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Renormalization-group improvement of the spectrum of hydrogenlike atoms
with massless fermions
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We obtain the next-to-next-to-leading-logarithmic renormalization-group improvement of the spectrum of
hydrogenlike atoms with massless fermions by using potential NRQED. These results can also be applied to
the computation of the muonic hydrogen spectrum where we are able to reproduce some known double
logarithms atO(mas

6). We compare with other formalisms dealing with logarithmic resummation available in
the literature.
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In Ref. @1# ~see also Ref.@2#!, the renormalization-group
~RG! improvement of the heavy quarkonium spectrum
the equal mass case was obtained within the poten
NRQCD ~PNRQCD! formalism @3#. This result was com-
pared with that of Ref.@4# ~see also Refs.@5,6#! obtained
within the VNRQCD formalism@7# and disagreement wa
found. This disagreement is potentially important as it pro
gates to different observables, for example,t- t̄ production
near threshold, where it is claimed@8# that the resummation
of logarithms plays an important role. For instance,
matching coefficient of the electromagnetic current, which
a necessary ingredient in these calculations, is different@9,6#.
Nevertheless, for the known logarithms at next-to-next-
leading @10# and next-to-next-to-next-to-leading order@11#,
both calculations happen to agree with each other.

In order to try to clarify this issue, we consider the sim
plified problem of a hydrogen-like system coupled tonf light
~massless! fermions in QED. We then obtain the next-to
next-to-leading-logarithm~NNLL ! RG scaling of the spec
trum of this system. In principle, these results can be app
to muonic hydrogen. In this case, the electron is replaced
the muon,nf→1 and the remaining light fermion is the ele
1050-2947/2002/66~6!/062108~5!/$20.00 66 0621
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tron ~which we take to be massless for simplicity or, at mo
of O(ma2), wherem is the mass of the muon!. In this situ-
ation, we are able to compare, in certain limits, with fin
O(ma6ln2) results already available in the literature@12#.
Our results agree with these calculations.

The computation closely follows the procedure of Ref.@1#
to which we refer for details. Here we just write the ma
formulas necessary to set up the notation and the results

The first step is to obtain the RG improved matching c
efficients of the NRQED@13# Lagrangian at one loop and u
to O(1/m2) @m is the mass of the massive lepton~the muon
for the muonic hydrogen! and the mass of the nucleus is se
to infinity in this paper#.

The NRQED Lagrangian including light fermions reads
O(1/m2) ~up to field redefinitions! @13–15#

L5Lg1Ll1Lm1Lp1Lmp , ~1!

wherem is the Pauli spinor that annihilates the fermion,Np
is the Pauli spinor that annihilates the nucleus,iD 05 i ]0
2gA0 , iD5 i“1gA,
Lg52 1
4 FmnFmn , ~2!

Ll5(
i

l̄ i iD” l i1c1
l l g2

8m2 (
i , j

l̄ ig
ml i l̄ jgml j1c2

l l g2

8m2 (
i , j

l̄ ig
mg5l i l̄ jgmg5l j , ~3!

Lm5m†H iD 01ck

D2

2m
1c4

D4

8m3
1cFg

s•B

2m
1cDg

~D•E2E•D!

8m2
1 icSg

s•~D3E2E3D!

8m2 J m1c1
m l g2

8m2 (
i

m†m l̄ ig0l i

1c2
m l g2

8m2 (
i

m†gmg5m l̄ igmg5l i , ~4!

Lp5Np
†iD p

0Np , ~5!
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whereiD p
05 i ]01gZA0 and

Lmp5
ds

m2
m†mNp

†Np1
dv

m2
m†smNp

†sNp . ~6!

We have also included theD4/m3 term above since it will be
necessary in the evaluation of the spectrum once the po
counting is established. Moreover, we will consider that
kinetic term matching coefficients are protected by repara
etrization invariance (ck5c451) @16#, however, we will of-
ten keep them explicit for tracking purposes.

By definition, NRQED has an ultraviolet cutoffnNR
5$np ,ns% satisfying mv!nNR!m. np is the ultraviolet
~UV! cutoff of the relative three-momentum of the hea
fermion and antifermion.ns is the UV cutoff of the three-
momentum of the photons and light fermions. The derivat
of the scale dependence of the matching coefficients w
respect the UV cutoffs of the theory is identical to that
Ref. @1#; in particular, the fact that no dependence ofnp
appears at this order. In principle, the running ofcll andcm l

could be deduced from the results of Refs.@15,14# by taking
care of the changes of the color structure. Since we are
interested in the computation of the spectrum at NNLL
curacy, their contribution will vanish at this order as far
the spectrum is concerned (c1

m l appears in the equation ofcD

but the running ofc1
m l is zero at LL accuracy!. Therefore, the

relevant RG equations in our case read

ns

d

dns
cD52

a

pS 8

3
ck

21
b0

2
c1

m l D ~7!

and zero otherwise.
By taking the matching conditions at the scalem: ck

5cF5cs5cD51 and$d%50, we can obtain the solution o
the RG equations. We only explicitly display those that w
be necessary later on@we definez5@a(ns)/a(m)#1/b0.1
21/(2p)a(ns)ln(ns/m), b052 4

3 TFnf with TF51]

cF~ns!51,

cS~ns!51,

cD~ns!511 16
3 ln z,

ds~ns!50,

dv~ns!50. ~8!

The above results are a necessary step towards the
improvement of PNRQED with the matter content describ
above, which we consider in what follows. PNRQCD is d
fined by the cutoffnPNR5$np ,nus%, wherenp is the cutoff of
the relative three-momentum of the heavy fermions and
such thatmv!np!m, and nus is the cutoff of the three-
momentum of the photons and light fermions withmv2

!nus!mv.
The PNRQED Lagrangian reads as follows„iD S

05 i ]0

1g(Z21)A0…:
06210
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LPNRQED5E d3xd3XS†~x,X,t !H iD S
02ck

p2

2m
1c4

p4

8m3

2V(0)2
V(1)

m
2

V(2)

m2
1gVAx•E~X,t !J S~x,X,t !

2E d3X
1

4
FmnFmn, ~9!

wherex andX, andp andP are the relative and center-o
mass coordinate and momentum, respectively. All the ga
fields in Eq.~9! are functions of the center-of-mass coord
nate and the timet only. We have explicitly written only the
terms relevant to the analysis at the NNLL.

We now display the structure of the matching potenti
V(0), V(1), and V(2), which are the relevant ones to ou
analysis. At order 1/m0, we have the static potential

V(0)[2Z
aV

r
. ~10!

In principle, at order 1/m, we may have a potential scaling a
V(1)/m;1/(mr2). Nevertheless, it vanishes at the order w
are working with. It would give, at most,O(ma6) correc-
tions to the spectrum in a finite order calculation and
running equations would not mix with it. Therefore, for th
purposes of this paper, we approximate

V(1)

m
.0. ~11!

At order 1/m2, to the accuracy we aim at,V(2) has the struc-
ture

V(2)

m2
5

pZDd
(2)

m2
d (3)~r !1

3ZDLS
(2)

2m2

1

r 3 L1•S1 , ~12!

whereS15s1/2. In principle, one may consider more stru
tures for the 1/m2 potential but, since they will not contribut
at the accuracy we aim at and in order to focus the prob
as much as possible, we will set them to zero in what f
lows, as we have done for the 1/m potential.

The coefficientsṼ5$aVs
,Ds , . . . % contain some lnr de-

pendence once higher order corrections to their leading~non-
vanishing! values are taken into account. In particular, w
will have expressions such asd (3)(r )lnnr. This is not a well-
defined distribution and should be understood as the Fou
transform of lnn1/k. Nevertheless, in order to use the sam
notation for all the matching coefficients, and since it will b
sufficient for the purposes of this paper, namely, to resum
leading logarithms, we will use the expressiond (3)(r )lnnr,
although it should always be understood in the sense g
above.

By studying the UV behavior of PNRQED it is possible
obtain the scale dependence of the coefficients of the po
tials Ṽ. The discussion closely follows that of Ref.@1# to
8-2
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which we refer for details. Here we just mention the ma
points. The potentials have the following structure:

Ṽ„d~np ,ns ,m!,c~ns ,m!,ns ,nUS,r …

5Ṽ~np ,m,nUS,r !

[Ṽ~np ,nus!. ~13!

In particular,

ns

d

dns
Ṽ50. ~14!

Moreover, at the accuracy we aim, at we also get

np

d

dnp
Ṽ50. ~15!

Therefore, we obtain

Ṽ~np ,nus!.Ṽ~nus! ~16!

and we only have to compute thenus scale dependence.
The nus-scale dependence could be obtained along

same lines as in Ref.@1#. We obtain in this specific case,

nus

d

dnus
as52b0

a2

2p
, ~17!

nus

d

dnus
Dd

(2)52
4

3

a~nus!

p
VA

2ck
2a~r 21!,

and zero for the other potentials.
Equations~14!, ~15!, and~17! provide the complete set o

RG equations at the desired order. By using Eqs.~14! and
~15!, we obtain

Ṽ5Ṽ„d~1/r ,m!,c~1/r ,m!,ns51/r ,nus,r …. ~18!

We now need the initial condition in order to solve the us R
equations, i.e., the matching conditions. We fix the init
point at nUS51/r . In summary, we need to know the stat
potential withO(a3) accuracy, the 1/m potential withO(a2)
accuracy, the 1/m2 potentials withO(a) accuracy, andVA
with O(1) accuracy atnUS51/r . For the nonvanishing po
tentials, they read

aV~r 21!5a~r 21!H 11~a112gEb0!
a~r 21!

4p
1FgE~4a1b0

12b1!1S p2

3
14gE

2 Db0
21a2Ga2~r 21!

16p2 J ,

Dd
(2)~r 21!5a~r 21!

cD~r 21!

2
,

DLS,s
(2) ~r 21!5

a~r 21!

3
cS~r 21!,
06210
e

l

VA~r 21!51, ~19!

where b1524TFnf and the values ofa1 and a2 can be
easily obtained from the QCD results@17# by taking Cf
→1, CA→0 andTF→1.

We now have all the necessary ingredients to solve
RG equations. The RG improved potentials read

aV~nus!5aV~r 21!,

Dd
(2)~nus!5Dd

(2)~r 21!2
8

3b0
a~r 21!lnS a~r 21!

a~nus!
D

5
a~r 21!

2 F12
16

3b0
lnS a~m!

a~nus!
D G ,

DLS
(2)~nus!5DLS

(2)~r 21!. ~20!

This completes the RG evaluation of the PNRQED Lagra
ian at NNLL.

With the above results we can obtain the energy w
NNLL accuracy. The discussion goes similar to that in R
@1#. All the large logarithms can be obtained from the pote
tial terms. Once the potentials are introduced in the Sch¨-
dinger equation, the lnn(1/r ) terms produce lnn(ma) terms
plus subleading contributions@ lnn21(ma), . . . # within the
LL resummation counting. The expectation value of the p
tential terms isnus-scale dependent. This scale dependenc
canceled by the ultraviolet scale dependence of ultra
loops. The typical scale in these integrals is of the or
ma2. Therefore, the logarithms of the ultrasoft loops g
minimized by settingnus;ma2 and all the large logarithms
get encoded in the potential contributions. Finally, one o
tains the following correction to the NNLO energy expre
sion:

dEn,l , j
pot ~nus!5Ena2

Z2d l0

3n F2
16

b0
lnS a~nus!

a D23~cD21!G ,
~21!

whereEn52mZ2a2/(2n2) and the scalens in z and in the
NRQED matching coefficients has been fixed to the s
scalens52an

21 , wherean
215mZa(2an

21)/n. a is also un-
derstood at the soft scalens52an

21 unless the scale is spec
fied. Thenus-scale dependence of Eq.~21! cancels agains
contributions from us energies. Sincema2 is the next rel-
evant scale, their effective role will be to replacenus by ma2

~up to finite pieces that we are systematically neglecting! in
Eq. ~21!. In particular, we takenus52En . As expected, Eq.
~21! with nus52En reproduces the well-known hydrogen
like O(ma5ln a) correction but, indeed, Eq.~21! gives all
the O„ma4(a ln a)n

… terms forn>1 of the spectrum of the
hydrogenlike systems withnf massless fermions. After add
ing to Eq.~21! the NNLO result with the normalization poin
at thesamesoft scale,ns52an

21 , that we have used here, th
complete NNLL mass is obtained. Note that the above
8-3
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summation of logarithms also correctly accounts for lnZ
terms with the same accuracy.

We have seen that the large logarithms of the spect
can be obtained from the potential terms by settingr
;ma andnus;ma2. The velocity of the nonrelativistic par
ticle is typically v;Za. Therefore, it is interesting to con
sider the scaling of the potentials with respect tov as it will
help us to later compare with VNRQED results. In practi
we will consider its scaling with respect ton[mv ~therefore
nus5n2/m), where

Ṽ~np ,m,nus,r !.Ṽ~m,nus,r !→Ṽ~m,n2/m,1/n![Ṽ~n!.
~22!

We can now consider its derivative with respectn. We will
just focus onDd

(2) since it is the only one that has a nontrivi
running. We obtain

n
d

dn
Dd

(2)52
b0

4p
cD~n!a2~n!1

4

3

a2~n!

p
ln

a~n!

aS n2

m D
2

8

3

a~n!

p
aS n2

m D . ~23!

It is remarkable that the above expression can be rearra
as

n
d

dn
Dd

(2)52
b0

4p
cDS n2

m Da2~n!2
8

3

a~n!

p
aS n2

m D .

~24!

There is an evaluation@4# within the VNRQCD framework
@7# of the RG improved heavy quarkonium mass wh
LQCD!mas

2 . The evaluation performed within th
PNRQCD framework@1# disagreed with that evaluation.
was noticed there that the disagreement still persisted if
considered a QED-like limit with light fermions by takin
Cf→1, CA→0, and TF→1. Agreement was found for a
QED-like limit without light fermions by takingCf→1,
CA→0, nf→0, TF→1. Some errors seem to have been d
tected in the first versions of these calculations in VNRQC
@18#, which may partially explain the difference, in partic
lar, for the 1/m2 potential. In this case, agreement may ex
in the limit Cf→1, CA→0, andTF→1.

For the evaluation performed in this paper, the compu
tion of the spectrum for the case of hydrogen-like atoms w
massless fermions, there exists no analog within
VNRQED framework. Nevertheless, it is possible to gue
what would be the result in that formulation by using t
rules of Ref.@19#, which relate the anomalous dimensio
computed here with the ones that should appear
VNRQED. For the specific case ofDd

(2) , we obtain

n
d

dn
Dd

(2)~VNRQED!5gs12gu , ~25!

where
06210
m
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gs52
b0

4p
cD~n!a2~n!, gus52

4

3

a~n!

p
aS n2

m D . ~26!

This should be compared with the running in PNRQED o
tained above. If we do so, we find that Eqs.~25! and~24! are
different. If expanded ina, they first differ atO(a2ln2a).
This produces a difference in the computation of the mas
O(ma6 ln2a). In order to perform an independent check,
would be extremely important that corrections of this ord
had been computed before. The closest system to the
discussed here corresponds to the muonic hydrogen
which, indeed, corrections to the energy at this order h
been computed by Pachucki@12#. In order to compare our
results with his evaluation, we have to take the limitnf
→1. Moreover, for the real muonic hydrogen, the mass
the light fermion~the electron in this case! is not negligible.
However, we can formally consider the situationme;ma2

~even if for the physical situationme;ma is closer to real-
ity! in his and our calculation. For the matter of compariso
in our case, this means that, for scales of the order ofme and
ma2, we can use the low-energy electromagnetic coupl
aem;1/137 . . . . This is indeed the parameter expansi
used in Pachucki’s calculation. A closer inspection sho
that the diagrams that give rise to the large logarithms co
puted here correspond to the ones drawn in Fig. 4 in R
@12#. If we reexpand our result in terms ofaem5a(nus), we
obtain ~up to the order of interest and withv;a)

Dd
(2)2

a~n!

2
5

a~nus!

2 S 11
b0

2p
a~nus!ln

mv2

mv
1••• D

3S 2
8

3

a~nus!

p
ln

mv2

m
2

2

3
b0S a~nus!

p D 2

3 ln2
mv2

m
1••• D

.2
4

3

a2~nus!

p
ln

mv2

m

2
2b0

3

a3~nus!

p2
ln

mv2

mv
ln

mv2

m

2
1

3
b0

a3~nus!

p2
ln2

mv2

m
. ~27!

It is easy to identify the above terms~last equality! within a
diagrammatic picture. The first term is the standard Lam
shift correction one would find for the hydrogen atom a
corresponds to the diagrams of Fig. 4 of Ref.@12# without
any bubble insertion. The second term corresponds to
first diagram in Fig. 4 of Ref.@12#. The last term correspond
to the second diagram in Fig. 4 of Ref.@12#. Therefore, our
result seems to have the correct structure for theO(ma6ln2)
corrections. Let us now go deeper in the comparison w
Pachucki’s results. First, we can see that the last term of
~27! can reproduce the analogous Pachucki’s contribution
8-4
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settinga(nus)5aem andnus5me ~this result depends on th
two-loop muon form factor first computed in Ref.@20#!. For
the second term of Eq.~27!, the explicit comparison is a little
bit more involved. Nevertheless, it is possible to see that
first term in Eq.~39! of Ref. @12# gives the logarithms of the
second term in Eq.~27! since one can make the replaceme
~as far as the LL contribution is concerned!

VVP→2
Za~nus!

r F b0

2p
a~nus!ln

mv2

mv G ~28!

for VVP , as defined in Ref.@12#.1 The second term in Eq
~39! of Ref. @12# gives the logarithms due to expanding t
wavefunction at the origin;(ma)3 @which are naturally
written in terms ofa(n)] in terms ofaem. Therefore, we can
trace back all the logarithms of the computation in Ref.@12#.
This provides a check of our calculation to a level where
starts to first differ with what would be the VNRQED resu
Nevertheless, it may happen that, if the corrections of
VNRQCD results for the equal mass calculation are fina
confirmed, they may also explain the different result o
tained here.

1We note that for this diagram both loops factorize. Therefore,
sign of correlation of scales appears at this level of the computa
r,

06210
e

t

t

e
y
-

In conclusion, we have computed the energy spectrum
NNLL for a hydrogenlike system withnf massless fermions
We have checked our results atO(ma6ln2) by comparing
with results already available in the literature@12# for
muonic hydrogen and found agreement. We have also c
pared with what we would expect to be the result in t
VNRQED framework based on the rules of Ref.@19# and
found disagreement. Finally, we would like to mention th
the above results can be useful in checking higher-or
logarithms in computations of the spectrum for muonic
oms or alike where the electron can be considered to b
light particle.

Note added.Recently a paper appeared@21# where it was
pointed out that there was a systematic error in
VNRQCD computations to date and that the diagram F
20b in this reference should be included in such compu
tions. After its inclusion, the corrected 1/m2 potential ob-
tained in VNRQCD agrees with the 1/m2 potential obtained
in PNRQCD@1#, the replacementcD(n)→cD(n2/m) should
be done in Eq.~26! and the new result of VNRQED for the
muonic hydrogen spectrum agrees with our result.

We thank A. Hoang and specially J. Soto for discussio
We would also like to thank J. Soto for reading the man
script.
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