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Pairing in two-dimensional boson-fermion mixtures
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The possibilities of pairing in two-dimensional boson-fermion mixtures are carefully analyzed. It is shown
that the boson-induced attraction between two identical fermions dominates thep wave pairing at low density.
For a given fermion density, the pairing gap becomes maximal at a certain optimal boson concentration. The
conditions for observing pairing in current experiments are discussed.
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Since the first realization of a degenerate Fermi gas@1#,
the search for a BCS-like transition signature in ultrac
trapped gases of fermionic atoms has received a lot of at
tion both from theoretical and experimental points of vie
Already before the experimental achievement of Ref.@1#,
there had been suggestions on the possibility to observe
transition in a gas with two hyperfine components of6Li @2#.
The importance of the asymmetry in the populations of
two components was studied in Refs.@3,4#. Later on, the
influence of adding bosons and the presence of a B
Einstein condensate~BEC! on the transition temperature o
the Fermi gas was studied for a three-dimensional trap
Refs.@5–7#.

At the same time, the possibility to design the trap so a
produce effectively one- and two-dimensional systems
attracted much interest in theoretically describing@8–10# and
experimentally obtaining@11# such low-dimensional quan
tum systems, where correlations play generally a more
portant role than in their three-dimensional~3D! counter-
parts.

In this paper we discuss the principal features of pair
in a very dilute two-dimensional mixture of fermions an
bosons, characterized by their massesmF andmB ; densities
rF5kF

2/4p and rB ; and chemical potentialsmF'eF

5kF
2/2mF52prF /mF andmB . A fermion-boson mixture is

an experimentally relevant situation, because at low den
and temperature the most important contribution to the s
tering amplitude is due tos-wave collisions which, in the
case of spin-polarized fermions, are forbidden by Pau
principle. As a consequence, it is difficult to cool a sample
spin-polarized fermionic atoms to reach the temperatu
needed to observe quantum degeneracy. This problem
be overcome by sympathetically cooling the fermions with
gas of bosons, so that the fermions cool down by interac
with the bosons@12–14#.

We assume in the following the idealized zer
temperature case. The energy gaps characterizing the pa
can always be converted into critical temperatures by mu
plying with the factorg/p'0.567 as in three dimension
@15#. We also assumemB!mF , which will be justified later.

Pairing in two dimensions has the peculiar feature th
for an attractives-wave interaction between two differen
fermionic species, a bound state~of binding energyEb) is
1050-2947/2004/69~2!/023606~5!/$22.50 69 0236
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always present and therefore the system enters the str
coupling regime at sufficiently low density@9,16–18#, form-
ing a Bose condensate of fermion pairs characterized by

mF→eF2Eb/2, ~1a!

D0→A2EbeF, ~1b!

whereD0 is thes-wave pairing gap. This strong pairing con
trasts with the 3D weak-coupling behavior, where the g
vanishes exponentially withkF→0. Moreover, the strong-
coupling situation implies that the pairing gap is quite inse
sitive to an asymmetry in the population of the two spec
@19#, contrary to the 3D case, where even a minute exces
particles of one species reduces considerably the gap
due to the effects of Pauli blocking in the gap equati
@4,20#.

We therefore exclude in the following this ‘‘trivial’’ case
and focus on the situation wheres-wave pairing is not pos-
sible, either due to a repulsives-wave interaction, or when
treating a system of identical~spin-polarized! fermions. The
next possibility concerns thep-wave pairing gap,D1
[DL51(kF), which in the low-density limit is given by the
weak-coupling result@18#

D1

mF
5c1expF2

2p

mFTF
G , ~2!

wherec1 is a constant of order unity and

TF5TkFkF

(L51)~2mF!5E
0

pdf

p
cosf^k8uT~2mF!uk&,

uku5uk8u5kF , cosf5 k̂8• k̂ ~3!

is the relevantT-matrix element of the interaction.
We now analyze the pairing force mediated by the s

rounding bosons. Assuming for the moment that a dir
fermion-fermion interaction is absent, the relevant inter
tion to leading order in density, to be used in Eq.~2!, is TF
5GF , whereGF is the boson-mediated irreducible polariz
tion interaction, schematically represented in Fig. 1. With
the range of the weak-coupling formula, it is sufficient
consider incoming and outgoing fermions on the Fermi s
©2004 The American Physical Society06-1
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face and on their energy shell, cf. Eq.~3!. Therefore, the
energy transfer from one fermion to the other vanishesv
50. For the time being we assume for simplicity boso
fermion (BF) and boson-boson (BB) T matrices that can be
considered constant in the low-density limit, as in the thr
dimensional case. In two dimensions this is, however,
anymore true@21,22#, and the correct treatment will be dis
cussed further below.

With this assumption, the relevant interaction kernel re
at low density@7#

^k8uGFuk&5TBF
2 PB* ~ uk82ku!, ~4!

with the bosonic RPA propagator

PB* ~q!5
PB~q!

12TBBPB~q!
~5!

and the bosonic static Lindhard function

PB~q!52
4mBrB

q2 . ~6!

We have neglected the influence of the fermions on the p
erties of the Bose condensate. We remark at this point
due to the 1/q2 dependence of the two-dimensional Lindha
function, the RPA has necessarily to be performed in orde
avoid divergencies. The situation is similar to the electr
gas where, however, the interaction is singular.

Projecting out theL51 partial-waveFF interaction, one
obtains in particular

GkFkF

(L51)5TBF
2 E

0

pdf

p
cosfPB* @q5A2~12cosf!kF#

52TBF
2 x

TBB
E

0

pdf

p

cosf

x112cosf
52

TBF
2

TBB
g~x!,

x5
2mBTBBrB

kF
2

5
mBTBB

2p

rB

rF
, ~7!

with

FIG. 1. ~a! Polarization interactionG between two fermions
~dashed lines! mediated by the presence of bosons~solid lines!. The
labels indicate the momentum and energy of each line. For con
sate bosons and fermions on the Fermi surface,h50,v50.
~b! Diagrams contributing to the boson bubble in RPA; the last o
is an example of a backward-going diagram, negligible whenmB

→0. Here, thick solid lines are full propagators, thin solid lines a
free propagators, and wiggles represent interactions.
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g~x!5
11x

A112/x
2x. ~8!

This function is plotted in Fig. 2. It has a maximum locat
at (x5A221'0.414,g5322A2'0.172), and can in its
vicinity be approximated by a parabola, as shown by
dashed line in the figure. This translates into a sharp Ga
ian peak for the gap function, according to Eq.~2!.

Therefore, when increasing the boson density for fix
rF , the induced fermionic attraction and thus also the p
ing gap would reach a maximum for

rB

rF
5

0.41432p

mBTBB
. ~9!

However, in two dimensions the (s-wave! scattering matri-
cesTBF andTBB cannot be considered constant, but van
logarithmically with the center-of-mass system~c.m.s.! en-
ergy E of the two-particle state@21,22#, i.e.,

^k8uT~P50,E→0!uk&→
2p

m

1

ln~E0 /uEu!
, ~10!

wherem is the reduced mass of the colliding particles a
E0@E is a parameter~with dimensions of energy! character-
izing low-energy scattering. Therefore, it is necessary
evaluate the c.m.s. energyE25PmPm for the following situ-
ations~sketched in Fig. 3!:

n-

e

FIG. 2. The functiong appearing in Eq.~8! ~solid line!, together
with the parabolic approximation~dashed line! around its maximum
~indicated by the dotted vertical line!.

FIG. 3. Possible collision events in the mixture, according to E
~11!. Dashed lines denote fermions, solid lines bosons, and wig
represent interactions. The labels indicate the momentum and
ergy of each particle.
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^~k8,mF!~q,0!uTBFu~k,mF!~0,0!& : E5
kF

2

2mF

mBF

mF
, ~11a!

^~0,0!~q,0!uTBBu~q,0!~0,0!& : E52
q2

4mB
, ~11b!

^~1q,0!~2q,0!uTBBu~0,0!~0,0!& : E50, ~11c!

with mBF5mBmF /(mB1mF) the BF reduced mass. There
fore, within the approximationmB50 ~or more precisely
mB!mF), only forward-going polarization diagrams@see
Fig. 1~b!# contribute to the inducedFF interaction. This can
be taken into account by replacingTBBPB(q)
→TBB(q)PB(q)/2 in Eq. ~5!, where now

TBB~q!5
4p

mB

1

ln~4mBEBB /q2!
. ~12!

Also, the relevant boson-fermion interaction becomes

TBF~kF!5
2p

mBF

1

ln~2mF
2EBF /mBFkF

2 !
. ~13!

Here EBF and EBB are the parameters characterizing lo
energys-waveBF andBB scattering, respectively.

We obtain then

GkFkF

(L51)52
mBTBF

2 ~kF!

2p
h~x,y!,

h~x,y!5E
0

pdf

p

cosf

~12cosf!/x21/ln@~12cosf!/y#
,

x5
4prB

kF
2 5

rB

rF
, y5

mBEBB

mFmF
, ~14!

with the conditiony@1 for Eq. ~12! to be valid.
Varying the boson density~i.e., x) for a constant fermion

density (y), one observes again a maximum at a certain ra
xopt(y). The optimal ratioxopt as well as the correspondin
value hopt are plotted in Fig. 4 as functions ofy. At suffi-
ciently largey one obtains a quasilinear dependence on ly:

xopt~y!→0.414~3.01 ln y!, ~15a!

hopt~y!→0.172~3.71 ln y!. ~15b!

We remark that in fact the optimal ratioxopt corresponds to
the one for a constantTBB , Eq. ~9!, when making the re-
placement

TBB→
TBB~q50.317kF!

2
. ~16!

Thus position and value of the maximum depend logarith
cally on the Fermi momentum. Taking all these facts in
account, the value of the pairing gap under optimal con
tions becomes
02360
io

i-

i-

ln
D1

c1mF
→2

mBF
2

mBmF

@ ln~mFEBF /mBFmF!#2

0.172@3.71 ln y#
. ~17!

The induced interaction, Eq.~14!, is to be compared with the
direct low-densityp-wave fermion-fermion interaction@18#,

TkFkF

(L51)~2mF!'
4

mF

mF

E1
;rF , ~18!

where E1 is the parameter characterizing 2D low-dens
p-wave scattering. Therefore, at sufficiently low fermio
density, the boson-mediated attraction, Eqs.~14! and ~15!,
becomes dominant, since it depends only logarithmically
the fermion density. For the same reason, any fermionic
larization corrections have also been neglected.

We analyze finally the assumptionmB!mF that was made
beforehand. The boson chemical potential is determined
@23,24#

mB5rBTBB~E5amB!5
4prB

mB

1

ln~EBB /amB!
!mF5

2prF

mF
,

~19!

wherea is of order unity@28#. Since the logarithm in the
low-density domain is always large, we have the sufficie
condition

x5rB /rF&mB /mF . ~20!

In order to estimate typical sizes of the expected gap,
plot in Fig. 5 the gapD1 /mF , according to Eq.~17!, as a
function of the ratiosmF /EBB and mF /EBF ~assuming for

FIG. 4. The optimal valuesxopt andhopt for the pairing interac-
tion, Eq. ~14!. The dashed lines indicate the asymptotic behav
Eq. ~15!.
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MUR-PETIT et al. PHYSICAL REVIEW A 69, 023606 ~2004!
simplicity c151 andmF5mB). One notes that it is mainly
the ratiomF /EBF that determines the gap, whereas the
pendence onmF /EBB is relatively weak. Thus with fermion
chemical potentialsmF&EBF quite large gapsD1&mF could
be achieved.

In order to translate this condition into experimental qua
tities, we use the results of Refs.@8,24#, relating the 2D scat-
tering parameterEBF to the value of the 3D scattering leng
aBF , for a boson-fermion system confined in a strongly a
isotropic trap characterized by frequenciesv' andvz ~here
supposed to be the same for bosons and fermions!, obtaining

mF

EBF
5

p

B

mF

vz
expS 2A2p

l z

aBF
D , ~21!

whereB'0.915 andl z51/A2mBFvz. Since at the same tim
for a 2D situation the conditionmF!vz must be fulfilled,
one can only expect observable gaps if the exponential t
is not too small. One can now distinguish two cases.

~i! aBF.0. In this case the ratiol z /aBF should be mini-
mized as much as possible, i.e., for extremely stron
z-compressed traps, or for systems with a very large BF s
tering length~Feshbach resonance!.

~ii ! aBF,0. In this case the exponential term is nev
small and observable pairing can be expected provided
ratio mF /vz is not too small. Using the Thomas-Fermi a
proximation mF5A2NFv' for the chemical potential of a
two-dimensional Fermi gas in a~in-plane! harmonic trap of
frequencyv' , this last condition can be expressed by mea
of the fermion number and the trap asymmetry:

mF

vz
5

v'

vz
A2NF. ~22!

Thus under favorable circumstances quite largep-wave pair-
ing gaps of the order of the Fermi energy seem to be ach
able, comparable to those ofs-wave pairing in quasi-2D two-
component Fermi gases@9#. Unfortunately, more precise
quantitative predictions cannot be made in this regime, si
with mF'EBF ,EBB also the asymptotic expression Eq.~10!
becomes invalid. It is worth noticing that the same effect

FIG. 5. The pairing gap for optimal boson concentration, E
~17!, as a function of the fermion chemical potential.
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three dimensions is less effective in increasing the size of
gap, and one expectsD1 /mF<0.1 @5#.

Finally, we consider the problem of the phase stability
boson-fermion mixtures, which has been faced by differ
authors@6,25,26# that reach similar conclusions. This prob
lem has been studied for homogeneous as well as for trap
systems, but always in three dimensions, where the theo
ical description is somehow easier than in two dimensio
because of the different behavior of the correspondingT ma-
trices at low energy. Here we briefly discuss the implicatio
from the previous studies@6,25,26# that can be applied to ou
case, but a more precise analysis would be of high inter

According to Ref.@6#, in a boson-fermion mixture one
can expect to find one of three situations:~i! a fermionic
phase and a bosonic phase,~ii ! a fermionic phase and a
boson-fermion mixture, and~iii ! a single uniform mixture. In
case~i! there is no boson-fermion induced interaction and
sympathetic cooling. In case~ii ! these problems are over
come, but only a fraction of the fermions is efficiently coole
and can undergo the superfluid transition. Therefore, the
teresting situation is that of case~iii !. This can be obtained if
there is attraction between bosons and fermions~to avoid
their spatial separation!, but in this case the system may co
lapse due to this same attraction@25#. This will happen if,
e.g., the number of bosons exceeds some critical num
Ncr , which will depend onaBB and aBF . For a uniform
system, we know thataBB.0 is required in order to avoid
the collapse of the boson component. This also stabili
significantly the mixtures@25#, even for aBF,0. As ex-
pected, the caseaBF.0 rapidly gives rise to spatial separa
tion of the two gases@25#.

Applying these arguments to the mixtures used in typi
experiments, we see that the case7Li-6Li ~where the as-
sumptionmB5mF is more adequate! with aBB521.5 nm
and aBF52.2 nm @13# does not correspond to the optim
stability conditions. However, the presence of the trapp
stabilizes the system so that experiments can be perform
On the other hand, for the87Rb-40K mixture, whereaBB
55.2 nm @14# and aBF522.2 nm @27#, the stability condi-
tions for the homogeneous case are fully satisfied.

In conclusion, we have studied the characteristics
p-wave pairing in a two-dimensional boson-fermion mixtu
with repulsive~or absent! FF s-wave interaction. The boson
induced attraction between two fermions dominates at
density an eventual directFF p-wave force. The induced
pairing gap becomes maximal at a certain optimal bos
fermion ratio. In contrast to the three-dimensional case,
ratio itself increases when decreasing the fermion dens
due to the logarithmic energy dependence of theBB Tmatrix
at low density. Using this optimal condition, we have es
mated the size of the gap and find experimentally achieva
values, in particular for systems with a negative boso
fermion scattering length such as the87Rb-40K mixture.
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