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many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of
the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation
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I. INTRODUCTION

The study of two-dimensionals2Dd quantum many-body
systems is a subject of considerable interest both from the
theoretical and the experimental points of view. Atomic he-
lium monolayers have attracted much attention in these re-
spectsf1g, and recently Bose-Einstein condensationsBECd in
a strongly asymmetrical, quasi-two-dimensional trap has
been achievedf2,3g. In a homogeneous 2D gas the one-body
density matrix acquires a power law decay below some low
critical temperature,T,Tc f4g and, atT=0, its r →` limit
differs from zero. This behavior defines a true condensate
and BEC can occur in such a limit. The modified density of
states in confined geometry, as it is the case for atoms in
harmonic traps, makes BEC appear even at finite temperature
in 2D f5,6g.

In a recent paperf7g, referred to as I hereafter, we have
examined the structure of the ground state of a 3D homoge-
neous gas of bosons, interacting through both hard and soft
core potentials. The study was carried out to enlighten the
role of the interaction induced correlations along the density
of the system and the possible occurrence ofuniversalityin
the dependence of different properties on the gas parameter,
x=na3 sn being the particle density anda thes-wave scatter-
ing lengthd. The calculations were performed within the cor-
related basis functionssCBFd theory, using optimized Ja-
strow correlated wave functionsf8g. The results were in
excellent agreement with the existing diffusion Monte Carlo
sDMCd f9g ones, obtained by the exact stochastic solution of
the many-body Schrödinger equation. Moreover, the reliabil-
ity sand limitationsd of the analytical expansions inx of the
energy per particle and of the condensate fraction were
clearly assessedf10g.

In this work we use the same variational approach to
study theT=0 ground state of a homogeneous gas ofN
→` hard diskssHDd of radiusa. We pay particular attention
to the long-range structure of the wave function, which is in
turn intimately related to the long-range order of the density
matrix and to the condensate fraction.

At present, there are not published DMC results for these
systems in the literature. However, based on the 3D case
experience we believe that the variational approach may pro-
vide a very accurate description of the 2D ground state prop-
erties and serve as a test of validity for the available low
density expansionssLDEd. This fact may be of relevance
also to the study of BEC in 2D harmonic traps, since LDE
are related to the Gross-Pitaevskii equation and its modifica-
tion f11g. LDE for the energy per particle in terms of the 2D
gas parameter,x=na2, have been derived by several authors,
starting from the leading orderf12g:

ELO

N
=

4px

ulnsxdu
, s1d

where the energy is in units of"2/2ma2.
An interesting question, that we do not address in this

paper, is the insurgence and the degree of universality in 2D.
In the 3D Bose gas a dependence in the energy on the shape
of the potential appears already atx,0.001 f7,9,13g, and
breaks down earlier for quantities other than the energy, as
the short range structure of the distribution function and the
condensate fraction. A similar study for the 2D gas would be
of great interest by itself and also in view of the analysis of
the quasi-2D BEC experiments in terms of the Gross-
Pitaevskii equation.

In the case of strong interactions, as a hard-core potential,
correlation effects are crucial. Within CBF theory they are
included by means of a many-body correlation operator,
Fs1,2, . . . ,Nd, acting on the noninteracting ground-state
wave function,F0s1,2, . . . ,Nd f8g:

C0s1,2, . . . ,Nd = Fs1,2, . . . ,NdF0s1,2, . . . ,Nd, s2d

with F0=1 for homogeneous bosons.F may be determined
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according to the variational principle by minimizing the
ground-state energy.

In I a Jastrow correlation operator was considered,

F = CJs1,2, . . . ,Nd = p
i, j

fsr ijd, s3d

where the two-body correlation function,fsr ijd, depends on
the interparticle distance,r ij = zr i −r jz, vanishes forr ij øa and
goes to unity at large distances. Expectation values of opera-
tors on the Jastrow correlated wave function correspond to
multidimensional integralsswe consider only operators de-
pendent on the spatial coordinatesd which can be either di-
rectly evaluated by Monte Carlo type integrationssvaria-
tional Monte Carlo, VMCd or expanded in cluster diagrams.
The hypernetted chainsHNCd set of integral equations al-
lows for summing an infinite number of diagrams, but it can
be only approximately solved, since the class of theelemen-
tary diagrams is not summable in a closed wayf14g. The
approximation amounting to disregard the elementary dia-
gramssHNC/0d is expected to be reliable in the low density
regime, as shown in I.

In this paper we consider a system ofN spinless bosons of
massm on a surfaceS, described by the Hamiltonian

H = −
"2

2m
o
j=1

N

¹ j
2 + o

1=i, j

N

Vsr ijd, s4d

whereVsrd is a two-body, symmetric hard-disk potential,

Vsrd = H`, r , a,

0, r . a,
J s5d

and the radiusa corresponds, for this potential, to the 2D
scattering length. We consider the system in the thermody-
namic limit sN andS→`, keeping the density,n=N/S, con-
stantd.

Minimization of the energy with respect tofsrd provides
the optimal Jastrow factor, which can be obtained through
the solution of the Euler-LagrangesELd equationf15,16g,
dEffg /df =0. We adopt here the HNC/0 energy functional to
solve the EL equation. The resulting correlation,fELsrd,
shows a very long range structureffELsr →`d→1−a / r, with
a constantg not easily accessible to VMC, due to the limited
size of the simulation box. As a consequence we have also
used a parametrized shorter range correlation factor, suitable
to be used in VMC and whose parameters are variationally
fixed. The comparison between the HNC/0 and VMC calcu-
lations with this short range correlation provides a check of
the accuracy of the truncation in the cluster expansion. Dif-
fusion Monte Carlo is also likely to suffer from the long
range behavior of the wave function, as these fine structures,
related to collective effects, are hardly distinguishable by
numerical, finite size simulations.

The plan of the paper is as follows: the correlated varia-
tional theory and its implementationsHNC and Euler equa-
tionsd are briefly outlined in Sec. II; an analysis of the EL
asymptotic behaviors is presented in Sec. III; Sec. IV pre-
sents the results for the HD model; while summary and con-
clusions are given in Sec. V.

II. VARIATIONAL THEORY

Given the Jastrow correlated wave functions3d, the en-
ergy per particle of the 2D homogeneous Bose gas is

E

N
=

1

2
nE dr 12gsr12dFVsr12d −

"2

2m
¹2 ln f2sr12dG . s6d

This expression simplifies for the HD potentials5d, since the
radial distribution functionsRDFd,

gsr12d =
NsN − 1d

n2

E dr 3dr 4 . . .dr NuC0u2

E dr 1dr 2 . . .dr NuC0u2
, s7d

vanishes inside the core of the potential and only the kinetic
part contributes to the energy.

The HNC equations provide a procedure to evaluategsrd,

gsr12d = f2
2sr12deNsr12d+Esr12d,

Nsr12d = nE dr 3fgsr13d − 1gfgsr32d − 1 −Nsr32dg, s8d

whereNsrd and Esrd are functions representing the sum of
the nodal and theelementarydiagrams, respectivelyf14g.
The functionEsrd is an input to the HNC equations, which
can be solved once a choice for it has been done. The sim-
plest possible approximation corresponds to setEsrd=0
sHNC/0d. This apparently drastic truncation is, however, jus-
tified at low densities since the elementary diagrams, due to
their high connectivity, do not appreciably contribute at the
low densities relevant to BEC experiments. Otherwise, the
energy and the RDF can be stochastically evaluated by
Monte Carlo sampling of the corresponding many-body in-
tegralss7d. The explicit calculation can be performed by us-
ing the standard Metropolis algorithmf17g ssee Ref.f18g for
a detailed description of Monte Carlo methodsd.

Connected to the RDF is the static structure function
sSSFd, Sskd,

Sskd = 1 +nE dreik·rfgsrd − 1g, s9d

often used in the analysis ofsand extractable, within some
approximations, fromd scattering experiments in condensed
matter physicsse.g., neutron scattering off liquid helium
f19gd.

The Bose condensate is linked to the nonzero, long-range
order of the one-body density matrixsOBDMd,
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n1sr 1,r 18d = n1sr118d = N
E dr 2dr 3 ¯ dr NC0s1,2, . . . ,NdC0s18,2, . . . ,Nd

E dr 1 ¯ dr NuC0u2
. s10d

In fact, n1sr118→`d /n=n0, wheren0 is the condensate frac-
tion. The depletion ofn0 with respect to unity is an unmis-
takable indication of interparticle interactionssand, as a con-
sequence, of correlationsd. The Fourier transform of the
OBDM provides the momentum distributionsMDd,

nskd =E dreik·rn1srd

= s2pd2nn0dskd +E dreik·rfn1srd − nn0g. s11d

As for the distribution function, the correlated OBDM can
be computed by using HNC theoryf20g. In fact,n1srd can be
expressed in terms of new nodal and elementary functions as

n1srd
n

= n0e
Nwwsrd+Ewwsrd, s12d

whereNwwsrd is the solution of a generalized HNC equation.
Again, settingEwwsrd=0 these equations can be solved in the
HNC/0 approximation.

An appropriate choice of the correlation factor is essential
for the effectiveness of the variational approach. As stated in
the Introduction, thebest choice is the one satisfying the
Euler-Lagrange equation,

dEfgg
dgsrd

= 0, s13d

which has been written in terms of the RDF rather thanfsrd,
since in the HNC/0 scheme there is a one-to-one correspon-
dence between these two quantities. The correlation function
can then be obtained by inversion of the HNC equations. The
EL equations are solved both in configuration and momen-
tum space, as discussed at length in I for the 3D hard-sphere
case. The theory can be straightforwardly applied to the 2D
hard-disks gas and it is briefly outlined in the Appendix.

The correlation function produced by the solution of the
EL equation shows a long-range structure that is discussed in
the next section. Finite size Monte Carlo techniques have
difficulties to correctly deal with this long range behavior
and correlations healing to unity inside the simulation box
are used. In this respect, we have also adopted a param-
etrized shorter-range correlation,fSRsrd, obtained by mini-
mizing the energy computed at the two-body order of the
cluster expansion,g2Bsrd= f2srd, constrained by a normaliza-
tion condition

d

dfsrdF1

2
nE dr f2srdS−

"2

2m
D¹2 ln fsrd + mnE dr f1

− f2srdgG = 0, s14d

which requires the use of a Lagrange multiplierm. The mini-
mization is performed under thehealing condition fSRsr
ùdd=1, while m is fixed by imposingf8sdd= f9sdd=0. The
healing distanced is taken as a variational parameter to mini-
mize the many-body energy.

For the particular case of the hard-core potential, the short
range correlation,fSRsrd, vanishes atr øa, while

fSRsa ø r ø dd =
Y0sladJ0slrd − J0sladY0slrd
Y0sladJ0sldd − J0sladY0sldd

, s15d

wherel=−4mm /"2 andJ0 andY0 are Bessel functions of the
first and second kind, respectively. In thed→` limit, fSR
coincides with the exact solution of the 2D zero energy
Schrödinger equation,fsrd~ lnsrd f21g.

III. ASYMPTOTIC BEHAVIORS

Applying to the 2D gas the sum-rule analysis of Ref.f8g,
it can be shown that the SSF at low momenta has a linear
dependence, similar to the 3D gas:

Ssk → 0d ,
"

2mc
k, s16d

wherec is the sound velocity in the medium. In terms of the
RDF and of the correlation function, it corresponds to a long
range behavior, different, however, from the 3D case where
sg3D−1d~1/r−4 and sf3D−1d~1/r−2 at larger values.

In fact, the 2D Fourier transform for a function,hsrd, with
circular symmetry can be written as

h̃skd = 2pnE
0

`

drrf srdJ0skrd, s17d

while hsrd is obtained fromh̃skd as

hsrd =
1

2pn
E

0

`

dkkh̃skdJ0skrd. s18d

Assuming thatH̃skd;kh̃skd is a well behaved function at
the origin, one finds
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hsr → `d =
H̃s0d

r
−

1

2

H̃IIs0d
r3 +

3

8

H̃IVs0d
r5 + ¯ , s19d

where only thek=0 values of the function and of its even
derivatives enter in the expansion.

The RDF is obtained fromSskd through

gsrd − 1 =
1

2pn
E

0

`

dkksSskd − 1dJ0skrd, s20d

so one readily obtains, from Eqs.s16d and s19d, the
asymptotic limit

gsr → `d = 1 −
1

2pn

"

2mc

1

r3 . s21d

By inverting the HNC/0 equationss8d one finds for the
nodal and correlation functions the following limits:

Nsr → `d → 1

2pn

2mc

"

1

r
s22d

and

fsr → `d → 1 −
1

4pn

2mc

"

1

r
, s23d

showing that in 2D, correlations have longer range than in
3D.

The long range structure of the OBDM is derived from
the previous expressions and the HNC equations. In fact,
given the structures23d we obtain forNvvsrd

Nwwsr → `d =
1

4pn

mc

"

1

r
, s24d

and for the OBDM

n1sr → `d
n

= n0 + n0
1

4pn

mc

"

1

r
. s25d

The momentum distribution has the same long-
wavelength limit shown in 3Df22g, namely

lim
k→0

knskd =
n0

2

mc

"
. s26d

IV. RESULTS

In this section we present and analyze results for the en-
ergy, radial distribution function, static structure function and
one-body density matrix of the hard-disks gas. We have used
the optimized Jastrow wave function obtained from the so-
lution of the Euler-Lagrange equations and the short-range
correlation of Eq.s15d, mainly to establish a comparison
between the HNC/0 and the VMC approaches. In the follow-
ing, dimensionless quantities will be used: energies and dis-
tances will be given in units of"2/2ma2 anda, respectively.

Several corrections toELO have been proposed in the lit-
erature. Kolomeisky and Straleyf23g used renormalization
group techniques to study the ground state of dilute Bose

systems as a function of the space dimensionality. They
found a general expression, valid for strong interactions
whenx→0, that simplifies for hard disks to

EKS

ELO
= −

ulnsxdu
lns4pxdF1 −

ln„− lns4pxd…
lns4pxd G . s27d

Cherny and Shanenkof24g derived an alternative expan-
sion,

ECS
sud

ELO
= ulnsxduFu +

u2

2
+ ¯ G , s28d

in the parameteru satisfying the equations:

u = ds1 + u ln ud, d = −
1

lnspxd + 2g
, s29d

whereg=0.577. . . is the Euler constant. These authors also
gave an expansion ofu in terms ofd, allowing us to write the
seriess28d in the form

ECS
sdd

ELO
= ulnsxduFd + d2 ln d +

d2

2
+ d3 ln2 d + 2d3 ln d + ¯ G .

s30d

Table I reports the energy per particle as a function ofx in
the EL approximationsEL/HNCd, the variational Monte
Carlo calculation starting fromfSRsrd sSR/VMCd and the
HNC approach with the same correlation functionsSR/
HNCd. We remind that the HNC/0 approximation is used
everywhere but in the VMC. The results of thex expansions
previously discussed are also reported.

The comparison between SR/VMC and SR/HNC shows
that the influence of the missing elementary diagrams on the
energy is less than 1%, except at the highest value
x=0.1 s,2.3%d. This gives us confidence that the varia-
tional principle is mostly satisfied within our HNC/0 calcu-
lations, providing the hierarchy:EexactøEELøESR. Only at
x=0.1 these inequalities do not numerically hold. The cases
x=10−5 and x=5310−2 can be considered to fulfill the in-
equalities if we take into account the numerical accuracy
associated to the calculation at these quantities. If we esti-
mate the contribution of the elementary diagrams onEEL by
scaling it by the ratioESR

VMC/ESR
HNC, we obtainEEL/Nsx=0.1d

=0.9075, restoring all the inequalities.
Lieb f25g pointed out that a lower bound to the exact

energy is given by

Elow = ELOf1 − O„ulnsxdu−1/5
…g, s31d

and thatEexact/ELO→1 whenx→0. Both the variational en-
ergiessEL and SRd comply with conditions31d and seem to
tend toEexact whenx goes to zero.

Table I gives also the healing distance,d, of the SR cor-
relation in units ofa. d increases whenx→0, the Lagrange
multiplier decreases and the energy goes to zero. Therefore,
fSRsrdx→0 can be approximated by itsl=0 limit, which co-
incides with the zero energy limit of the two-body
Scrödinger equation,
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fSRsrdl→0 → lnsrd
lnsdd

. s32d

These results are also shown in Fig.s1d, where the varia-
tional scaled energies per particlesEL, SR/VMC, and SR/
HNCd are compared with theEKS and ECS estimates. All
energies have been divided byELO in order to stress the
deviations from the low-density limit. The limit is ap-
proached byEEL andESR from above whenx decreases, al-
though it has not been yet fully reached atx=10−5. The dif-
ferences between the variational and the low density energies
are still visible, even in the density range relevant to BEC
experimentsf3g.

EKS does not satisfy thex=0 lower bounds31d and, start-
ing from x<0.005, becomes higher than the variational up-
per bound provided byEEL and ESR. ECS satisfies the low
density limit, but lies above the variational upper bounds at
any value ofx. ECS

sud is always larger thanECS
sdd and the differ-

ence increases drastically alongx. Notice that Eq.s29d does
not have solution atxù0.0369.

The EL optimization procedure does not significantly af-
fect the energies obtained withfSRsrd, since the energy is
dominated by the short range structure of the HD potential,

requiring gsrd to vanish inside the core. The effects of the
long range structure of the EL correlation are, instead, clearly
evident in the behavior of the radial distribution function.

The EL RDF is shown in Fig.s2d for different values ofx.
At low x, gELsrd is a monotonically increasing function of the
distance. However, it develops a local maximum close to the
core radius at densitiesx.0.01. This is a genuine many-
body effect induced by the strong correlations at high den-
sity. The same behavior was found in I for the 3D Bose gas.
As expected, the correlation hole is more pronounced at
larger densities.

The long range limit ofgELsrd is shown in Fig. 3 atx
=0.01 andx=0.1. The quantity shown isxr3(gsrd−1) whose
dimensionless asymptotic limit is

xr3fgsr → `d − 1g = −
1

2pc
. s33d

This ratio is smaller atx=0.1, implying that the sound ve-
locity increases withx, as expected. Consistent with the pre-
vious figure, the asymptotic limit is reached faster at larger
densities. Figure 4 gives the EL correlation and the nodal
function, Nsrd, at x=0.001. We showfxr(1− fELsrd)g and
fxrNsrdg to enlighten the asymptotic limitss23d and s22d
whose dimensionless values arec/4p and c/2p, respec-

TABLE I. Energy per particle for the hard disk model, as a function ofx. EEL is obtained by solving the HNC/0 EL equation;EVMC and
ESR are the VMC and HNC/0 energies with the SR correlation having a healing distanced, in units of the scattering length.eVMC is the
statistical error in the variational Monte Carlo calculation. The last four columns give the energies in different low density expansionsssee
textd.

x EEL/N ESR
VMC/N eVMC ESR

HNC/N d ELO/N EKS/N ECS
sud /N ECS

sdd /N

10−5 1.103310−5 1.100310−5 2.47310−7 1.106310−5 1135.52 1.091310−5 1.057310−5 1.123310−5 1.117310−5

5310−5 6.482310−5 6.685310−5 2.44310−6 6.542310−5 495.70 6.344310−5 6.231310−5 6.670310−5 6.610310−5

10−4 1.405310−4 1.415310−4 2.20310−6 1.417310−4 344.15 1.364310−4 1.346310−4 1.453310−4 1.436310−4

5310−4 8.752310−4 8.952310−4 2.03310−5 8.851310−4 153.49 8.266310−4 8.425310−4 9.212310−4 9.007310−4

10−3 1.961310−3 1.979310−3 2.87310−5 1.991310−3 104.54 1.819310−3 1.903310−3 2.090310−3 2.026310−3

5310−3 1.362310−2 1.383310−2 8.80310−5 1.378310−2 46.33 1.186310−2 1.435310−2 1.550310−2 1.446310−2

10−2 3.273310−2 3.303310−2 1.30310−4 3.316310−2 33.41 2.729310−2 3.928310−2 4.998310−2 3.660310−2

5310−2 0.3037 0.3031 0.00089 0.3081 17.82 0.2097 3.5818 NA NA

0.1 0.9252 0.9204 0.003 0.9384 15.66 0.5458 NA NA NA

FIG. 1. Scaled energy per particle of the HD gas as a function of
x. Solid circles: EL/HNC; open squares: SR/HNC; open diamonds:
SR/VMC; stars, pluses, and crosses: low density expansions,KS,
CSsud, andCSsdd, respectively. Notice that diamonds are hardly dis-
tinguished from the solid circles.

FIG. 2. EL radial distribution functionsgsrd for 2D hard disks at
several values ofx. Solid, dot-dashed, long-dashed, and short-
dashed lines stand forx=0.1, 0.01, 0.001, and 0.0001, respectively.
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tively. The fact that one limit is twice the other is clearly
appreciated in the figure. Notice also that due to the chain
process implied by the HNC scheme,Nsrd merges to the 1/r
law at larger distances thenfsrd. To illustrate the different
asymptotic behaviors, we also showfxr(1− fSRsrd)g which
goes quickly to zero.

The EL static structure function,Sskd, is shown in Fig. 5.
At low densities the SSF reaches the asymptotic value,
Sskd→1, already atk,1. As in the RDF case, the overshoot-
ing of the SSF at the highest density,x=0.1, is a consequence
of the correlations. The linear regime ofSskd around the
origin is appreciable, although the calculation of the ratio
Sskd /k shows deviations from a constant value already at low
k.

In Fig. 6 we plot the one-body density matrix,n1srd, in the
EL approach forx=0.01, 0.005, and 0.001. The asymptotic
limit of n1srd defines the value of the condensate fraction,
which decreases when the gas parameter increases. The
asymptotic value is reached faster whenx increases. The
detailed long-range behaviors25d is presented in Fig. 7 by
showing the quantityrfn1srd / sn0nd−1g, whose dimensionless
asymptotic value isc/ s8pxd. Even if the speed of sound
increases withx, the value of this limit is dominated by the
presence of the gas parameter in the denominator and the
overall quantity increases whenx decreases. Finally, the EL
and SR/VMC condensate fractions,n0sxd, are reported in
Fig. 8. The figure also contains the low-density prediction
f12g

n0
LD = 1 +

1

lnsxd
. s34d

n0
LD appears to sensibly overestimate the condensate fraction.

The EL and SR/VMC condensate fractions are very similar
except for the largest value ofx reported in the figure, where
the contribution of the elementary diagrams could be impor-
tant. This fact indicates that the value ofn0 is not very much
affected by the inclusion of a long-range structure into the
correlation function. However, the use offELsrd is crucial to
approach this value in a proper way, that is, to satisfy Eq.
s25d. Also reported in the figure is the condensate fraction of
the 3D system of hard spheres, taken from I. At fixedx, the
2D condensate fraction is smaller than the 3D one, indicating
that correlations in the 2D system arestronger, thus promot-
ing more particles outside the zero-momentum state.

V. SUMMARY AND CONCLUSIONS

In this work we have analyzed the energy and structure of
a homogeneous gas of bosons in two dimensions interacting
via a hard disk potential whose core radius equals its corre-
sponding 2D scattering length. We have adopted a variational
many-body approach, based on a Jastrow correlated ground
state wave function. The expectation values have been com-
puted both in the framework of the hypernetted chain theory
swithin the HNC/0 approximationd and with the variational

FIG. 5. EL static structure factor,Sskd, at several values ofx.
Solid line: x=0.1; dashed line:x=0.01; dot-dashed line:x=0.001;
dotted line:x=0.0001.

FIG. 6. EL one-body density matrices at several values ofx.
Solid line: x=0.01; dashed line:x=0.005; dotted line:x=0.001.
Open circles, SR/VMC results atx=0.005.

FIG. 3. Long range structure of the ELgsrd at x=0.1 sdashed
lined andx=0.01 ssolid lined.

FIG. 4. EL correlationssolid lined, SR correlationsdot-dot-
dashed lined, and nodalsdashed lined functions atx=10−3.
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Monte Carlo method. Two types of correlation functions
have been used:sid a long range one, obtained by the free
minimization of the HNC/0 ground state energy and preserv-
ing the correct asymptotic behaviors of the wave function;
sii d a short range one, to be used in the Monte Carlo sam-
pling and providing a check of the accuracy of the cluster
expansion.

By comparing with the VMC results, the accuracy of the
HNC/0 energies are better than 1%, except at the highest
density,x=0.1, where the error is still less than 3%. The EL
minimization lowers the energy with respect to the SR cor-
relation by,1.5%. We do not expect further large reductions
from a complete DMC calculation. The low density expan-
sions start to severely deviate from the variational results
already atx,0.001, and the most accurate of them appears
to be the Cherny and Shanenko expansion in terms of the
parameterd. However, their use for estimating corrections to
the 2D Gross-Pitaevskii equation, especially in the large gas
parameter regime, seems questionable.

Finally, the condensate fractions lies well below the val-
ues predicted by the low density theories and also below the
results for the three dimensional gas of hard spheres at the
same gas parameter.

We conclude that the variational theory is a powerful and
reliable tool to study dilute systems, also in 2D. Moreover,
the homogeneous gas results may be used in a local density

type approximationf11g to analyze bosons in two dimen-
sional harmonic traps.
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APPENDIX

In this appendix we discuss the EL equations for an inter-
acting many-body system in 2D. As in the 3D case, the so-
lution to the optimization equation,

dEfgg
dgsrd

= 0, sA1d

can be obtained in momentum space, yielding

Sskd =
tskd

Ît2skd + 2tskdVphskd
, sA2d

wheretskd="2k2/2m is the free-particle energy spectrum and
Vphskd is the particle-hole interaction. The latter can be ex-
pressed in configuration space and reads, disregarding the
contribution of elementary diagrams,

Vphsrd = gsrdVsrd +
"2

m
u ¹ Îgsrdu2 + fgsrd − 1gvIsrd,

sA3d

in terms of the induced interactionvIsrd. In momentum
space, we have

vIskd = −
1

2
tskd

f2Sskd + 1gfSskd − 1g
Sskd

. sA4d

Equations sA2d–sA4d are to be solved simultaneously.
This can be done starting from a suitable choice forgsrd,
performing its FT to getSskd, evaluatingvIskd and Vphsrd,
and then deriving a newSskd with the help of Eq.sA2d. This
procedure is iterated until the difference between two con-
secutive iterations is as small as desired.

Up to this point there are no formal differences between
the 2D and 3D cases. The main deviation is the way in which
the Fourier transforms are carried out. In 2D and for a gen-
eral function,fsrd, the FT and its inverse read

fskd = 2pnE
0

`

drrf srdJ0skrd, sA5d

fsrd =
1

2pn
E

0

`

dkkfskdJ0skrd, sA6d

where n is the sconstantd density andJ0sxd the zero order
Bessel function of the first kind. One way to implement these

FIG. 7. Long range behavior of the EL one-body density matrix
at several values ofx. Solid line: x=0.01; dashed line:x=0.005;
dotted line:x=0.001.

FIG. 8. Condensate fraction as a function ofx. Black circles,
triangles, and solid line correspond to the EL/HNC, SR/VMC, and
low-density expansion results, respectively. Open squares stand for
the corresponding 3D values taken from I.
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transformations is to use a finite box in configuration and
momentum spaces of lengthL and K, respectively. The ad-
ditional conditionsfsr =Ld=0 and fsk=Kd=0 lead to a dis-
cretized set of coordinates and momenta, related to the zeros
l j of J0sxd through the relations

kj =
l j

L
, ra = L

la

lN
, sA7d

with j ,a=1,2, . . . ,N, N being the total number of points in
the grids. A Gauss integration rule based on series expansion
in Bessel functions and the orthogonality relation,

E
0

L

drrJ0skirdJ0skjrd =
2

L2J1
2skjLd

di j , sA8d

can then be built, leading to

E
0

L

drrf srdJoskjrd = o
a=1

N

vaJ0skjradfsrad,

E
0

K

dkkfskdJ0skrad = o
j=1

N

v jJ0skjradfskjd, sA9d

with the integration weights

va =
2L2

lN
2J1

2slad
, v j =

2

L2J1
2sl jd

. sA10d

EquationssA9d turn integrals into algebraic products that
can be carried out numerically in a neat and fast way using
available standard libraries.
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