
K-Rb Fermi-Bose mixtures: Vortex states and sag

D. M. Jezek
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, RA-1428 Buenos Aires, Argentina

and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

M. Barranco, M. Guilleumas, R. Mayol, and M. Pi
Departament d’Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, E-08028 Barcelona, Spain

(Received 3 May 2004; published 29 October 2004)

We study a confined mixture of bosons and fermions in the quantal degeneracy regime with attractive
boson-fermion interaction. We discuss the effect that the presence of vortical states and the displacement of the
trapping potentials may have on mixtures near collapse, and investigate the phase stability diagram of the K-Rb
mixture in the mean-field approximation supposing in one case that the trapping potentials felt by bosons and
fermions are shifted from each other, as it happens in the presence of a gravitational sag, and in another case,
assuming that the Bose condensate sustains a vortex state. In both cases, we have obtained an analytical
expression for the fermion effective potential when the Bose condensate is in the Thomas-Fermi regime, that
can be used to determine the maxima of the Fermionic density. We have numerically checked that the values
one obtains for the location of these maxima using the analytical formulas remain valid up to the critical boson
and fermion numbers, above which the mixture collapses.
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I. INTRODUCTION

Recent experiments on degenerate Fermi-Bose mixtures
have opened the possibility of studying in a direct way the
effect of quantum statistics in Bose-Einstein condensates
(BEC’s). In practice, the direct evaporative cooling tech-
niques used to obtain BEC’s are not applicable in a Fermi
gas, as the Pauli exclusion principle forbidss-wave collisions
between fermions. This difficulty has been overcome using a
gas of bosons as a coolant, which has given further relevance
to the study of these mixtures.

One of the systems studied in recent experiments is the
6Li- 7Li mixture [1,2]. It is characterized by having a positive
boson-fermion scattering length an order of magnitude larger
than the boson-boson one[2]. Due to this repulsive boson-
fermion interaction, the system does not exhibit a large over-
lap between the two species[3]. Moreover, this mixture may
undergo a two-component separation[3,4]. Both facts con-
spire against having the fermions well inside the boson
cloud, which is desirable to obtain an efficient sympathetic
cooling. In contrast, this desirable overlap can be achieved in
40K-87Rb mixtures due to the large attractive boson-fermion
interaction. This mixture has been recently obtained[5–7],
and it has been shown that if the particle numbers are above
some critical values the system collapses[7].

From a theoretical point of view, a fairly amount of work
has been devoted to the study of boson-fermion mixtures
[3,8,9]. In particular, a systematic study of the structure of
binary mixtures has been performed in Ref.[3], where all
possible sign combinations of scattering lengths between
boson-boson and boson-fermions-wave interactions have
been discussed. The purpose of our work is, first, to present
an analysis of the location of the minima of the effective
potential felt by fermions submitted to a large number of
condensate bosons when the boson-boson interaction is re-
pulsive, and second, to extend this study to systems with a

large number of fermions with an attractive boson-fermion
interaction.

An essential characteristic of superfluid systems is the oc-
currence of quantized vortices[10]. Quantized vortices in
BEC’s were produced experimentally by Matthewset al.
[11], and have been studied since in detail(see Refs.[12–14]
and references therein). It may thus be interesting to see what
is the physical appearance of such vortices, arising in the
Bosonic component, in the presence of a Fermionic cloud
which is in the normal(nonsuperfluid) but quantum degen-
erate phase. This is another aim of our work, which bears
some similarities with the description of quantized vortices
in 3He-4He nanodroplets recently addressed[15].

This work is organized as follows. In Sec. II we describe
the mean-field model we have used. In Sec. III we present an
analysis of the effective potential felt by the fermions when
they are inside a large condensate that exhibits a boson-
boson repulsive interaction, and the number of fermionssNFd
is much smaller than the number of bosonssNBd. We shall
consider the case in which the boson and fermion external
confining potentials are displaced from each other, which
may be caused by gravity for instance, and also when bosons
are in a vortical state. In Sec. IV we present the results ob-
tained by solving the mean-field coupled equations for dif-
ferentNB andNF values up to the critical values where col-
lapse of the mixture occurs. A summary is given in Sec. V.
Finally, in the Appendix we derive some expressions using a
scaling transformation which, on the one hand, constitute a
generalization of the virial theorem, and on the other hand
are especially useful for testing the accuracy of the numerical
procedure.

II. MEAN-FIELD MODEL

We consider a mixture of a Bose condensate(B) and a
degenerate Fermi gas(F) at zero temperature confined in an
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axially symmetric harmonic trap. Assuming that the mini-
mum of the trapping potential felt by each species may be
displaced in thez direction in a valuedi si =B,Fd, the con-
fining potentials in cylindrical coordinates are

VB = 1
2MBfvrB

2 r2 + vzB
2 sz− dBd2g s1d

and

VF = 1
2MFfvrF

2 r2 + vzF
2 sz− dFd2g, s2d

wherevrB, vzB and vrF, vzF are the trapping radial(axial)
angular frequencies for bosons and fermions, respectively.
MB andMF are the corresponding masses.

Since the number of fermions we consider in the numeri-
cal calculations is fairly large, the Fermionic kinetic energy
density can be written in the Thomas-Fermi-Weizsäcker
(TFW) approximation as a function of the local fermion den-
sity nF and its gradients. For fully polarized spin-1/2 fermi-
ons, it reads

tFsrWd = 3
5s6p2d2/3nF

5/3 + b
s¹nFd2

nF
s3d

and the Fermionic kinetic energy is

TF =
"2

2MF
E drWtFsrWd. s4d

The value of theb coefficient in the Weizsäcker term is fixed
to 1/18. This term contributes little to the kinetic energy, and
it is usually neglected[3]. However, its inclusion[16] has
some advantages; see below. We refer the interested reader to
Ref. [17] for a discussion on the accuracy of the TFW ap-
proximation(see also references therein).

Neglecting all p-wave interactions, the energy density
functional for the boson-fermion mixture at zero temperature
has the form

EsrWd =
"2

2MB
u ¹ Cu2 + VBnB + 1

2gBBnB
2 + gBFnFnB +

"2

2MF
tF

+ VFnF, s5d

wherenB= uCu2 is the local boson atomic density. The boson-
boson and boson-fermion coupling constantsgBB andgBF are
written in terms of thes-wave scattering lengthsaB andaBF
as gBB=4paB"2/MB and gBF=4paBF"2/MBF, respectively.
We have definedMBF;2MBMF / sMB+MFd.

When bosons sustain a quantized vortex line along thez
axis, the condensate wave function can be written asC
= uCueimf, where m=1,2,3. . . is thecirculation number,
yielding for the kinetic energy density

"2

2MB
u ¹ Cu2 =

"2

2MB
s¹ uCud2 +

"2m2

2MB

nB

r2 . s6d

We have considered only singly quantized vortices, that is
m=1. If a vortex is present in the condensate, bosons flow
around the vortex core with quantized circulation, which
yields the centrifugal term in the kinetic energy. We assume
that the Fermi component is not superfluid, and consider that
it is in a stationary state. This situation could be achieved
experimentally waiting enough time after the generation of

the vortex in the condensate, to let the drag force between
bosons and fermions to dissipate.

Variation of E with respect toC andnF keepingNB and
NF fixed yields the following coupled Euler-Lagrange(EL)
equations

S−
"2¹2

2MB
+ VB +

"2m2

2MB

1

r2 + gBBnB + gBFnFDC = mBC,

s7d

"2

2MF
Ss6p2d2/3nF

5/3 + b
s¹nFd2

nF
− 2bDnFD + VFnF + gBFnBnF

= mFnF, s8d

wheremB andmF are the boson and fermion chemical poten-
tials, respectively. Then, the ground statesm=0d or a vortical
state sm=1d are obtained by solving the Gross-Pitaevskii
(GP) equation for bosons[Eq. (7)] coupled to the Thomas-
Fermi-Weizsäcker equation for fermions[Eq. (8)].

The inclusion of the Weizsäcker term in the energy den-
sity has the major advantage that it yields a EL equation for
nF that is well behaved everywhere, avoiding the classical
turning point problem when this term is neglected(Thomas-
Fermi approximation). Moreover, solving Eq.(8) is not more
complicated than solving the GP equation. This can be
readily seen writing the latter in terms ofnB:

"2

2MB
S1

4

s¹nBd2

nB
−

1

2
DnBD + VBnB +

"2m2

2MB

nB

r2 + gBBnB
2

+ gBFnBnF = mBnB, s9d

which is formally equivalent to Eq.(8). We have discretized
these equations using nine-point formulas and have solved
them on a two-dimensional(2D) sr ,zd mesh using a suffi-
ciently large box. The results have been tested for different
sizes of the spatial steps(we have mostly usedDr =Dz
,0.1 mm). We have employed the imaginary time method to
find the solution of these coupled equations written as imagi-
nary time diffusion equations[18]. After every imaginary
time step, the densities are normalized to the corresponding
particle numbers. To start the iteration procedure we have
used positive random numbers to build both normalized den-
sities. This avoids to introduce any bias in the final results.
We have also checked that the solutions fulfill the general-
ized virial theorem deduced in the Appendix.

III. EFFECTIVE FERMION POTENTIAL

Before we present the numerical results obtained by solv-
ing Eqs.(8) and(9), it is useful to analyze the features of the
effective potential felt by a small number of fermions in the
presence of a boson condensate, paying special attention to
the location of its minima. We are interested in studying the
cases in which either the condensate hosts a vortex line or
there exists a displacement between the minima of the boson
and fermion external potentials. The latter situation is rou-
tinely met in the experiments—a gravitational sag in thez
direction—in which case the displacement isgs1/vzF

2

−1/vzB
2 d, beingg the acceleration of gravity.
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An interesting issue is that the analytic expressions we
obtain in this section for the location of the minimum of the
effective potentials remain valid, as we will show in the next
section, when the number of fermions and bosons are similar.
These locations coincide with the positions of the maxima of
the fermion density and are relevant because the collapse of
the mixture originates precisely around them. This will be
discussed in the next section.

The effective fermion potential has two main terms, the
external potential and the mean-field term arising from the
interaction with the boson condensate, which is proportional
to nB. We consider a large condensate in the Thomas-Fermi
(TF) regime with positive scattering length and we assume
that its density profile is not affected by the fermion pres-
ence. To obtainnB we may thus use Eq.(7) with nF=0 and
neglect the first kinetic energy term.

A. Effect of a shift in the minimum of the external potentials

For simplicity, we restrict ourselves to the vortex-free
casem=0. Without loss of generality, the origin of coordi-
nates can be fixed at the minimum of the boson trapping
potential, and we will assume that the displacement is only in
the z direction. Thus the effective trapping potential experi-
enced by the fermions is

Vd
eff = 1

2MFfvrF
2 r2 + vzF

2 sz− dzd2g + gBFnB, s10d

wheredz=dF−dB is thez displacement between the trapping
potential centers. Assuming that the density profile of the
condensate is not affected by the interaction with fermions,
the number of bosons is large, and that the interaction be-
tween bosons is repulsivesgBB.0d, one obtains from Eq.(7)
settingm=0 the boson density profile that corresponds to the
uncoupled TF density

nB =
1

gBB
smB − 1

2MBsvrB
2 r2 + vzB

2 z2ddQsmB − 1
2MBsvrB

2 r2

+ vzB
2 z2dd , s11d

with Qsxd=1 if x.0 and zero otherwise. The TF condensate
boundary is given by the ellipsoid argsQd=0. For an axially
symmetric trap it yields the well-known TF radius of the
condensateRi =Î2mB/ sMBviB

2 d with i =r, z in the radial and
axial direction, respectively. ReplacingnB into Eq. (10) and
defining the dimensionless parameter

gi ; 1 −
aBFMB

2viB
2

aBMBFMFviF
2 s12d

with i =r, z, it follows that the effective fermion potential
inside the Bose condensate—wherenB [Eq. (11)] is
positive—is

Vd
eff = 1

2MFfgrvrF
2 r2 + gzvzF

2 sz− dz/gzd2g + 1
2MFvzF

2 dz
2s1

− gz
−1d +

gBF

gBB
mB, s13d

whereas outside the condensate

Vd
eff = 1

2MFfvrF
2 r2 + vzF

2 sz− dzd2g. s14d

This effective potential can be viewed as having a renormal-
ized frequency inside the boson condensate, a feature already
discussed in Ref.[9] for a mixture with concentric external
potentials. This model has been called the double-parabola
model by Vichi et al. [9], and it has also been used by
Capuzzi and Hernández[19]. However, in these works the
possibility of a displacement between the minima of the po-
tentials has not been considered.

The extremum ofVd
ef f inside the Bose condensate is at-

tained at the point

dW8 = sdx8,dy8,dz8d = s0,0,gz
−1dzd. s15d

Note that if the shift between the external potentials isdW

=sdx,dy,dzd, the effective potential has its extremum atdW8

=sgx
−1dx,gy

−1dy,gz
−1dzd. Depending on the signs ofgi, dW8 may

correspond to a maximum, a minimum or a saddle point.
If the boson-fermion interaction is attractivesgBF,0d as

for 40K-87Rb mixtures,gi .1 and the pointdW8 is a minimum.

Depending on the positions ofdW and dW8 with respect to the
ellipsoid argsQd=0, with the argument ofQ taken from Eq.

(11), there are three possibilities:(i) If dW is inside this ellip-

soid, fermions view only one minimum atdW8; (ii ) If dW is

outside anddW8 is inside, there are two minima atdW and dW8;
(iii ) If both points are outside the ellipsoid, there is only one

minimum atdW.

B. Vortices

We consider now the effect of a quantized boson vortex
line in the fermion distribution, without gravitational sag. In
this case, the effective fermion potential is

Vv
eff = VF + gBFnB

v = 1
2MFsvrF

2 r2 + vzF
2 z2d + gBFnB

v , s16d

wherenB
v is the boson density hosting a vortex line along the

z axis. This density is zero atr =0, and reaches its maximum
value on a circle of radiusr0 around that axis. In the TF
approximation,nB

v can be derived using Eq.(7) keeping the
centrifugal term proportional tom, and may be approxi-
mately written as[12]

nB
v =

1

gBB
SmB −

"2m2

2MB

1

r2 − VBDQSmB −
"2m2

2MB

1

r2 − VBD
s17d

with r0=Î"m/ sMBvrBd. UsingnB
v we calculate the minimum

of Vv
eff inside the condensate, which is located atz8=0 and

r8 = s1 − gr
−1d1/4Î "m

MBvrB
= s1 − gr

−1d1/4r0. s18d

Thus the minimum is attained at a circle of radiusr8. We will
see that for the40K-87Rb mixture r8 is very close to the
radius at which the boson density has its maximum.
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IV. NUMERICAL RESULTS

The system under consideration is a confined40K-87Rb
mixture. We have assumed spherically symmetric traps for
bosons and fermions, with trap frequenciesvB=2p
3100 Hz andvF=ÎMB/MFvB. When a displacementdz is
introduced between the minima of the external potentials, the
mixture has only axial symmetry around thez axis. We have
numerically solved Eqs.(8) and (9) using the set of scatter-
ing lengths reported by Modugnoet al. [7], namely aB
=98.98a0, and aBF=−395a0, being a0 the Bohr radius. The
dimensionless parameters introduced in Eq.(12) are gz

−1

=gr
−1=0.136, ands1−gr

−1d1/4=0.964[Eq. (18)].
We display in Fig. 1 several boson and fermion density

profiles as a function ofz, considering an arbitrary displace-
ment dz=10 mm. They all correspond toNB=105, but for
three different fermion numbers:NF=0, NF=103, and NF
=2.53104. The attractive boson-fermion interaction pro-
duces an enhancement of the density of both species in the
overlap volume. However, this effect is reduced with respect
to the concentric case due toz displacement[7].

Using the TF approximation, the radius of the Bose con-
densate can be estimated asRB=s15NBaB/aHOd1/5aHO, with
aHO=Î" /MBvB being the oscillator length of the boson trap;
this yieldsRB,6 mm. Following the analysis performed in
Sec. III A, and using gz

−1=0.136, we find that dz8
=1.36mm,RB; thus within that model there are two minima

in the effective fermion potential. One is atdW =10 smmdẑ,
i.e., beyond the TF radius, and the other is inside the boson

cloud, atdW8=1.36smmdẑ. It is interesting to note from Fig. 1
that in all cases, the maxima of the fermion density are pre-
cisely at z=dz8 and z=dz, which we have displayed in the
inset as vertical lines.

We thus see that forNF /NB equal to 1%(solid line) or
even 25%(dashed line), the maxima of the fermion density
appear at the values obtained using the model of Sec. III A.
This can be understood by solving Eqs.(7) and (8) with m
=0 (i.e., no vortex), without neglecting the effect of fermions

in the GP equation as it was done in the simplified model of
Sec. III, and assuming that all the gradient terms in both
equations can be neglected. This assumption is justified for
the number of bosons and fermions we have used: in the case
of bosons, this is what the TF approximation is about, and in
the case of fermions, the gradient term is a correction to the
leading term proportional tonF

5/3. Using Eq.(7), we obtain
the following expression fornB:

nB =
1

gBB
smB − VB − gBFnFd. s19d

Replacing it into Eq.(8) and deriving the resulting expres-
sion with respect toz we get

1

3

"2

MF
s6p2d2/3nF

−1/3]nF

]z
−

gBF

gBB
MBvzB

2 z+ MFvzF
2 sz− dzd

−
gBF

2

gBB

]nF

]z
= 0. s20d

The extremum of the fermion density is found by setting
]nF /]z=0, with nFÞ0. After some algebra we find that the
following equation has to be fulfilled:

MFvzF
2 sgzz− dzd = 0, s21d

whose solution coincides precisely with the valuez=dz8 we
have found in the previous section.

Whereas the maximum of the fermion density is located
at z=dz8 irrespective of the value of the dilutionsNF /NBd, it
can be seen from the numerical results that the maximum of
the boson density moves fromz=0 towardsz=dz8 asNF in-
creases. In fact, Fig. 1 shows that even for a rather smallNF
value(NF=103, NB=105), the shape of the condensate differs
from the parabolic-type profile yielded by the TF approxima-
tion for a fermion-free condensate, Eq.(11). It can be also
appreciated in the inset that for a dilution ofNF /NB=25%, a
fairly large number of fermions remains without mixing
(long tail in the fermion density profile outside the Bose
condensate).

We plot in Fig. 2 several density profiles for configura-
tions hosting a singly quantized vortex line in the case of no
displacement between the trapping potentials. We have taken
NB=105, and have considered three different fermion num-
bers,NF=0, 103, and 1.53104. WhenNF=0, the maximum
of the Bosonic density is located in thez=0 plane, in a circle
of r0=1.13-mm radius marked with a vertical line in the
graph. Fermions are peaked aroundr8=0.96r0, as we have
obtained using the simplified model of Sec. III B withs1
−gr

−1d1/4=0.964.
It may be seen that in the presence of a quantized vortex,

the position of the maximum of boson and fermion densities
are very close irrespective of the dilutionNF /NB. It is inter-
esting to note that increasingNF at constantNB, the fermion
and boson density profiles become sharper due to their mu-
tual attraction, eventually collapsing for a critical number of
atoms.

FIG. 1. Boson and fermion density profiles of40K-87Rb mix-
tures as a function ofz for a dz=10-mm displacement. The different
lines correspond to the profiles forNB=105 and severalNF values:
NF=0 (dotted line); NF=103 (solid lines); NF=2.53104 (dashed
lines). The inset shows a magnified view of the fermion density
distributions.
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Following a procedure analogous to that used before, we
can justify the position of the maximum of the fermion den-
sity in the presence of a vortex in a TF condensate. From Eq.
(7) we obtain

nB =
1

gBB
SmB − VB −

"2m2

2MB

1

r2 − gBFnFD . s22d

Replacing it into Eq.(8) and deriving the resulting expres-
sion with respect tor we get

1

3

"2

MF
s6p2d2/3nF

−1/3]nF

]r
−

gBF

gBB
MBvrB

2 r + MFvrF
2 r +

"2m2

MB

1

r3

−
gBF

2

gBB

]nF

]r
= 0. s23d

Once again, the extremum in the Fermionic density is found
by setting]nF /]r =0 with nFÞ0, which means that the fol-
lowing equation has to be fulfilled:

−
gBF

gBB
MBvrB

2 r + MFvrF
2 r +

"2m2

MB

1

r3 = 0, s24d

whose solution again coincides withr =r8 as found in the
previous section[Eq. (18)].

Due to the attractive boson-fermion interaction, stable
trapped40K-87Rb mixtures may only have a limited number
of fermions and bosons. If the atom numbers increase above
some critical valuesNB

c andNF
c , an instability occurs[3]. It

has been shown that the mean-field framework is able to
reproduce the critical numbers for collapse[7]. We have cal-
culated the stability diagram of the40K-87Rb mixture by
solving the coupled mean-field equations(8) and(9) for dif-
ferent values ofNB andNF. In our study, the instability sig-
nature is the failure of the numerical iterative process. In
particular, the instability onset appears as an indefinite
growth of the maximum of the densities, which triggers the
collapse.

We display in Fig. 3 the stability diagram for the
40K-87Rb mixture in theNB−NF plane. The dots are the the-
oretical prediction forsNB

c ,NF
cd. The lines have been drawn

to guide the eye and represent the critical instability lines
that determine the boundary between the stable(left) and
unstable(right) regions in four different cases:(a) vortex-
free configurations in concentric trapping potentials(no dis-
placement of the external fermion and boson potentials); (b)
Bose condensate hosting a vortex line with bosons and fer-
mions confined by concentric trapping potentials;(c) vortex-
free configurations with a 10-mm displacement between the
trapping potentials;(d) Bose condensate hosting a vortex
line, plus a 10-mm displacement between the trapping poten-
tials.

From Fig. 3 one can conclude that, for the40K-87Rb mix-
ture, the presence of a vortex in the condensate, or any other
mechanism that increases the distance between the maxima
of the—still—overlapping densities, as for example a sag
displacement between the two clouds, allows to have a stable
mixture for larger particle numbers. The reason is that these
mechanisms diminish the enhancement of the density of both
species in the overlap volume caused by their attractive mu-
tual interaction. A sag displacement(c) leads to critical num-
bers higher than the presence of a vortex(b), and when both
are simultaneously present(d), they yield the larger stability
region.

V. SUMMARY

We have studied Fermi-Bose mixtures with attractive mu-
tual interaction, We have considered two potentially interest-

FIG. 2. Boson and fermion density profiles of40K-87Rb configu-
rations hosting a vortex line withm=1 without displacement of the
trapping potentials. In all cases,NB=105. The different lines corre-
spond toNF=0 (dotted line); NF=103 (solid lines); NF=1.53104

(dashed lines). The inset shows a magnified view of the fermion
density distributions.

FIG. 3. Stability diagram of the40K-87Rb mixture as a function
of the number of atoms. The dots are the prediction for the critical
number of bosons and fermions. The lines have been drawn to
guide the eye, and represent the critical instability lines that deter-
mine the boundary between the stable(left) and unstable(right)
regions in four different cases:(a) vortex-free configurations with-
out displacement of the trapping potentials;(b) bosons hosting a
vortex line without displacement of the trapping potentials;(c)
vortex-free configurations with a 10-mm displacement between the
trapping potentials;(d) bosons hosting a vortex line, plus a 10-
mm displacement between the trapping potentials.
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ing cases. In one of them, bosons are in a vortex state, and in
the other the minima of the trapping potentials for bosons
and fermions are shifted from each other.

The position of the maximum of the fermion density is
relevant for the collapse of the trapped boson-fermion mix-
ture. Indeed, it is around these “fixed” points that the densi-
ties increase when the atom numbers approach their critical
values, i.e., these are the points where the collapse starts. For
this reason, simple analytical formulas have been derived to
describe the effective potential felt by a small fermion
amount in the presence of a large boson condensate with
positive scattering length. These formulas have been used to
seek the critical points of the fermion density distribution
removing the restrictionNF!NB. The positions of the criti-
cal points only depend on the value of a dimensionless pa-
rametersgid we have introduced in Sec. III A, whose defini-
tion involves the values of the boson and fermion scattering
lengths, masses, and confining frequencies.

The validity of these formulas has been assessed compar-
ing the results obtained using them with the results obtained
from the numerical solution of the mean-field equations(GP
equation for bosons coupled to the TFW equation for fermi-
ons). We have numerically shown that the position of the
maximum of the Fermionic density is very insensitive to the
dilution valueNF /NB, and have also checked that the analyti-
cal values obtained for a low number of fermions remain
valid up to the critical atomic numbers.

Finally, we have shown that the critical atomic numbers
that the mixture can sustain before it collapses may be in-
creased shifting the—still overlapping—confining potentials,
or when the condensate hosts a quantized vortex line. In the
latter case, a larger overlap between both species has been
found, which may favor sympathetic cooling.
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APPENDIX

In this appendix we use a scaling transformation
[14,20,21] to derive an expression that generalizes the virial
theorem and is useful to test the accuracy of the numerical
procedure. Performing a scaling transformation of the vector
position rW→lrW, it is easy to check that to keep the normati-
zation of the order parameterCsrWd and of the boson and
fermion atomic densities, they have to transform as

CsrWd → ClsrWd = l3/2CslrWd,

nsrWd → nlsrWd = l3nslrWd. sA1d

Splitting the energy of the system into a kineticT, a har-
monic oscillatorUH, and an interaction partUg, the above
transformations induce the following ones:

T → Tl =
"2

2MB
E drWu ¹ ClsrWdu2 = l2T,

UH → UHl
=

1

2
Mv2E drWr2nl =

1

l2UH,

Ug → Ugl
=

1

2
gE drWnl

2 = l3Ug, sA2d

where the last two expressions hold for fermions and bosons
as well. The expression forUH supposes a spherically sym-
metric harmonic trap, the generatization to deformed har-
monic traps is obvious.

It is easy to check that in the case of fermions, the kinetic
energy in the TFW approximation also scales asT→Tl

=l2T, and that in the case of boson-fermion mixtures, the
interaction term UgBF scales asUgBF→UgBFl

=l3UgBF.
Hence the total energy of the mixture scales as

E → El = l2sTB + TFd +
1

l2sUHB
+ UHF

d + l3sUgBB
+ UgFF

+ UgBF
d. sA3d

If the scaling is carried out from the equilibrium configu-
ration corresponding to the valuel=1, one has

UdEl

dl
U

l=1
= 2sTB + TFd − 2sUHB

+ UHF
d + 3sUgBB

+ UgFF

+ UgBF
d = 0. sA4d

One sees that at equilibrium, for noninteracting fermions and
bosons one recovers the virial theorem, namelyTB=UHB

and
TF=UHF

.
When a vortex is present, its superfluid kinetic energy

TV =
"2

2MB
E drW

nBsrWd
r'

2 sA5d

scales as

TV → TVl
=

"2

2MB
E drW

nlsrWd
r'

2 = l2TV. sA6d

This is quite a natural result in view of the first Eq.(A2) and,
as a consequence,TV may be incorporated in the definition of
TB which then represents the total kinetic energy of the
Bosonic component of the mixture.

If a gravitational sag is considered that displaces the
atomic clouds in thez direction, its effect can be taken into
account changing the confining potential in that direction
into Vszd= 1

2Mv2sz−z0d2. Apart from a trivial constant term
proportional to the number of fermions and bosons in the
trap that is invariant under the scaling transformation, there
appear new contributions to the total energy of the kind

Us = − Mz0v2E drWznsrWd sA7d

which scales asUs→Usl
= 1

lUs. Equation(A4) then becomes
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UdEl

dl
U

l=1
= 2sTB + TFd − 2sUHB

+ UHF
d − sUsB

+ UsF
d

+ 3sUgBB
+ UgFF

+ UgBF
d = 0. sA8d

The above expression is, in a way, a generalization of the

virial theorem. We have used it to routinely check the accu-
racy in the numerical solution of the GP and TFW coupled
equations. Values,Os10d are found for that expression
when UH is ,Os106d. This makes us confident on the nu-
merical method we have used to find the mean-field structure
of the atomic mixture.
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