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Microarray experiments are being widely used in medical and biological research. The main
features of these studies are the large number of variables (genes) involved and the low number
of replicates (arrays). It seems clear that the most appropriate models, when looking for
detecting differences in gene expression are those who exploit the most useful information
to compensate for the lack of replicates. On the other hand, the control of the error in the
decision process plays an important role for the high number of simultaneous statistical tests
(one for each gene), so that concepts such as the False Discovery Rate (FDR [3]) take a special
importance.

One of the alternatives for the analysis of the data in these experiments is based on the
calculation of statistics derived from modifications of the classical methods used in this type of
problems (moderated-t, B-statistic [11]). Nonparametric techniques have been also proposed
([5], [6]), allowing the analysis without assuming any prior condition about the distribution of
the data, which make them especially suitable in such situations. This paper presents a new
method to detect differentially expressed genes based on nonparametric density estimation
by a class of functions that allow us to define a distance between individuals in the sample
(characterized by the coordinates of the individual (gene) in the dual space tangent to the
manifold of parameters) [2]. From these distances, we designed the test to determine the
rejection region based on the control of FDR.
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1. Introduction

Since DNA microarrays appeared in the late 90s they have become a powerful tool
in molecular biology research. They provide a way to obtain expression measure-
ments of thousands of genes at the same time, giving a picture of the interactions
among genes in biological processes. Nowadays it is already assumed the need of
replicating microarrays in each experimental condition in order to achieve reliabil-
ity in the conclusions.
An important goal in microarrays studies is to detect differentially expressed

genes between two or more different experimental conditions. Since distributional
assumptions in the expression levels may be sometimes violated, several nonpara-
metric methods have been proposed to deal with that issue (e.g. [5], [4], [6]).
Among the nonparametric methods, several works studying the use of mixture

models to estimate densities of the data have been published ([6], [7], [9], [8]). These
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methods have the advantage of using information from the large amount of genes
for inferential purposes.
As pointed out in [10], a mixture model can be thought as a smooth of a kernel

estimate, providing a powerful density estimation with the advantage over the
kernel method that it gives more stable estimates of tail probabilities, which play
a critical role to determine a rejection region in a statistical test [6]. In the other
hand, this smoothness could lead to a loss of accuracy in the estimate. The aim of
this paper is to propose an alternative method for selecting differentially expressed
genes based on orthogonal series to perform a density estimation step, as well as
compare it with the MMM method presented in [6], which is based on normal
mixtures.

2. Methods

2.1. Preliminars

Let X1i, ..., Xni, Y1i, ..., Ymi be the expression levels from n and m microarrays
under two different experimental conditions for the gene i = 1, ..., N (after any
possible normalization and (log)transformation of the original array signals).The
goal is to find which genes modify their expression among the different groups.
If we only have two groups we can calculate a t-type score as the test statistic:

Zi =
X̄i − Ȳi√

s(1),i/n+ s(2),i/m+ a0
, (1)

with s(1),i, s(2),i being the sample variances for X1i, ..., Xni and Y1i, ..., Ymi respec-

tively, and a0 the 90-th percentile of
{
s(1),i/n+ s(2),i/m

}
, proposed by ([5], [6])to

stabilize the variances of the Zi avoiding its dependency from the specific gene.
When searching for differential expression among different conditions it arises in

a natural way a two-component mixture model, as has been considered in [5], [6], [9]
or [12]. Let Zi be the test statistic for the gene i , and let f be the density function
of Zi. Consider G0 and G1 the set of genes non-differentially and differentially
expressed, respectively. Suppose that f0 is the density for Zi, when the gene i
belongs to G0 and f1 when it belongs to G1. Thus, the density of Zi overall the
genes can be written as:

f(z) = p0f0(z) + p1f1(z), (2)

where p0 and p1 are the proportion of genes with no change in their expression and
those changing, respectively.
As microarray data is usually composed by a high number of expression genes

(say N), the values of Zi, i = 1, ..., N can be used to obtain an accurate estimate
of f and f0 using non-parametric techniques. Several methods have been proposed
using normal mixture models to fit the estimates of f and f0 in order to construct
methods to detect differential expression ([6], [9]).
In the next section we explain the details about fitting normal mixture models.
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2.2. Density estimation using normal mixtures

Density estimation of f(z) using gaussian mixtures assumes that

f(z; Ψg) =

g∑
i=1

πiϕ(z;µi, σ
2
i ),

where g is the number of components in the mixture, ϕ(z;µi, σ
2
i ) is the gaussian

density function with mean µi and variance σ2
i , πi is the mixing proportion of

the component i, and Ψg = {(πi, µi, σ
2
i ), i = 1, . . . , g} denotes the set of all the

parameters in the model.
In order to fit the model, following [10], the EM-algorithm has been used to

obtain the maximum likelihood estimate Ψ̂g. Given N observations z1, . . . , zN , the

EM-algorithm gives Ψ̂g as follows:

• If Ψ
(k)
g = {(π(k)

i , µ
(k)
i , σ2

i
(k)

), i = 1, . . . , g} are the parameter estimates at step k,
the new estimations at step k + 1 are:

π
(k+1)
i =

1

N

N∑
j=1

τ
(k)
ij

µ
(k+1)
i =

N∑
j=1

τ
(k)
ij zj/

N∑
j=1

τ
(k)
ij

σ2
i
(k+1)

=

N∑
j=1

τ
(k)
ij (zj − µ

(k+1)
i )2/

N∑
j=1

τ
(k)
ij

where

τ
(k)
ij =

π
(k)
i ϕ(zj ;µ

(k)
i , σ2

i
(k)

)

f(zj ; Ψg
(k))

• Iterating the previous step while
∥∥∥Ψg

(k+1) −Ψg
(k)

∥∥∥ ≥ c, for a fixed cutoff c, Ψ̂g

is obtained.

The Bayesian Information Criterion (BIC) has been used to select the number
of components in the normal mixture [6],

BIC = −2logL(Ψ̂g) + νglog(N), (3)

where νg is the number of free parameters in Ψg, and logL indicates the log-
likelihood function. In order to decide the number of components g in the mixture
model, different values of g has been used to fit the model, and then that g corre-
sponding to the first local minimum for the BIC has been selected.

2.3. Density estimation using orthogonal functions

In this section we propose an alternative density estimation approach, based on
orthogonal series estimators ([13]).
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If f is a density then
√
f ∈ L2(R), so

√
f belongs to the set of square-integrable

real functions. Following the classical functional analysis theory, as L2(R) is a
Hilbert space, f can be expressed as:

f(z; Θ) =

[ ∞∑
i=0

θihi(z)

]2

,

where {hi(z)}i∈N is an orthonormal basis of L2(R), Θ denotes the set of all unknown
parameters, Θ = {θi, i = 1, . . . ,∞}, and θi are the Fourier coefficients of

√
f in

this basis, and
∑∞

i=0 θ
2
i = 1.

An orthonormal basis of L2(R) is a set {hi(z)}i∈N verifying:

∫
R

hi(z) · hj(z)dz =

{
1 if i=j
0 otherwise

.

As functions in L2(R) are real-valued, a natural basis for that space are the family
of normalized Hermite polynomials, defined as:

hi(z) =
1

(i!2i
√
π)1/2

e−z2/2Hi(z),

where Hi(z) = (−1)iez
2 di

dzi
e−z2

.

To estimate f we take:

f̂(z; Θ̂) =

[
N∑
i=0

θ̂ihi(z)

]2

, (4)

with
∑N

i=0 θ̂i
2
= 1.

The estimation of θi’s presents some problems [13], in particular , the difficulties
appear when N tends to be large. In order to overcome this handicap [1] proposed
an estimation algorithm that we have slightly modified in order to improve the
execution time.
Essentially, the algorithm presented is a forward procedure that begins taking

the single normalized Hermite polynomial hi1(z) that has the highest likelihood
based on the sample data. At step k, the strategy is to add the polynomial hik(z)
that maximizes the likelihood. Statistical significance is checked by means of a
likelihood ratio test. This algorithm is here detailed:

(1) Transform the data, z to z∗, to have mean 0 and sample variance 1/2.

(2) Let’s define l̂i0,...,ik = sup{θi0 ,...,θik |
∑

θir=1} L(θi0 , . . . , θik) where

L(θi0 , . . . , θik) is the likelihood function, and i0, ..., ik ∈ N.
(3) Select i0 ∈ I = {0, ...,K} such that l̂i0 ≥ l̂i, ∀i ∈ I \ {i0}, where K is the

number of Hermite functions to take into account.
(4) (i) For k = 1 to K, being fixed i0, . . . , ik−1, we choose ik ∈ I \

{i0, . . . , ik−1} such that l̂i0,...,ik ≥ l̂i0,...,ik−1,i, ∀i ∈ I \ {i0, . . . , ik−1}
(ii) A hypothesis test is then performed to detect significant differences in

the likelihood, due to the adding of a new term in the estimation of
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f . We use the statistic:

Λ =
l̂i0,...,ik−1

l̂i0,...,ik−1,ik

(5) Wilks theorem ensures convergence of −2lnΛ to a χ2 distribution, under
the null hypothesis of non significant differences between their likelihoods.
Rejecting the test implies to return to (i). Otherwise, the estimation of f
is:

f̂(z; Θ̂) =
1

b

[
k∑

r=0

θirhir(z
∗)

]2

where ir ∈ {0, . . . , N}, r = 0, . . . , k

It is interesting to remark that in the case when only one component is chosen
by the algorithm the density function estimated is a normal with sample mean and
sample variance parameters.

2.4. Searching for differential expression

2.4.1. STP Method

One of the advantages of using the previous density estimation method is that it
allows for the use of a distance that can be used to search for differential expression.
Let f̂ be a density function estimated from (4), for k > 1. Following Miñarro and

Oller [2], a distance between the points in the sampling space Θ can be defined using
the coordinates of the subjects in the dual space tangent to Θ, where Θ ⊂ R

k−1 is
open and θ = (θ1, · · · , θk−1) ∈ Θ, by:

d2(x1, x2) = · · · = (∂θlogf̂(x1|θ)− ∂θlogf̂(x2|θ))tG−1(θ)(∂θlogf̂(x1|θ)− ∂θlogf̂(x2|θ))
(5)

where ∂θlogf(x|θ) =
(
∂logf(x|θ)

∂θ1
, · · · , ∂logf(x|θ)∂θk−1

)
, and G−1(θ) = 1

4(Ik−1 − θθt) is the

inverse of the Fisher information matrix, with Ik−1 the identity matrix.
The decision rule to select a gene i as being expressed will be that Zi is, in some

way, far away from f0.
Based on the previous distance we propose the following steps to select differen-

tially expressed genes:

(1) For each gene i compute the score Zi following (1), i = 1, . . . , N .
(2) For each gene i compute a set of B zi’s using (1) but randomly permuting

the sample labels. Here B is the number of permutations.
(3) Estimate the null distribution f0 using the set of B ·N zi’s scores generated

from all the genes, as explained in section 2.3.
(4) Compute the test statistic dZi = d(Zi, 0), and dzi = d(zi, 0) as in (5), taking

f̂0 as the reference distribution.
(5) We decide that the gene i is expressed if dZi >= c, for some c.
(6) For this c, we can estimate the False Discovery Rate (FDR) using:
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ˆFDR(c) =
1

B
#dzi≥c

#dZi≥c

The correct choose of c will give a value of the FDR under some previously set
value.

2.4.2. MMM Method

Based on [5], [6] suggests the LR statistic:

LR(Z) =
f0(Z)

f(Z)
(6)

And two alternatives to set the cut-off for gene selection:

• Directly (lr): A large value of LR(Z) gives no evidence against H0, thus a too
small value leads to rejecting H0. The rejection region RR(α) is obtained as:
α =

∫
LR(Z)<s f0(Z)dz

• Using only the f0 distribution (tail): Choosing the rejection region as the two
tails of f0. The rejection region RR(α) is obtained as: α =

∫
|Z|>t f0(Z)dz

3. Results

3.1. Simulation results

In this section we use simulations to assess the performance of the STP method
in comparison to the MMM approach using the EM-algorithm in both tail and lr
alternatives to set the cut-off for gene selection. The distribution of all Z statistics
has been modeled through

f(z) = (1− p)f0(z) + pf1(z), (7)

where f0(z) stands for the standard normal density and

f1(z) = 0.5fm−(z) + 0.5fm+, (8)

where fm+ and fm− denote the normal densities of mean m and −m respectively
and with a standard deviation of 1. So we are supposing that the distribution of f
is symmetrical around 0 with heavy tails for the f1 distribution.
Those Z generated under f1 represent genes differentially expressed among the

conditions, whereas Z generated from f0 are genes with no changes in their expres-
sion.
We have considered several values for m and p, in particular m = 1.5, 2, 2.5 and

p ranging from 0.1 to 0.5. For each combination of parameters 1000 samples were
generated, each one consisting of N=5000 values (genes) of Z and for each sample
all three estimations: STP, MMM-tail and MMM-lr have been computed.
Once differential expression has been accepted or rejected for each sample fol-

lowing Section 2, we have assess the performance of each estimation method by
computing the false discovery rate (FDR) and the power. Results are shown in
Figure 1 and Figure 2 respectively.
From the results we conclude that STP and MMM-lr show a similar behavior in

terms of false discovery rate and power. MMM-tail shows a quite different result
with a higher FDR and also a higher power under all situations. As expected,
increasing the distance between f0 and f1 (that is increasing the absolute value of
m) causes a decrease in the FDR and an increase of the power in all the simulations.
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Figure 1. FDR results for the three estimations.

It is also interesting to note that as the percentage of differentially expressed genes
(p) increases, FDR decreases and power increases in all three methods. The results
show that MMM-tail method do not achieve good results in the control of FDR
in all situations studied, and if we have to choose between STP and MMM-lr our
preference goes to STP since in the process of estimation it is not necessary to fix
a determined number of mixture terms and also the selection of the final model is
based on a likelihood test rather than a BIC criterion. STP method also offers the
possibility of defining a natural distance between objects (genes) that we consider
is a real advantage in front of other methods.

3.2. Real data

We have used the proposed method with data from an experiment involving the
study of a treatment applied to mice. Nine Affymetrix chips were made from treated
mice and nine from control samples. After appropriate preprocessing, normalization
and filtering of data, we worked with approximately 2500 genes. For each of these
genes Zi is estimated according to the formula (1). From B = 100 permutations

a set of B zi ’s was obtained for each gene to estimate f̂0(x). Once obtained the
estimation we computed the distances dZi and dzi. Figure 3 shows a diagram of the
method. Table 1 shows the estimation of f0 and in Figure 4 we show the boxplots
of the obtained distances.
As the method allows the calculation of a distance between two points of the

sample space, we have calculated the matrix of distances and we have obtained
a two dimensional representation by classical multidimensional scaling. The result
is shown in Figure 5. In red are shown the points corresponding to the 20 genes
with greater differential expression according to the method proposed. The first
component explains 99 % of the total variability.
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Figure 2. Power results for the three estimations.

Figure 3. Flowchart of the process.

4. Conclusions

• MMM-lr and STP have a similar behavior in terms of FDR and POWER.

• MMM-tail performs better in POWER but not in FDR.

• As the percentage of differentially expressed genes increases FDR decreases and
POWER increases in all three methods.

• MMM-lr could be a good approach since it uses f and f0 but the problem is that
its behavior is very unstable, giving computing problems in many simulations.
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Table 1. Coefficients of f̂0 in f̂0 =[∑10
i=0 θihi(x)

]2
.

i θi

0 0.99937
1 0
2 -0.00499
3 0.01005
4 0.03064
5 0.00973
6 0.00814
7 0.00248
8 0.00470
9 0.00251
10 0

Figure 4. Boxplots of distances.

Figure 5. Multidimensional scaling from the distance matrix between the Zi’s. Circled points indicate the
points corresponding to differentially expressed genes.

• STP estimation does not need to set a determined number of terms of the model,
the selection of the final model is based on a likelihood test.

• STP method offers the possibility of defining a natural distance between objects
(genes) that we consider is a real advantage in front of other methods.

• The possibility of calculating a distance allows the selection of differentially
expressed genes based on it and a graphical representation of the genes in a
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reduced dimension.

References
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