22<^a8bc1ab8c1abc82a8b8c8&<2. ~33!

This constraint is known as the Mermin inequality@27# and
has to be satisfied by any LR model describing three sp
separated systems.

Let us now take the GHZ state~2!. It is quite simple to see
that if the observablesa anda8 are equal tosy andsx ~the
same for partiesB andC), the value of Eq.~33! is 24, so an
experimental condition is found that allows to test quant
mechanics against local realism. Note that this is the m
mal violation of inequality~33!. Moreover, the GHZ state
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also satisfies thata8bc5ab8c5abc852a8b8c8521 and
no LR model is able to take into account this perfect cor
lation result because of Eq.~32! @2#. This is a new feature
that does not appear for the case of a two maximally
tangled state of two spin-1

2 particles. In this sense it is ofte
said that a most dramatic contrast between QM and
emerges for entanglement between three subsystems.

Let us go back to the state given by the orthopositroni
decay~25!. Our aim is to design an experimental situatio
where a conflict between QM and LR appears, so we w
look for the observables that give a maximal violation of E
~33!. Such observables will extremize that expression. Us
the decomposition~31!, the expectation value of three loca
observables is

^abc&5^cu~ n̂a•sW ! ^ ~ n̂b•sW ! ^ ~ n̂c•sW !uc&

5
4

9 S )
i 5a,b,c

~ c̃ cosu i1 s̃ sinu i cosf i !

1 )
i 5a,b,c

~2 c̃ cosu i1 s̃ sinu i cosf i !

1 )
i 5a,b,c

sinu i~c2e2 if i1s2eif i !

1 )
i 5a,b,c

sinu i~c2eif i1s2e2 if i ! D , ~34!

where c̃[c22s2 and s̃[2sc. Because of the symmetry o
the state under permutation of parties, the Stern-Gerlach
rections are taken satisfyingn̂a5n̂b5n̂c5(sinu cosf,
sinu sinf,cosu) and n̂a85n̂b85n̂c85(sinu8cosf8,
sinu8sinf8,cosu8). Substituting this expression in Eq.~33!,
we get the explicit functionf (u,f,u8,f8) to be extremized.
For the case of the GHZ state described above, the extr
values were obtained using two observables withu5u8
5p/2, i.e., in theXY plane. Since Eq.~31! is the GHZ-like
decomposition of the initial state, we takeu5u85p/2 and it
is easy to check that in this case

] f

]u U
u5u85 p/2

5
] f

]u8
U

u5u85 p/2

50, ;f,f8.

Mantaining the parallelism with the GHZ case, it can be se
that all the partial derivatives vanish when it is also impos
f5p/2 andf850. In our case the calculation of Eq.~33!
gives 23, so a conflict between local-realistic models a
quantum mechanics again appears, and then the three-ph
state coming from the orthopositronium decay can be us
in principle, to test QM vs LR with the set of observabl
given by the normalized vectors

n̂a5n̂b5n̂c5~0,1,0!, n̂a85n̂b85n̂c85~1,0,0!. ~35!

There is an alternative set of anglesf and f8 that makes
zero all the partial derivatives off : the combination of local
observables~33! is equal to'23.046 for
7-6
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f85arctanS 2
A17127A41

10
D '126°,

f5
1

2
arctanS 2A17127A41

25
D '24°. ~36!

This second set of parameters will be seen to produce in
end a weaker dismissal of LR.

Our next step will be to carry over the comparison of th
QM vs LR test against the existent ones for the maxima
entangled states of three and two spin-1

2 particles, i.e., the
GHZ and singlet state. It is quite evident that the describ
test should be worse than that obtained for the GHZ stat
is less obvious how this new situation will compare with t
singlet case.

B. Comparison with the maximally entangled states
of two and three spin-12 particles

We will now estimate the ‘‘strength’’ of the QM vs LR
test proposed above, being the ‘‘strength’’ measured by
number of trials needed to rule out local realism at a giv
confidence level, as Peres did in Ref.@28#. A reasoning
anologous to the one given in Ref.@28# will be done here for
the state~25! and the observables~35!.

Imagine a local-realistic physicist who does not believe
quantum mechanics. He assigns prior subjective probabil
to the validity of LR and QM,pr and pq , expressing his
personal belief. Take for instancepr /pq5100. His LR
theory is not able to reproduce exactly all the QM statisti
results of some quantum states. Consider the expecta
value of some observableO with two outcomes61 such
that ^O&5Eq is predicted for some quantum state, while L
gives^O&5ErÞEq . Since the value of the two possible ou
comes are61, the probablity of havingO511 is q5(1
1Eq)/2 for QM andr 5(11Er)/2 for LR. An experimental
test of the observableO now is performedn times yieldingm
times the result11. The prior probabilitiespq and pr are
modified according to the Bayes theorem and their ratio
changed to

pr8

pq8
5

pr

pq

p~muLR!

p~muQM!
, ~37!

where

p~muLR!5S n

mD r m~12r !n2m ~38!

is the LR probability of havingm times the outcome11, and
we have the same forp(muQM), beingr replaced byq. Fol-
lowing Peres@28#, the confidence depressing factoris de-
fined

D[
p~muQM!

p~muLR!
5S q

r D mS 12q

12r D n2m

, ~39!
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which accounts for the change in the ratio of the probabilit
of the two theories, i.e., it reflects how the LR belief chang
with the experimental results. Like in a game, our aim is
destroy as fast as we can, the LR faith of our friend
choosing an adequate experimental situation. It can be s
for example, that he will give up when, for example,D
5104. Since the world is quantum,m5qn, and the number
of experimental tests needed to obtainD5104 is equal to

nD~q,r ![
4

q log10S q

r D1~12q!log10@~12q!/12r #

5
4

K~q,r !
, ~40!

beingK(q,r ) the information distance@29# between the QM
and LR binomial distribution for the outcome11. The more
separate the two probability distributions are, measured
terms of the information distance, the fewer the number
experimentsnD is.

Let us come back to the three-party entangled state c
ing from the orthopositronium decay~25! under the local
measurements described by Eq.~35!. As it has been shown
above, a contradiction with any LR model appears for
combination of the observables given by the Mermin
equality. In our case quantum mechanics gives the follow
predictions:

^a8bc&5^ab8c&5^abc8&52 2
3 , ^a8b8c8&511,

~41!

and this implies thatq15prob(a8bc511)5prob(ab8c5
11)5prob(abc8511)5 1

6 and q25prob(a8b8c8511)
51. This is the QM data that our LR friend has to reprodu
as well as possible. Because of the symmetry of the stat
will assign the same probabilityr 1 to the eventsa8bc5
11, ab8c511, and abc8511 and r 2 to a8b8c8511.
However, his model has to satisfy the constraint given by
~33!, so the best he can do is to saturate the bound and

3r 15r 2⇒0<r 1< 1
3 . ~42!

Now, according to the probabilitiesr 1 and r 2 his LR model
predicts, we choose the experimental test that minimizes
~40!, i.e., we consider the eventa8bc511 (a8b8c8511)
whennD(q1 ,r 1),nD(q2 ,r 2) @nD(q1 ,r 1).nD(q2 ,r 2)#, and
the experimental results will destroy his LR belief aft
nD(q1 ,r 1) @nD(q2 ,r 2)# trials. The best value our LR friend
can assign tor 1 is the solution to

nD~q1 ,r 1!5nD~q2 ,r 2!, ~43!

with the constraint~42!, and this condition means thatr 1
'0.315 andnD'161 trials are needed to have a depress
factor equal to 104. Repeating the same calculation for th
observables given by Eq.~36!, the number of trials slightly
increases,nD'166, despite the fact that the violation of th
inequality is greater than the obtained for Eq.~35!.
7-7
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In Ref. @28# the same reasoning was applied to the ma
mally entangled state of two and three spin-1

2 particles,
showing thatnD'200 in the first case, andnD'32 for the
latter ~see Table I!. Our result then implies that the three
photon entangled state produced in the orthopositronium
cay has, in some sense, more quantum correlations than
entangled state of two spin-1

2 particles.

C. Generalization of the results

It is easy to generalize some of the results obtained for
entangled state resulting from theo-Ps decay. As it has bee
mentioned, this state can be understood as an equ
weighted sum of two symmetric product states, since it
be written as Eq.~31!. The Bloch vectors of the two loca
states appearing in this decomposition form an angle
120°. It is clear that the conclusions seen above depen
the angle between these vectors, i.e., with their degre
nonorthogonality. The family of states to be analyzed can
parametrized in the following way:

uc~d!&5ad F S cd

sd
D ^ S cd

sd
D ^ S cd

sd
D 1S sd

cd
D ^ S sd

cd
D ^ S sd

cd
D G ,
~44!

whered is the angle between the two local Bloch vecto
cd[cos(p2d /4) andsd[sin(p2d /4), andad is a positive
number given by the normalization of the state. An alter
tive parametrization of this family is, using Eq.~29! and
definingd8[d/4,

uc~d!&52ad@sin2d8cosd8~ u001&1u010&1u100&)

1cos3d8u111&]. ~45!

The expectation value of three local observables for
set of states follows trivially from Eq.~34!. Using this ex-
pression it is easy to see that the combination of the exp
tation values of Eq.~33! has all the partial derivatives equ
to zero for the set of observables given in Eq.~35! indepen-
dently ofd. For these observables, the dependence of exp
sion ~33! with the degree of orthogonality between the tw
product states is given in Fig. 2. There is no violation of t
Mermin inequality for the case in whichd&85°. In this situ-
ation one can always find a LR model able to reproduce
QM statistical prediction given by Eq.~33! and the observ-
ables~35!. We can now repeat all the steps made in orde
determine the number of trials needed to rule out local re
ism as a function of the angled. In Fig. 3 we have summa

TABLE I. Comparison of the strength of the QM vs LR tes
which can be performed for the maximally entangled states of
and three spin-12 particles and for the three-photon entangled st
reulting from the orthopositronium annihilation.

State Number of trials

GHZ '32
Positronium state~25! '161

Singlet '200
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rized the results. We have shown only the cases where
number of trials is less than 200, since this is the value
tained for the singlet. Note that the cased5120°, which
corresponds to Eq.~25!, is very close to the region wher
there is no improvement compared to the maximally e
tangled state of two qubits.

All these results can be understood in the following wa
the smaller the angle between the two local states,d, the
higher the overlap of the stateuc(d)& with the product state
having each local Bloch vector pointing in the direction
the x axis, which corresponds to the stateu111& in Eq. ~45!.
This means that the quantum state we are handling is
close to a product state@25#, and thus, no violation of the
Mermin inequality can be observed.

VI. CONCLUDING REMARKS

In this paper we have analyzed the three-particle quan
correlations of a physical system given by the decay of
orthopositronium into a three-photon pure state. After o
taining the state describing the polarization of the three p
tons ~25!, some of the recent techniques developed for
study of three-party entanglement have been applied.
particular case where the three photons emerge in the m
symmetric configuration corresponds to the state with
maximum square concurrence. We have shown that this s

o
e

FIG. 2. Violation of the Mermin inequality~33! with the angled
~in degrees! for the family of states~44!. We have substracted 2 t
the combination of the expected values of Eq.~33!, so a positive
value means that a conflict between QM and LR appears.

FIG. 3. Number of trials needed to rule out local realism a
function of the angled ~in degrees! for the family of states~44!.
Values greater than 200 are not shown since in these cases
always exists a two-qubit entangled state that gives the same re
i.e., it has the same ‘‘strength’’ for ruling out local realism.
7-8
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allows a priori for a QM vs LR test, which is stronger tha
any of the existing ones that use the singlet state. In
sense, orthopositronium decays into a state which car
stronger quantum correlations than any entangled stat
two spin-12 particles.

Bose symmetrization has played a somewhat nega
role in reducing the amount the GHZ-ness of theo-Ps decay
state. Indeed, the natural GHZ combinationu112&1u22
1& emerging from the computation of Feynmann diagra
has been symmetrized due to the absence of photon tag
to our stateu112&1u121&1u211&1u221&1u21
2&1u122&, inducing a loss of tangle. The quantum opti
realization of the GHZ state does avoid symmetrizat
through a geometric tagging@10#. It is, thus, reasonable to
look for pure GHZ states in decays to distinct particles,
that tagging would be carried by other quantum numbers
e.g., charge. It is, on the other hand, peculiar to note
symmetrization in theK0K̄0 system is responsible for it
entanglement (u12&1u21&) @13#.

Let us briefly discuss the experimental requireme
needed for testing quantum mechanics as it has been
scribed in this paper. The preparation of positronium in
given polarization state can be performed using magn
mixing as it has been described in Ref.@30#. The circular
polarizations of the three photons resulting from an orth
ositronium decay have to be measured. The positions of
three detectors are given by the maximization of the squ
concurrence and their clicks have to detect the coincide
of the three photons. The energy of these photons is of
order of 1 Mev. Polarization analyzers with a good efficien
would allow us to acquire statistical data showing quant
correlations that would violate the Mermin inequality di
cussed above. Unfortunately, as far as we know, no s
analyzers exist for this range of energies~this is not the case
for optic photons!. A possible way out might be to us
.
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Compton scattering to measure the photon polarizations@31#.
However, the Compton effect just gives a statistical patt
depending on the photon and electron polarizations, whic
not a direct measurement of the polarizations. Further w
is needed to modify our analysis of QM vs LR to accomm
date for such indirect measurements. Finally, it is hard to
how to implement a switching procedure in the measur
apparatus in order to rule out the locality loophole, althou
it is thought that this loophole has been closed by rec
experiments@32#. The detection loophole cannot be close
so one has to assume the fair sampling hypothesis.

To summarize, orthopositronium decay provides, witho
using any postselection procedure, an entangled state of t
space-separated photons with more quantum correlat
than any entangled state of two particles. Indeed it can
used in principle to test quantum mechanics against lo
realism, although many experimental difficulties have yet
be overcome. The techniques shown in this paper can
easily extended to the analysis of the entanglement pro
ties of different three-particle entangled states obtained
other experimental settings@perhaps the same state, due to
nice properties from the point of view of group theory~27!#.
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