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Collective and single-particle excitations of a trapped Bose gas
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The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions
of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We
show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range
of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover
from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly
explored by studying the frequency of the surface mode as a function of their angular momentum. The
applicability of the semiclassical approximation for the excited states is also discussed. We show that the
semiclassical approach provides simple and accurate formulas for the density of states and the quantum
depletion of the condensate.@S1050-2947~97!05111-1#

PACS number~s!: 03.75.Fi, 67.40.Db
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I. INTRODUCTION

The collective modes of a Bose-condensed gas confi
by an external potential have been the object of exten
work in the last months. The successful agreement betw
experimental results@1,2# and theoretical predictions@3–8#
for the collective frequencies at low temperature has stim
lated intensive research activity. Though only the mod
with low multipolarity and frequency have been detected
experiments, the excitations at higher energy and ang
momentum are also very important because they determ
the statistical behavior of the system, including thermo
namics, transport phenomena, and superfluid effects.

The excited states at high energy are expected to h
single-particle nature. However, the transition from colle
tive ~phononlike! to single-particle excitations in an inhomo
geneous system can differ significantly from the case o
uniform Bose gas. In fact, the presence of a surface all
for the occurrence of single-particle states even at low
ergy~lower than the chemical potential!. These states, of low
energy but high multipolarity, are localized near the surfa
where the condensate density becomes small. This beha
represents a peculiar and interesting feature of these con
systems; in a uniform Bose gas, in fact, only phonons
present at low energy. In a recent paper@9# we have already
pointed out the effects of these single-particle states on
thermodynamic properties of the trapped gases.

In the present work we solve the equations for the exc
states of a weakly interacting gas in a spherical trap at z
temperature within Bogoliubov theory. The main purpose
to investigate the collective~phononlike! and single-particle
character of the elementary excitations. This is accomplis
by calculating key quantities, such as the density of sta
the frequency of the surface modes, and the quantum de
tion of the condensate, and by comparing the prediction
Bogoliubov theory with the ones of different approxim
tions, like Hartree-Fock theory and the hydrodynamic mod
Finally we check the accuracy of the semiclassical appro
561050-2947/97/56~5!/3840~6!/$10.00
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mation and we show that it provides simple and useful f
mulas for both the density of states and the quantum de
tion of the condensate.

II. BOGOLIUBOV THEORY

The elementary excitations of a degenerate Bose gas
associated with the fluctuations of the condensate. At
temperature they are described by the time-dependent G
Pitaevskii~GP! equation for the order parameter@10#:

i\
]

]t
C~r ,t !5S 2

\2¹2

2m
1Vext~r !1guC~r ,t !u2DC~r ,t !,

~1!

where*dr uCu25N is the number of atoms in the conde
sate. At zero temperatureN coincides with the total numbe
of atoms, except for a very small differencedN!N due to
the quantum depletion of the condensate. The coupling c
stant g is proportional to thes-wave scattering lengtha
throughg54p\2a/m. In the present work we will discus
the case of positive scattering length,a.0, as in the experi-
ments with rubidium and sodium, but the same formali
can be also applied to systems with negative scatte
length. The trap is included throughVext, which is chosen
here in the form of an isotropic harmonic potentia
Vext(r )5(1/2)mvHO

2 r 2. The harmonic trap provides also
typical length scale for the system,aHO5(\/mvHO)1/2. Ac-
tually, the experimental traps have cylindrical symmet
with different radial and axial frequencies, but the choice
a spherical trap, as we will discuss later, is not expected
affect the main conclusions of the present work, while red
ing greatly the numerical effort.

The normal modes of the condensate can be found
linearizing the GP equations, i.e., looking for solutions of t
form
3840 © 1997 The American Physical Society
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C~r ,t !5e2 imt/\@C0~r !1u~r !e2 ivt1v* ~r !eivt#, ~2!

wherem is the chemical potential and functionsu andv are
the ‘‘particle’’ and ‘‘hole’’ components characterizing th
Bogoliubov transformations. After inserting in Eq.~1! and
retaining terms up to first order inu andv, one finds three
equations. The first one is the nonlinear equation for
order parameter of the ground state@10#,

@H01gC0
2~r !#C0~r !5mC0~r !, ~3!

where H052(\2/2m)¹21Vext(r ), while u(r ) and v(r )
obey the following coupled equation:

\vu~r !5@H02m12gC0
2#u~r !1gC0

2v~r !, ~4!

2\vv~r !5@H02m12gC0
2#v~r !1gC0

2u~r !. ~5!

Numerical solutions of these equations have been rece
found by different authors@4–8#. In the present work, we us
them to calculate the density of states, the frequency of
surface modes, and the quantum depletion of the conden
in order to clarify the different roles played by excitatio
having collective and single-particle character.

When the dimensionless parameterNa/aHO is large, the
kinetic energy term in the ground-state equation~3! becomes
negligible with respect to the mean-field term and one g
the Thomas-Fermi approximation:

C0
TF~r !5S mTF2Vext~r !

g D 1/2

, ~6!

with

mTF5
\vHO

2 S 15
Na

aHO
D 2/5

. ~7!

In the same limit the equations of motion~4! and ~5! coin-
cide with the equations of the hydrodynamics~HD! of super-
fluids @3,11,12#. In the spherical case their eigenfrequenc
take the analytic form@3#

v~n,l !5vHO~2n212nl 13n1l !1/2, ~8!

wherel andn are the angular momentum quantum numb
and the number of nodes in the radial solution, respectiv
The deviations from the predictions of the noninteract
harmonic oscillator~HO! model,

v~n,l !5vHO~2n1l !, ~9!

point out the effects of two-body interactions. These are p
ticularly important for the so-called ‘‘surface’’ mode
(n50), where the HO predictionv5l vHO is significantly
lowered to the hydrodynamic valuev5Al vHO. In general
the HD prediction turns out to be very accurate for the lo
energy excitations of the system, while the ideal gas pre
tion is expected to be valid in the opposite case of h
excitation energies. The exact solutions of Eqs.~4! and ~5!
provide the correct interpolation between the two limiti
regimes.

A typical spectrum obtained from Eqs.~4! and ~5! is
given in the upper part of Fig. 1 for a gas ofN510 000
e
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atoms of rubidium~scattering lengtha5110a0 , wherea0 is
the Bohr radius!. For the spherical trap we have chosen t
frequency vHO52pnHO52p187 Hz, which is the average
vHO5(vxvyvz)

1/3 of the axial and radial frequencies of Re
@1#. It corresponds to the oscillator lengt
aHO50.79131024 cm. Energy is given in units\vHO and
the chemical potential is 8.41 in these units. The vertical b
have length (2l 11), so that the angular momentum of ea
state can be inferred from the figure. One clearly sees tha
energy much larger than the chemical potential, the exc
states tend to be grouped into levels\vHO apart, as in the
noninteracting HO model. Conversely, the energy of
lowest modes is close to the prediction of the HD equatio
@3#. For instance, the lowestl 52 andl 50 modes differ by
less than 3% from the hydrodynamic values& and A5,
respectively.

III. DENSITY OF STATES

Once the spectrum of excited states is calculated, one
count the number of states below a given energye :

N~e!5 (
\v,e

~2l 11!. ~10!

The density of statesg(e) is simply the derivative
dN(e)/de. Note that the quantityN~e! is well defined even
for a discretized spectrum, while the density of states imp
averaging the number of states within small but finite ene
intervals.

In Fig. 2 we show the quantityN~e! obtained by counting
the levels in the spectrum of Fig. 1. For comparison

FIG. 1. Excitation spectrum of 10 000 atoms of87Rb in a
spherical trap withaHO50.79131024 cm. The vertical bars have
length (2l 11). The upper spectrum corresponds to the numer
solution of Eqs.~4! and ~5!; the lower one is the spectrum of th
Hartree-Fock Hamiltonian~11!. Two energy scales are also show
in the figure: the chemical potentialm58.41, fixed by the solution
of Eq. ~3!, and the critical temperature for a noninteracting gas
the same trap,kBTc520.26.
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3842 56F. DALFOVO et al.
results of the noninteracting harmonic oscillator~9! and of
the hydrodynamic model~8! are also shown. The effects o
the repulsive interatomic forces are clearly responsible fo
enhancement of the density of states with respect to the i
gas. HoweverN~e! remains well below the HD approxima
tion, the latter being soon inadequate ase increases. Indeed
hydrodynamic theory accounts for collective phenomena
provides an excellent description of the low-lying element
excitations of the system@3,8#, but completely ignores
single-particle effects. This is exactly the opposite of wh
Hartree-Fock~HF! theory does. For this reason it is interes
ing to compare the results of Bogoliubov theory with t
predictions of HF theory in which one determines the eig
states of the single-particle Hamiltonian@13,14#

HHF52~\2/2m!¹21Vext~r !2m12gC0
2~r !. ~11!

The lowest eigenstates of the HF Hamiltonian are expec
to be localized near the surface of the condensate. To un
stand this point better, let us take the large-N limit. In this
case one can use the Thomas-Fermi approximation~6! for
the ground-state density. The HF Hamiltonian then takes
simple form

HHF52~\2/2m!¹21
1

2
mvHO

2 ur 22R2u, ~12!

where R5@2mTF/(mvHO
2 )#1/2 is the classical radius of th

condensate. The HF potential has a pronounced minimu
R. This potential well near the boundary persists in the
Hamiltonian even for smaller values ofN.

It is worth stressing that, in general, Hartree-Fock the
is expected to be correct for energies larger than the chem
potential. For these trapped bosons, however, it accounts
for the low-energy excitations close to the boundary, wh
the density of the condensate is small. This can be see
Fig. 1, where the Hartree-Fock and Bogoliubov spectra
compared. One notes that the two spectra are rather sim
even below the chemical potential~m58.41 in this case!

FIG. 2. Number of statesN~e! vs energy. The Bogoliubov
~points! and Hartree-Fock~solid line! predictions, obtained by
counting the states in Fig. 1, are compared with the ones of
noninteracting harmonic oscillator~dashed line! and of hydrody-
namic equations~dot-dashed line!.
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except for the excitations having lowest angular momen
i.e., shortest bars in the figure. Those collective excitati
are instead correctly reproduced by the hydrodynam
model. The corresponding Hartree-Fock prediction for
quantity N~e! is also given in Fig. 2 as a solid line. Th
agreement with the results of Eqs.~4! and ~5! is remarkable
in the whole range of energy. The figure shows the case
10 000 atoms but a similar agreement is found for all valu
of N relevant for the experiments (N.103– 107). The above
behavior represents a major difference with respect to
case of a homogeneous Bose gas where phonons have a
cial effect on the density of states.

IV. SURFACE EXCITATIONS

In order to better understand the transition from the c
lective to the single-particle regime, we have explored
detail the evolution of the excitation energy for the surfa
modes (n50) as a function of their angular momentuml ,
as predicted by the solution of Eqs.~4! and ~5!. As already
mentioned, the effects of the interaction are particularly i
portant for such modes and are responsible for a signific
lowering of their frequency. In Fig. 3 we plot the quanti
v l /l , in units vHO, for different numbers of atoms in th
same trap. This ratio has an important physical meaning
cause, according to Landau’s criterium for superfluidity,
provides the rotational frequency at which thel th surface
excitation becomes unstable. The hydrodynamic predic
~8! is shown as a dashed line, the curve going asymptotic
to zero for largel . The figure shows that the Bogoliubo
states first follow the HD curve, but, rather soon, they de
ate from it, approaching asymptotically the noninteracti
value v l /l 5vHO. The deviation from HD takes place a
larger values ofl if N is increased, revealing that the H
approximation becomes applicable to a larger number
states in this limit.

A simple estimate of the typical value ofl at which the
HD picture starts failing, one can take@15# l c.Rpc where
R is the radius of the condensate, proportional toN1/5, and

e

FIG. 3. Frequency~in units ofvHO! of then50 excited states as
a function of their angular momentuml for N atoms of87Rb in a
spherical trap withaHO50.79131024 cm. The hydrodynamic pre-
diction is shown as a dashed line.
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56 3843COLLECTIVE AND SINGLE-PARTICLE EXCITATIONS . . .
pc is of the order of the inverse of the surface thickne
d5@aHO

4 /(2R)#1/3 @16–18#. For larger values ofl , the wave-
length of the excitations becomes shorter thand and one
explores microscopic details of the boundary that canno
described by the Thomas-Fermi approximation~6! and by
the HD equations. This yieldsl c}(R/aHO)4/3}N4/15, corre-
sponding to an excitation energy\v}N2/15, smaller than the
chemical potential, which instead behaves asN2/5. This ex-
plains why the crossover from the HD to the single-parti
regime takes place at energies smaller thanm.

For each value ofN, the curves in Fig. 3 exhibit minima
and one can define a critical frequency asVc5min(vl /l ).
For rotational frequencies larger thanVc the surface excita-
tions become unstable. It is interesting to compare this va
with the critical frequency needed to generate a vortex@19#.
This is done in Fig. 4 where we compare the two critic
frequencies as a function ofN. We find that the lowest in-
stability is always associated with the creation of a vort
Note, however, that in order to generate a vortex one ne
to transfer to the system a huge angular momentum~equal to
N\!, which is much higher than the valuel required to
create a surface excitation.

V. SEMICLASSICAL APPROXIMATION
AND SCALING BEHAVIOR

A good approximation for the density of states can
obtained by solving Eqs.~4! and ~5! in the semiclassica
approximation@9,20,21#. In this approximation, which is ex
pected to hold for excitation energies much larger than
oscillator energy\vHO, the quantityN~e! is a continuous
function of e defined by

N~e!5E
0

e

de8E drdp

~2p\!3 d„e82e~r ,p!…, ~13!

where

e~r ,p!5F S p2

2m
1Vext~r !2m12gn0~r ! D 2

2g2n0
2~r !G1/2

~14!

FIG. 4. Critical rotational frequency~in units of vHO! for pro-
ducing a quantized vortex~solid line! or surface states~dashed line!
as a function of the number of rubidium atoms in the spherical tr
s

e

e

l

.
ds

e

e

corresponds to the semiclassical dispersion law. Here
quantityn0(r )5C0

2(r ) is the condensate density. In Fig. 5~a!
we compare the semiclassical result forN(e)/N ~solid line!
with the one obtained from Eqs.~4! and~5! ~squares! for 104

atoms of rubidium in the same trap of Fig. 2. Here the ene
is given in unitskBTc5\vHO@N/z(3)#1/3, which is the criti-
cal temperature for an ideal Bose gas in a harmonic trap;
value for 104 atoms iskBTc520.26\vHO as shown also in
Fig. 1. The accuracy of the semiclassical approximat
turns out to be very high also for relatively low values ofe.

The use of the semiclassical approximation allows one
carry out the analysis of the density of states in a system
way and to exploit the dependence on the relevant par
eters of the system. In fact, when the number of atoms in
condensate is large enough to make the Thomas-Ferm
proximation~6! accurate, the statistical properties of the sy
tem can be expressed in terms of a single scaling param
h given by the ratio@22#

.

FIG. 5. RatioN(e)/N vs e, in units kBTc . In ~a!, the squares
correspond to counting the states in the Bogoliubov spectrum
Fig. 1, while the solid line is the corresponding semiclassical
proximation ~13!. The latter is indistinguishable from the formul
~16!, valid in the scaling regimeNa/aHO@1. In ~b!, the semiclas-
sical prediction~16! is given for different values of the scalin
parameterh.
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h5
mTF

kBTc

51.57S N1/6a

aHO
D 2/5

~15!

between the chemical potential~7!, calculated at zero tem
perature in the Thomas-Fermi approximation, and the crit
temperaturekBTc . The ratioh depends on the deformatio
of the trap only through the geometrical average of the
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cillator frequenciesvHO5(vxvyvz)
1/3. The parameters use

in the calculation of Fig. 5~a! correspond to a spherical tra
with h50.407. As pointed out in Ref.@22#, quite different
experimental conditions~shape of the trap, value ofN, etc.!
can correspond to very similar values ofh. In terms of the
scaling parameter h and the dimensionless energ
ẽ5e/(kBTc), the number of statesN( ẽ) predicted by the
Bogoliubov semiclassical theory becomes
N~ ẽ !

N
5E

0

ẽ
dẽ 8

4

pz~3!
E

0

1

dxA12x F ẽ 8h
A@x21~ ẽ 8!2/h2#1/22x

Ax21~ ẽ 8!2/h2
1~ ẽ 8!2Ax1h/ ẽ 8G . ~16!
i-

t
e

ms
c-

g
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al
This result has been obtained by using the Thomas-Fe
approximation~6! for the condensate density in Eqs.~13!
and ~14!; this allows one to split the space integral into
inside region~first term in the square bracket! and anoutside
region ~second term!. It is worth stressing that Eq.~16!,
which is expected to hold in the scaling regimeNa/aHO@1,
provides a very good estimate of the semiclassical exp
sion ~13! even for relatively smallN. For instance, the two
predictions are indistinguishable in Fig. 5~a!, being repre-
sented by the same solid line. In Fig. 5~b! we show the pre-
dictions for the density of states given by the semiclass
approximation~16! for three different values ofh. The pa-
rameters of the recent experiments at Jila@1# and MIT @2#,
using very different traps, correspond toh ranging from 0.39
to 0.45.

Expression~16! can be also expanded at low energ
e!kBTc , still compatible with the assumptione@\vHO.
One finds the lawN(e)/N}e5/2. This differs from the usua
e3 law typical of the phonon regime, revealing the differe
behavior exhibited by these systems with respect to the
mogeneous Bose gas.

VI. QUANTUM DEPLETION

In the last part of the paper we calculate the quant
depletion of the condensate, which, according to Bogoliub
theory, is given by

dN

N
5

1

N (
j
E dr uv j~r !u2, ~17!

The ‘‘hole’’ componentsv j can be obtained by solving Eqs
~4! and ~5!. In the semiclassical approximation@9# one re-
places the sum over all the discrete states with the inte
over p of the function

v2~p,r !5
1

2e~p,r ! S p2

2m
1Vext~r !2m12gn0~r !1e~p,r ! D ,

~18!

wheree~p,r ! is the single-particle energy~14!. In a uniform
gas this expression yields the most famous re
dN/N5(8/3)(n0a3/p)1/2. In the trapped gas and in the lim
i

s-

al

,

t
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v
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Na/aHO@1, where the TF approximation holds, the sem
classical approximation provides the simple analytic law@9#

dN

N
5

h3

6&z~3!
50.098h3, ~19!

with h given in Eq. ~15!. Since the available experimen
corresponds toh.0.4, the quantum depletion turns out to b
less than 1%, as already pointed out in Refs.@5,7#. In Fig. 6
we show the quantum depletion for 10 000 and 50 000 ato
of rubidium obtained by summing over the Bogoliubov spe
trum up to a given energye ~solid lines!. We compare it with
the prediction of the semiclassical expression~18! ~dashed
lines!, while the arrows indicate the asymptotic values~19!,
holding in the scaling limit. An important result emergin
from the numerical calculation is the very slow convergen
of the sum~17!. This is not a surprise, since also in a hom
geneous gas the convergence is slow due to the 1/p4 tail in

FIG. 6. Quantum depletion for 10 000~two lower curves! and
50 000~two upper curves! atoms of 87Rb in a spherical trap with
aHO50.79131024 cm. The depletion is plotted as a function of th
maximum energy considered in the sum~17!. Solid lines:uvu2 from
the solution of Eqs.~4! and~5!; dashed lines: from the semiclassic
approximation~18!. Arrows: asymptotic scaling values~19!.
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56 3845COLLECTIVE AND SINGLE-PARTICLE EXCITATIONS . . .
the momentum distribution at high momenta and one ha
go up toe5100m in order to saturate 90% of the sum~17!.

The agreement between the quantum depletion obta
from the discretized sum~17! over the Bogoliubov states an
from the semiclassical approximation~18! is satisfying and
was not obviousa priori. Figure 6 shows a discrepancy o
the order of 5% between the two predictions forN510 000,
while for largerN the two curves tend to coincide. It is wort
noticing that the two solid lines in Fig. 6 require the summ
tion of *dr uv j (r )u2 over up to 15 000 different values o
(n,l ) in the Bogoliubov spectrum; the calculation is th
much heavier than the semiclassical one. The good accu
of the semiclassical approach makes it useful in pract
situations. This is especially true for the simple formula~19!,
which includes the case of anisotropic traps through the
eraged frequencyvHO5(vxvyvz)

1/3 entering the Thomas
Fermi chemical potentialmTF and, hence, the scaling param
eterh.

Finally, the largeN semiclassical formula~19! shows the
rather strong dependence of the depletion on the scatte
length parametera. If the magnetic tuning of the scatterin
length will become available, it will be possible in the futu
to increase significantly the value ofh and consequently ex
plore Bose gases where the quantum depletion is m
larger.

VII. SUMMARY

We have investigated the elementary excitations of a
lute Bose gas in harmonic trap by solving the equations
Bogoliubov theory. Different from the case of a uniform ga
where phonons dominate the system at energies of the o
of or lower than the chemical potential, the spectrum of
E
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trapped gas shows an important particlelike behavior eve
low energy. This fact has been here explored in detail.
have compared the results of Bogoliubov theory for the d
sity of states with the ones of Hartree-Fock theory, findin
very good agreement on a wide range of energy. We h
studied the behavior of surface modes, emphasizing
crossover from the low-energy regime, well described by
hydrodynamic model, to the single-particle regime. Th
crossover provides also a critical frequency associated wi
rotational instability and we have compared this frequen
with the one needed to create a quantized vortex. Ano
important result emerging from our analysis is the high
curacy exhibited by the semiclassical approximation for
excited states. Finally, we have calculated the quan
depletion of the condensate by summing the ‘‘hole’’ comp
nent*dr uv(r )u2 over all the states in the excitation spectru
of Bogoliubov theory. The convergence of the sum turns
to be very slow, as expected by the analogy with the cas
the uniform gas. Again we find excellent agreement with
predictions of the semiclassical approximation. In the lim
Na/aHO@1, the latter provides the simple and useful formu
dN/N50.098h3, in terms of the scaling paramete
h51.57(N1/6a/aHO)2/5.
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