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Renormalization-group improvement of the spectrum of hydrogenlike atoms
with massless fermions
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We obtain the next-to-next-to-leading-logarithmic renormalization-group improvement of the spectrum of
hydrogenlike atoms with massless fermions by using potential NRQED. These results can also be applied to
the computation of the muonic hydrogen spectrum where we are able to reproduce some known double
logarithms atO(mag). We compare with other formalisms dealing with logarithmic resummation available in
the literature.
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In Ref.[1] (see also Refl2]), the renormalization-group tron (which we take to be massless for simplicity or, at most,
(RG) improvement of the heavy quarkonium spectrum forof O(ma?), wheremis the mass of the mugnin this situ-
the equal mass case was obtained within the potentiation, we are able to compare, in certain limits, with finite
NRQCD (PNRQCD formalism [3]. This result was com- O(ma®In?) results already available in the literatufe2].
pared with that of Ref[4] (see also Refd5,6]) obtained Our results agree with these calculations.
within the VNRQCD formalism[7] and disagreement was  The computation closely follows the procedure of Réf.
found. This disagreement is potentially important as it propato which we refer for details. Here we just write the main

gates to different observables, for examrﬂq’ production formulas necessary to set up the notation and the results.
near threshold, where it is claim¢f] that the resummation ~ The first step is to obtain the RG improved matching co-
of logarithms plays an important role. For instance, theefficients of the NRQED13] Lagrangian at one loop and up
matching coefficient of the electromagnetic current, which igto O(1/m?) [m is the mass of the massive lepttthe muon
a necessary ingredient in these calculations, is diff§@6}.  for the muonic hydrogerand the mass of the nucleus is sent
Nevertheless, for the known logarithms at next-to-next-to£0 infinity in this papet.
leading[10] and next-to-next-to-next-to-leading ordiirl], The NRQED Lagrangian including light fermions reads at
both calculations happen to agree with each other. O(1/m?) (up to field redefinitions[13-15

In order to try to clarify this issue, we consider the sim-
plified problem of a hydrogen-like system couplectdight
(massless fermions in QED. We then obtain the next-to- L=Ly+ L+ L,+ Lot Lyp, @
next-to-leading-logarithm{NNLL) RG scaling of the spec-
trum of this system. In principle, these results can be appliesvhereu is the Pauli spinor that annihilates the fermidd),
to muonic hydrogen. In this case, the electron is replaced bis the Pauli spinor that annihilates the nucleiBg=id,
the muonn;—1 and the remaining light fermion is the elec- —gA,, iD=iV +gA,

L,=—3F*F,,, (2
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whereiD)=idy+gZA and 2 4

LPNRQED: f d3Xd3XST(X,X,t)[ ID(S)_ Ckzp_m+C4%
L= 2 Wt NN+ & TN (6) !
Mp_mz'u“ M NpNp mz'u“ TNy Np - v @
-V 5 FOVax E(XD S X,
We have also included tH2*/m?® term above since it will be m
necessary in the evaluation of the spectrum once the power 1
counting is established. Moreover, we will consider that the —f d3XZFWF’”, 9

kinetic term matching coefficients are protected by reparam-
etrization invarianced,=c,=1) [16], however, we will of-
ten keep them explicit for tracking purposes.

By definition, NRQED has an ultraviolet cutoffyg
={vp,vs satisfying mv<vyg<m. v, is the ultraviolet
(UV) cutoff of the relative three-momentum of the heavy
fermion and antifermionyg is the UV cutoff of the three- We now display the structure of the matching potentials
momentum of the photons and light fermions. The derivation o 1 5 .

; - - V(O v and V@, which are the relevant ones to our
of the scale dependence of the matching coefficients Wlt%nal’ sis At order 1;10 we have the static potential
respect the UV cutoffs of the theory is identical to that in ysIS. ' P
Ref. [1]; in particular, the fact that no dependence 1gf N
appears at this order. In principle, the runningctfand c#! vO=_7"V (10)
could be deduced from the results of R¢f5,14] by taking r
care of the changes of the color structure. Since we are only
interested in the computation of the spectrum at NNLL ac-n principle, at order Ih, we may have a potential scaling as
curacy, their contribution will vanish at this order as far asV"/m~1/(mr). Nevertheless, it vanishes at the order we
the spectrum is concerned/( appears in the equation of, ~ are working with. It would give, at mosO(maG)- correc-
but the running of:’f' is zero at LL accurady Therefore, the tions to the spectrum in a f|n|t'e Ofde_r calculation and the
relevant RG equations in our case read running equations would not mix with it. Therefore, for the

purposes of this paper, we approximate
d a( 8 ﬁo )

2 |
—Cp=——| 5Ct 5 Cf
dy, P ml 37k 271

wherex and X, andp andP are the relative and center-of-
mass coordinate and momentum, respectively. All the gauge
fields in Eq.(9) are functions of the center-of-mass coordi-
nate and the timéonly. We have explicitly written only the
terms relevant to the analysis at the NNLL.

Vs (7) v(®)

——=0. (12)

and zero otherwise.
By taking the matching conditions at the scate ¢, At order 1m?, to the accuracy we aim a¢?) has the struc-

=cp=Cs=Cp=1 and{d}=0, we can obtain the solution of ture

the RG equations. We only explicitly display those that will

be necessary later ojwe definez=[a(vs)/a(m)]¥Po=1 v®  7zDp® 3zDR 1

—1/(27) a(v)IN(vsIm), Bo=—2Ten; with Te=1] — 58)(r)+ mzs SliS, (12

m? m?
CF( VS) = 1, . . .
whereS;= /2. In principle, one may consider more struc-
co(ve) =1, tures for the I? potential but, since they will not contribute
at the accuracy we aim at and in order to focus the problem
Colve)=1+%LInz, as much as possible, we will set them_ to zero in what fol-
lows, as we have done for thenl/fotential.
ds(ve)=0, The coefficient§/={aVS,Ds, ...} contain some In de-
pendence once higher order corrections to their lea@ing-
d,(vg)=0. 8 vanishing values are taken into account. In particular, we

will have expressions such @) (r)In"r. This is not a well-

The above results are a necessary step towards the Rd&fined distribution and should be understood as the Fourier
improvement of PNRQED with the matter content describedransform of If1/k. Nevertheless, in order to use the same
above, which we consider in what follows. PNRQCD is de-notation for all the matching coefficients, and since it will be
fined by the cutoffvpyr={vp, vy}, Wherewy, is the cutoff of  sufficient for the purposes of this paper, namely, to resum the
the relative three-momentum of the heavy fermions and iseading logarithms, we will use the expressiéf?)(r)In™,
such thatmv<v,<m, and v is the cutoff of the three- although it should always be understood in the sense given
momentum of the photons and light fermions withy? above.

<M. By studying the UV behavior of PNRQED it is possible to
The PNRQED Lagrangian reads as followi®2=ig,  obtain the scale dependence of the coefficients of the poten-
+9(Z—1)Ay): tials V. The discussion closely follows that of Réfl] to
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which we refer for details. Here we just mention the main Va(r H=1, (19
points. The potentials have the following structure:

where B;=—4Tgn; and the values of; and a, can be
easily obtained from the QCD resulfd7] by taking C;
—1,Cp—0 andTg—1.

We now have all the necessary ingredients to solve the

v(d(yp1VS!m)1C(VS!m)!VS!VUS!r)

=V(Vp,m,vus,r)

=V( Vo, Vug)- (13y  RG equations. The RG improved potentials read
In particular, any(vyd = any(r =),
d V=0 (14) 1
sy —V=VU. 8 a(r=—)
dv (2) —p@)p-1_ _— -1
s D™ (vud =Dg”(r ) 3ﬂoa(r )In( a(vus))
Moreover, at the accuracy we aim, at we also get 1
a(r ){1 16| (a(m))
d - - ~3g. M '
VpEV=0. (15 2 3Bo | a(vyy
P
(2) =—p@)r-1
Therefore, we obtain Dis(vu =Dis(r ). (20
V(vy, vy =V(vy (16)  This completes the RG evaluation of the PNRQED Lagrang-
ian at NNLL.
and we only have to compute thgs scale dependence. With the above results we can obtain the energy with

The v ¢sscale dependence could be obtained along th&INLL accuracy. The discussion goes similar to that in Ref.
same lines as in Refl]. We obtain in this specific case, [1]. All the large logarithms can be obtained from the poten-
tial terms. Once the potentials are introduced in the Schro
(17) dinger equation, the l/r) terms produce R{ma) terms
plus subleading contributiongn" *(ma), . ..] within the
LL resummation counting. The expectation value of the po-
tential terms iy sscale dependent. This scale dependence is

d a?
Vys;  Qg— — -,
USquS S B027T

d @) _ _ f a(vys)

vus— Dy’ = VacZa(r—1) ;
Uy @ 3 g Ak ' canceled by the ultraviolet scale dependence of ultrasoft
loops. The typical scale in these integrals is of the order
and zero for the other potentials. ma?. Therefore, the logarithms of the ultrasoft loops get

Equationg(14), (15), and(17) provide the complete set of minimized by settingr,«~ma? and all the large logarithms
RG equations at the desired order. By using Hdd) and  get encoded in the potential contributions. Finally, one ob-
(15), we obtain tains the following correction to the NNLO energy expres-

sion:
V=V(d(1/r,m),c(Llr,m),vs=1/r, vq,r). (18)

. L 2250 16 [a(vy
We now need the initial condition in order to solve the us RG  sgP%.(, )=E, o> [_ —In( ) —3(cp— 1)},
equations, i.e., the matching conditions. We fix the initial ) 3n Bo a
point at vys=1/r. In summary, we need to know the static (21
potential withO(a®) accuracy, the b potential withO(«?)
accuracy, the t? potentials withO(«e) accuracy, and/, ~ WhereE,=—mZ?a?/(2n?) and the scale’s in zand in the
with O(1) accuracy atys=1/r. For the nonvanishing po- NRQED matching coefficients has been fixed to the soft
tentials, they read scalevs=2a,*, wherea, *=mZ«(2a;)/n. « is also un-
derstood at the soft scalg= 2a,:1 unless the scale is speci-
fied. The v sscale dependence of ER1) cancels against
ve(4a189 contributions from us energies. Sinoea? is the next rel-
evant scale, their effective role will be to replagg by ma?
a2(rl)] (up to finite pieces that we are systematically neglegting

-1
av(r‘l):a(r_l)[ 1+(a1+ Z’YEB())%“F

? 5
= T4

+2B,)+ 3

2
Bot+as

ﬁ Eqg. (22). In particular, we take’, = —E,,. As expected, Eq.
6m (21) with vy= —E,, reproduces the well-known hydrogen-
like O(ma®In a) correction but, indeed, Eq21) gives all

-1
D@ (r 1= a(rfl)m, the O(ma*(aIn )" terms forn=1 of the spectrum of the
2 hydrogenlike systems with; massless fermions. After add-
. ing to Eq.(21) the NNLO result with the normalization point
D@ (r=1)= a(r )c (1) at thesamesoft scaleps=2a,*, that we have used here, the
LSs 3 : complete NNLL mass is obtained. Note that the above re-
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summation of logarithms also correctly accounts foiZIn
terms with the same accuracy.

We have seen that the large logarithms of the spectrum
can be obtained from the potential terms by setting 1/
~ma and v~ ma?. The velocity of the nonrelativistic par-
ticle is typically v ~Za. Therefore, it is interesting to con-
sider the scaling of the potentials with respecttas it will
help us to later compare with VNRQED results. In practice
we will consider its scaling with respect ic=muv (therefore
vu=v?/m), where

V(v ,m,vys,1) =V (m, vy, —V(m, v2/m, 1) =V (v).
(22)

We can now consider its derivative with respectWe will
just focus orD{? since it is the only one that has a nontrivial
running. We obtain

a(v

|

v In
dv

2
DP= 20 a3 T

a(v) ( V2
a .
m

8
~3 (23

o

Ys=

4

2 co(v)an),
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4 a(v V2
')’us:_g ;)a( ) (26)

m

This should be compared with the running in PNRQED ob-
tained above. If we do so, we find that E¢®5) and(24) are
different. If expanded iny, they first differ atO(a?In?a).

This produces a difference in the computation of the mass at
'O(ma®In?a). In order to perform an independent check, it
would be extremely important that corrections of this order
had been computed before. The closest system to the one
discussed here corresponds to the muonic hydrogen for
which, indeed, corrections to the energy at this order have
been computed by Pachudki2]. In order to compare our
results with his evaluation, we have to take the limit
—1. Moreover, for the real muonic hydrogen, the mass of
the light fermion(the electron in this cagés not negligible.
However, we can formally consider the situation~ ma?
(even if for the physical situatiom,~me is closer to real-

ity) in his and our calculation. For the matter of comparison,
in our case, this means that, for scales of the ordenoénd
ma?, we can use the low-energy electromagnetic coupling
aen=1/137 . ... This is indeed the parameter expansion
used in Pachucki’s calculation. A closer inspection shows
that the diagrams that give rise to the large logarithms com-

puted here correspond to the ones drawn in Fig. 4 in Ref.
It is remarkable that the above expression can be rearrang¢d?]. If we reexpand our result in terms ef,,= a(v,d, we

as

(24

There is an evaluatiof4] within the VNRQCD framework
[7] of the RG improved heavy quarkonium mass when
Aqcp< maﬁ. The evaluation performed within the
PNRQCD frameworl 1] disagreed with that evaluation. It
was noticed there that the disagreement still persisted if one
considered a QED-like limit with light fermions by taking
Ci—1, C,—0, andTg—1. Agreement was found for a
QED-like limit without light fermions by takingC;—1,
C,—0, n;—0, Te—1. Some errors seem to have been de-
tected in the first versions of these calculations in VNRQCD
[18], which may partially explain the difference, in particu-
lar, for the 1m? potential. In this case, agreement may exist
in the limit C;—1, C,—0, andTg—1.

For the evaluation performed in this paper, the computa-
tion of the spectrum for the case of hydrogen-like atoms with

obtain (up to the order of interest and with~ «)

2
@_ ) _aed [ = Po me o
8 a(v mv? 2 a(v,9)?
o[ Batng M2 2 fa(ng
3 = m 3 T
2
v
X In? — +
4 a?(v, mu?
T3 7 T m
2Bo a(vyd mMv? mu?
- — In In
3 2 mv  m

1 ad(vy 2 mo?
=B -
3 w2 m

(27)

massless fermions, there exists no analog within th js easy to identify the above ternflast equality within a
VNRQED framework. Nevertheless, it is possible to guessjiagrammatic picture. The first term is the standard Lamb-
what would be the result in that formulation by using the gt correction one would find for the hydrogen atom and
rules of Ref.[19], which relate the anomalous dimensions corresponds to the diagrams of Fig. 4 of REif2] without

computed here with the ones that should appear i
VNRQED. For the specific case &f{*), we obtain

ny bubble insertion. The second term corresponds to the
first diagram in Fig. 4 of Ref.12]. The last term corresponds

to the second diagram in Fig. 4 of R¢L.2]. Therefore, our

d
vaDgz)(VNRQED)= Vst 274, (25

result seems to have the correct structure for@ena®in?)
corrections. Let us now go deeper in the comparison with

where

Pachucki’'s results. First, we can see that the last term of Eq.
(27) can reproduce the analogous Pachucki’s contribution by
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settinga(v 9 = aem and v <= M, (this result depends on the In conclusion, we have computed the energy spectrum at
two-loop muon form factor first computed in RER0]). For  NNLL for a hydrogenlike system with; massless fermions.
the second term of E@27), the explicit comparison is a little We have checked our results @(ma®In?) by comparing
bit more involved. Nevertheless, it is possible to see that thevith results already available in the literatufd2] for
first term in Eq.(39) of Ref.[12] gives the logarithms of the muonic hydrogen and found agreement. We have also com-
second term in Eq27) since one can make the replacementpared with what we would expect to be the result in the
(as far as the LL contribution is concerned VNRQED framework based on the rules of RE9] and
Za(v [ By mo 2 found disagreement. Finally, we would like to mention that
—— | —a(vy)In— (28)  the above results can be useful in checking higher-order
r 2 mo . . . .
logarithms in computations of the spectrum for muonic at-
for Vyp, as defined in Ref{12].! The second term in Eq. Oms or alike where the electron can be considered to be a
(39) of Ref.[12] gives the logarithms due to expanding the light particle.
wavefunction at the origin~(ma)® [which are naturally Note addedRecently a paper appearg2il] where it was
written in terms ofa(v)] in terms ofa,n,. Therefore, we can pointed out that there was a systematic error in the
trace back all the logarithms of the computation in R&2].  VNRQCD computations to date and that the diagram Fig.
This provides a check of our calculation to a level where it20b in this reference should be included in such computa-
starts to first differ with what would be the VNRQED result. tions. After its inclusion, the correctedm? potential ob-
Nevertheless, it may happen that, if the corrections of theained in VNRQCD agrees with theriif potential obtained
VNRQCD results for the equal mass calculation are finallyin PNRQCD[1], the replacemenID(v)—>cD(v2/m) should
co_nfirmed, they may also explain the different result ob-pe done in Eq(26) and the new result of VNRQED for the
tained here. muonic hydrogen spectrum agrees with our result.

Vyp——
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