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Ground-state properties of a dilute homogeneous Bose gas of hard disks in two dimensions
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The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational
many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of
the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation
obtained by a free minimization of the hypernetted chain energy functional. Our results show important
deviations from those of the available low density expansions, already at gas parametekvelu@dl. The
condensate fraction in 2D is also computed and found generally lower than the 3D one at the same
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[. INTRODUCTION At present, there are not published DMC results for these
systems in the literature. However, based on the 3D case

The study of two-dimensionaRD) quantum many-body e_xperience we believe that. th_e variational approach may pro-
systems is a subject of considerable interest both from th¥ide a very accurate description of the 2D ground state prop-
theoretical and the experimental points of view. Atomic he-€rties and serve as a test of validity for the available low
lium monolayers have attracted much attention in these redensity expansion¢LDE). This fact may be of relevance
spectg1], and recently Bose-Einstein condensaiBiC) in  @ls0 to the study of BEC in 2D harmonic traps, since LDE
a strongly asymmetrical, quasi-two-dimensional trap had'® related to the Gross-Pitaevskii equation and its modifica-
been achievef,3]. In a homogeneous 2D gas the one-bodytion [11]. LDE for the energy per patrticle in terms of the 2D
density matrix acquires a power law decay below some low@s parametek=na’, have been derived by several authors,
critical temperatureT <T, [4] and, atT=0, itsr — limit  Starting from the leading ord¢f2]:
differs from zero. This behavior defines a true condensate
and BEC can occur in such a limit. The modified density of

states in confined geometry, as it is the case for atoms in Eio _ 4ax )
harmonic traps, makes BEC appear even at finite temperature N [Inx)|’
in 2D [5,6].

In a recent papel7], referred to as | hereafter, we have
examined the structure of the ground state of a 3D homogenhere the energy is in units @f/2mé.
neous gas of bosons, interacting through both hard and soft An interesting question, that we do not address in this
core potentials. The study was carried out to enlighten th@aper, is the insurgence and the degree of universality in 2D.
role of the interaction induced correlations along the densityn the 3D Bose gas a dependence in the energy on the shape
of the system and the possible occurrenceimf/ersalityin of the potential appears already »t0.001[7,9,13, and
the dependence of different properties on the gas parametgjreaks down earlier for quantities other than the energy, as
x=na® (n being the particle density aralthe s-wave scatter-  the short range structure of the distribution function and the
ing length. The calculations were performed within the cor- condensate fraction. A similar study for the 2D gas would be
related basis function$CBF) theory, using optimized Ja- of great interest by itself and also in view of the analysis of
strow correlated wave functiong8]. The results were in  the quasi-2D BEC experiments in terms of the Gross-
excellent agreement with the existing diffusion Monte Carlopitaevskii equation.
(DMC) [9] ones, obtained by the exact stochastic solution of |n the case of strong interactions, as a hard-core potential,
the many-body Schrodinger equation. Moreover, the reliabilcorrelation effects are crucial. Within CBF theory they are
ity (and limitationg of the analytical expansions kof the included by means of a many-body correlation operator,
energy per particle and of the condensate fraction weréF(1,2,... N), acting on the noninteracting ground-state
clearly assess€d0]. wave function,®y(1,2,... N) [8]:

In this work we use the same variational approach to
study theT=0 ground state of a homogeneous gasNof
— oo hard diskgHD) of radiusa. We pay particular attention Vo(1,2,...N)=F(1,2, ... ND(1,2, ... N), (2
to the long-range structure of the wave function, which is in
turn intimately related to the long-range order of the density

matrix and to the condensate fraction. with ®,=1 for homogeneous bosong.may be determined
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according to the variational principle by minimizing the Il. VARIATIONAL THEORY
ground-state energy. _ _
In | a Jastrow correlation operator was considered, Given the Jastrow correlated wave functi(8), the en-

ergy per particle of the 2D homogeneous Bose gas is
F=Wy1,2,...N) = ]‘[ f(ry), ©)
i<j
where the two-body correlation functiofir;;), depends on
the interparticle distance;;=|r;-r |, vanishes for;; <a and
goes to unity at large distances. Expectation values of opera-
tors on the Jastrow correlated wave function correspond td@his expression simplifies for the HD potent{&), since the
multidimensional integral§we consider only operators de- radial distribution functiofRDF),
pendent on the spatial coordingteghich can be either di-
rectly evaluated by Monte Carlo type integratiofaria-

E_1 fd \Y, _ﬁ_2V2| f 6
N_2n r129(r12)| V(rip) m nfyry)|. (6

tional Monte Carlo, VMQ or expanded in cluster diagrams. J dradr ... dr W2

The hypernetted chaifHNC) set of integral equations al- N(N-1)

lows for summing an infinite number of diagrams, but it can g(rip) = 2 , (7)
be only approximately solved, since the class ofdleamen- f drdr,...dry|Wol?

tary diagrams is not summable in a closed wdy]. The

approximation amounting to disregard the elementary dia-

grams(HNC/0) is expected to be reliable in the low density vanishes inside the core of the potential and only the kinetic
regime, as shown in I. part contributes to the energy.

In this paper we consider a systemMBpinless bosons of The HNC equations provide a procedure to evalggie,
massm on a surfaces, described by the Hamiltonian

z2 N N F15) = F2(1 1) @M1 +E(D)
H=-—> VJ-2+ > V(ry), (4) 9(r1p) = f5(r1p)
2mi5 1=i<j
whereV(r) is a two-body, symmetric hard-disk potential,
N(rip = nf drafg(rid — 1[g(rz) =1 =N(rzp)], (8)
V=1 o (5)
o, r>a,

whereN(r) and E(r) are functions representing the sum of
the nodal and theelementarydiagrams, respectivel{/14].
YThe functionE(r) is an input to the HNC equations, which
can be solved once a choice for it has been done. The sim-
plest possible approximation corresponds to E¢t)=0
h(HNC/O). This apparently drastic truncation is, however, jus-
tified at low densities since the elementary diagrams, due to
their high connectivity, do not appreciably contribute at the
) . . low densities relevant to BEC experiments. Otherwise, the
:ﬁ:;/v?/stzt\e/elrz;loigurjrl]%r; S;Zit&?;u(lrtigw)Cgfrlela;'/c:@*;\sirt)ﬁ energy and the R!:)F can be stochastipally evaluated. by
. _ ' F7 Monte Carlo sampling of the corresponding many-body in-
a constant not easily accessible to VMC, due to the limited tegrals(7). The explicit calculation can be performed by us-

size of the simul_ation box. As a consequence we have_ a|Sﬁ)]g the standard Metropolis algorithii7] (see Ref[18] for
used a parametrized shorter range correlation factor, suitable yatailed description of Monte Carlo methnds

to be used in VMC and whose parameters are variationally connected to the RDF is the static structure function
fixed. The comparison between the HNC/0 and VMC calcu-f(SSF), SK),

lations with this short range correlation provides a check o

the accuracy of the truncation in the cluster expansion. Dif-

fusion Monte Carlo is also likely to suffer from the long ,

range behavior of the wave function, as these fine structures, Sk =1 +”f dre"[g(r) - 1], 9
related to collective effects, are hardly distinguishable by

numerical, finite size simulations.

The plan of the paper is as follows: the correlated varia-often used in the analysis dand extractable, within some
tional theory and its implementatidiiNC and Euler equa- approximations, fromscattering experiments in condensed
tions) are briefly outlined in Sec. II; an analysis of the EL matter physics(e.g., neutron scattering off liquid helium
asymptotic behaviors is presented in Sec. Ill; Sec. IV pre{19]).
sents the results for the HD model; while summary and con- The Bose condensate is linked to the nonzero, long-range
clusions are given in Sec. V. order of the one-body density matrifoBDM),

and the radiusa corresponds, for this potential, to the 2D
scattering length. We consider the system in the thermod
namic limit (N andS— <, keeping the density)=N/S, con-
stany.

Minimization of the energy with respect tdr) provides
the optimal Jastrow factor, which can be obtained throug
the solution of the Euler-Lagrangé&L) equation[15,16,
SE[f]/5f=0. We adopt here the HNC/O energy functional to
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fdrzdrs"‘ dI’N‘Po(l,Z, N)\Po(l,,z, ,N)

Ny(ry,ry) =my(rip) =N (10

J dl’l' .t drN|\If0|2
[

In fact, ny(ry1, —°)/n=ny, wheren, is the condensate frac- S |1 ) A2 5

tion. The depletion of, with respect to unity is an unmis- % Enf drf (r)(— En)v Inf(r) +M”fdr[1

takable indication of interparticle interactiofend, as a con-

sequence, of correlationsThe Fourier transform of the 2 _

OBDM provides the momentum distributiqgiviD), -] =0, (14)

_ which requires the use of a Lagrange multiplierThe mini-
n(k) :f dre*ny(r) mization is performed under thkealing condition &xr
=d)=1, while u is fixed by imposingf’(d)=f"(d)=0. The
0 healing distance is taken as a variational parameter to mini-
= (2m)nneak) +f dre* Iy =nnel. (11 ize the many-body energy.
For the particular case of the hard-core potential, the short
As for the distribution function, the correlated OBDM can range correlationfsg{r), vanishes at <a, while

be computed by using HNC theofg0]. In fact, n,(r) can be
expressed in terms of new nodal and elementary functions as Yo(Aa)Jo(Nr) = Jo(Aa) Yo(\r)

fsl@ === Na)dond) — Jha o)

(15

M) N4 El?)
n Mo€ ' (12) where\ =-4mu/#? andJ, andY, are Bessel functions of the

first and second kind, respectively. In tkde—oo limit, fgg
coincides with the exact solution of the 2D zero energy

whereN,,,(r) is the solution of a generalized HNC equation. Schradinger equatiorf(r) = In(r) [21].

Again, settingg,,(r) =0 these equations can be solved in the
HNC/0 approximation.

An appropriate choice of the correlation factor is essential . ASYMPTOTIC BEHAVIORS
for the effectiveness of the variational approach. As stated in
the Introduction, thebest choice is the one satisfying the
Euler-Lagrange equation,

Applying to the 2D gas the sum-rule analysis of Héf,
it can be shown that the SSF at low momenta has a linear
dependence, similar to the 3D gas:

SE[g] _ 0

sy (13 Sk—0) (16

~ —K,
2mc

which has been written in terms of the RDF rather tiham, wherec is the sound velocity in the medium. In terms of the
since in the HNC/0 scheme there is a one-to-one correspofRDF and of the correlation function, it corresponds to a long
dence between these two quantities. The correlation functiorange behavior, different, however, from the 3D case where
can then be obtained by inversion of the HNC equations. Thégsp—1) = 1/r~* and(fzp—1)<1/r 2 at larger values.
EL equations are solved both in configuration and momen- In fact, the 2D Fourier transform for a functiom(r), with
tum space, as discussed at length in | for the 3D hard-sphergrcular symmetry can be written as
case. The theory can be straightforwardly applied to the 2D
hard-disks gas and it is briefly outlined in the Appendix. ~

The correlation function produced by the solution of the h(k) = ZWHJ drrf(r)Jo(kr), (17
EL equation shows a long-range structure that is discussed in 0
the next section. Finite size Monte Carlo techniques have . . ~
difficulties to correctly deal with this long range behavior While h(r) is obtained fromh(k) as
and correlations healing to unity inside the simulation box L
are used. In this respect, we have also adopted a param- _ T N
etrized shorter-range correlatiofig{r), obtained by mini- h(r) = 2’77”,[0 ket Jo(kr)
mizing the energy computed at the two-body order of the ~ ~
cluster expansiorg,g(r)=f(r), constrained by a normaliza- Assuming thaH (k) =kh(k) is a well behaved function at
tion condition the origin, one finds

©

(18
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ﬁ(O) lﬁ“(O) 3’|j||v(0) systems as a function of the space dimensionality. They
h(r — o) = - ———=—+, (19 found a general expression, valid for strong interactions
2. 8 1 whenx— 0, that simplifies for hard disks to
where only thek=0 values of the function and of its even
derivatives enter in the expansion. Exs __ [INX)| { _InC In(47rx))] 27
The RDF is obtained fron(k) through Elo  In(4mx) In(47x)
1 (* Cherny and ShanenK@4] derived an alternative expan-
gn-1 :—f dkK(S(K) — 1)Jg(kr), (200 sion,
2mn J,
. . gW u2
so one readily obtains, from Eqg16) and (19), the —€s_ |In(x)|[u+ b } (28)
asymptotic limit Elo 2
o —o)=1 _ii% (21) in the parameteu satisfying the equations:
27h 2mcr 1

u=581+ulnu), &= (29

By inverting the HNC/O equationB) one finds for the " In(mx) + 2y’
nodal and correlation functions the following limits:

where y=0.577... is the Euler constant. These authors also

N(F — o) — _1 2mcl (22) gave an expansion ofin terms ofé§, allowing us to write the
2mn h r series(28) in the form
and EW) P
2= |In(X)|| 6+ &I 5+ —+LIn2 5+28In 5+ -+ |.
f(l’ ) 1 1 2mcl (23) LO 2
— ) —-1-——-
4m7n h r’ (30
showing that in 2D, correlations have longer range than in Table | reports the energy per particle as a functior iof
3D. the EL approximation(EL/HNC), the variational Monte

The long range structure of the OBDM is derived from Carlo calculation starting fronfggr) (SR/VMC) and the
the previous expressions and the HNC equations. In fackINC approach with the same correlation functi¢8R/

given the structur€23) we obtain forN,,,(r) HNC). We remind that the HNC/0O approximation is used
everywhere but in the VMC. The results of theexpansions
Ny (r — ) = iﬂ:}, (24) previously discussed are also reported.
dmn f r The comparison between SR/VMC and SR/HNC shows

and for the OBDM that the i_nﬂuence of the missing elementary diagrams on the
energy is less than 1%, except at the highest value
ny(r — ) 1 mcl x=0.1 (~2.3%). This gives us confidence that the varia-
Ty T Mo* o, T (25 tional principle is mostly satisfied within our HNC/0 calcu-
lations, providing the hierarchyEq, .~ Eg <Egr Only at
The momentum distribution has the same long-x=0.1 these inequalities do not numerically hold. The cases

wavelength limit shown in 30)22], namely x=10"° and x=5x 1072 can be considered to fulfill the in-
e me equalities if we take into account the numerical accuracy
lim kn(k) = o= (26) associated to the calculation at these quantities. If we esti-
k—0 2 h mate the contribution of the elementary diagramsganp by

scaling it by the raticE{M/ESRC, we obtainEg, /N(x=0.1)
=0.9075, restoring all the inequalities.
IV. RESULTS Lieb [25] pointed out that a lower bound to the exact

) i energy is given by
In this section we present and analyze results for the en-

ergy, radial distribution function, static structure function and Ejow = ELo[1 — O(/In(x)| "], (31)
one-body density matrix of the hard-disks gas. We have used
the optimized Jastrow wave function obtained from the soand thatEg,,.{ E, o— 1 whenx— 0. Both the variational en-
lution of the Euler-Lagrange equations and the short-rangergies(EL and SR comply with condition(31) and seem to
correlation of Eq.(15), mainly to establish a comparison tend toEg,,;Whenx goes to zero.
between the HNC/0 and the VMC approaches. In the follow- Table | gives also the healing distancg,of the SR cor-
ing, dimensionless quantities will be used: energies and digelation in units ofa. d increases whex— 0, the Lagrange
tances will be given in units of?/2ma anda, respectively. multiplier decreases and the energy goes to zero. Therefore,
Several corrections t&, o have been proposed in the lit- fsgr),_o can be approximated by its=0 limit, which co-
erature. Kolomeisky and Strald®23] used renormalization incides with the zero energy limit of the two-body
group techniques to study the ground state of dilute Bos&crodinger equation,
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TABLE |. Energy per particle for the hard disk model, as a functiom.dfg, is obtained by solving the HNC/O EL equatidiy,c and
Esr are the VMC and HNC/O energies with the SR correlation having a healing distariceunits of the scattering lengtleyyc is the
statistical error in the variational Monte Carlo calculation. The last four columns give the energies in different low density exgsgsions
text).

X Ee /N EXMO/N evmc ERNC/N d Eo/N Exs/N WIN OIN

105 1.103x107° 1.100x107° 2.47x107 1.106x107° 1135.52 1.09K10° 1.057<10° 1.123x10° 1.117x10°
5X107° 6.482x107° 6.685<10° 2.44x10% 6.542x10° 495.70 6.344K10° 6.231x10° 6.670x10° 6.610x10°
104  1.405x10% 1.415x10% 2.20x10°% 1.417x10% 344.15 1.36K10% 1.346x10% 1.453x10* 1.436x10*
5x 104 8.752x10% 8.952x10% 2.03x10° 8.851x10*% 153.49 8.266x10* 8.425x10% 9.212<x10°% 9.007x 107
10% 1.961x10°% 1.979x10°3 2.87x107° 1.991x10° 104.54 1.81%10°% 1.903x10°3 2.090x103 2.026x 1073
5x 1073 1.362x102 1.383x102 8.80x10° 1.378<102 46.33 1.186<102 1.435x102 1.550<1072 1.446x 1072
102 3.273x10%2 3.303x102 1.30x10* 3.316x102 33.41 2.72% 102 3.928x102 4.998x1072 3.660x 1072

5x 1072 0.3037 0.3031 0.00089 0.3081 17.82 0.2097 3.5818 NA NA
0.1 0.9252 0.9204 0.003 0.9384 15.66 0.5458 NA NA NA
In(r) requiring g(r) to vanish inside the core. The effects of the
fsHMNh—o— @ (32)  |ong range structure of the EL correlation are, instead, clearly
evident in the behavior of the radial distribution function.
These results are also shown in Figj), where the varia- The EL RDF is shown in Fig(2) for different values ok.

tional scaled energies per partidEL, SR/VMC, and SR/ At low x, gg,(r) is a monotonically increasing function of the
HNC) are compared with th&ys and Ecs estimates. All  distance. However, it develops a local maximum close to the
energies have been divided (o in order to stress the core radius at densities>0.01. This is a genuine many-
deviations from the low-density limit. The limit is ap- body effect induced by the strong correlations at high den-
proached byEg and Egg from above wherx decreases, al-  sity. The same behavior was found in | for the 3D Bose gas.

though it has not been yet fully reachedxat10™°. The dif-  As expected, the correlation hole is more pronounced at

ferences between the variational and the low density energigarger densities.

are still visible, even in the density range relevant to BEC The long range limit ofgg,(r) is shown in Fig. 3 aix

experimentg3]. =0.01 andx=0.1. The quantity shown isr3(g(r) - 1) whose
Exs does not satisfy the=0 lower bound31) and, start-  gimensionless asymptotic limit is

ing from x=0.005, becomes higher than the variational up-

per bound provided b¥g, and Egg Ecg satisfies the low 3 1

density limit, but lies above the variational upper bounds at xrfg(r — ) -1]=- ome” (33

any value ofx. Eg‘; is always larger thaE(C‘Z and the differ-

ence increases drastically alongNotice that Eq(29) does  This ratio is smaller ak=0.1, implying that the sound ve-

not have solution ax=0.0369. locity increases witlx, as expected. Consistent with the pre-
The EL optimization procedure does not significantly af-vious figure, the asymptotic limit is reached faster at larger

fect the energies obtained withy{r), since the energy is densities. Figure 4 gives the EL correlation and the nodal

dominated by the short range structure of the HD potentialfunction, N(r), at x=0.001. We show{xr(1-fg.(r))] and

[xrN(r)] to enlighten the asymptotic limit623) and (22)

20— whose dimensionless values atédr and ¢/2, respec-
1.8 * .
L R 12 , ,
Z 16 -
% Lal . ]
E - + x |
m 12 i _
I i i |
o $¥¥ ¢ -
0.8 pol vl el el el
10° 10* 10° 107 10"
X

FIG. 1. Scaled energy per particle of the HD gas as a function of
x. Solid circles: EL/HNC; open squares: SR/HNC; open diamonds:

SR/VMC; stars, pluses, and crosses: low density expansio8s, FIG. 2. EL radial distribution functiong(r) for 2D hard disks at
CSY, andCS?, respectively. Notice that diamonds are hardly dis- several values ofk. Solid, dot-dashed, long-dashed, and short-
tinguished from the solid circles. dashed lines stand for=0.1, 0.01, 0.001, and 0.0001, respectively.
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0T ] »—r— v
0.0f%

x [go-1]1

FIG. 3. Long range structure of the EJ(r) at x=0.1 (dashed

line) andx=0.01 (solid line. FIG. 5. EL static structure facto§k), at several values of.

Solid line: x=0.1; dashed linex=0.01; dot-dashed linex=0.001;

dotted line:x=0.0001.

tively. The fact that one limit is twice the other is clearly

appreciated in the figure. Notice also that due to the chain 1

process implied by the HNC schenmi¥(r) merges to the 1/ nP=1+—. (34)

law at larger distances theffr). To illustrate the different In(x)

asymptotic behaviors, we also shdwr(1—-fsgr))] which ngD appears to sensibly overestimate the condensate fraction.

goes quickly to zero. The EL and SR/VMC condensate fractions are very similar
The EL static structure functior§(k), is shown in Fig. 5.  except for the largest value &freported in the figure, where

At low densities the SSF reaches the asymptotic valuethe contribution of the elementary diagrams could be impor-

S(k)— 1, already ak~ 1. As in the RDF case, the overshoot- tant. This fact indicates that the valuemgfis not very much

ing of the SSF at the highest density 0.1, is a consequence affected by the inclusion of a long-range structure into the

of the correlations. The linear regime &k) around the correlation function. However, the use & (r) is crucial to

origin is appreciable, although the calculation of the ratioapproach this value in a proper way, that is, to satisfy Eq.

S(k)/k shows deviations from a constant value already at low(25). Also reported in the figure is the condensate fraction of
k the 3D system of hard spheres, taken from I. At fixedhe

. In Fig. 6 we plot the one-body density matrix(r), inthe 2D condensate fraction is smaller than the 3D one, indicating

EL approach forx=0.01, 0.005, and 0.001. The asymptotic that correlations in the 2D system as&onger thus promot-
limit of ny(r) defines the value of the condensate fraction,ng more particles outside the zero-momentum state.

which decreases when the gas parameter increases. The

asymptotic value is reached faster wherincreases. The V. SUMMARY AND CONCLUSIONS

detailed long-range behavi@25) is presented in Fig. 7 by ,

showing the quantity[ny(r)/(non) - 1], whose dimensionless In this work we have analyzeq the energy and structure 'of
asymptotic value i/(87x). Even if the speed of sound & Nnomogeneous gas of bosons in two dimensions interacting
increases with, the value of this limit is dominated by the V'@ @ hard disk pote_ntlal whose core radius equals Its corre-
presence of the gas parameter in the denominator and tﬁ@ondlng 2D scattering length. We have adopted a variational
overall quantity increases whendecreases. Finally, the EL many-body apprpach, based on a Jastrow correlated ground
and SRIVMC condensate fractionsy(x), are reported in state wave function. The expectation values have been com-

: : ; ) ; ... _puted both in the framework of the hypernetted chain theory
Fllg] 8. The figure also contains the low-density prEdICtlon(Within the HNC/O approximationand with the variational

20 ————————

—
w
T

—_
(=4
T
|

r[1-f(r)] & tN()

W
T

S | ] S s0 100 150 200
0 30 60 9 120 150

FIG. 6. EL one-body density matrices at several values.of
FIG. 4. EL correlation(solid line), SR correlation(dot-dot- Solid line: x=0.01; dashed linex=0.005; dotted linex=0.001.
dashed ling and nodaldashed ling functions atx=1073. Open circles, SR/VMC results at=0.005.
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ST T 71— type approximatio{11] to analyze bosons in two dimen-
4' 1 sional harmonic traps.
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APPENDIX

In this appendix we discuss the EL equations for an inter-

acting many-body system in 2D. As in the 3D case, the so-
Monte Carlo method. Two types of correlation functions|ution to the optimization equation,

have been usedi) a long range one, obtained by the free

minimization of the HNC/O ground state energy and preserv- SE[g] - (A1)
ing the correct asymptotic behaviors of the wave function; 89(r) '
(ii) a short range one, to be used in the Monte Carlo sam- . . .
pling and providing a check of the accuracy of the cluster®" be obtained in momentum space, yielding
expansion. t(k)

By comparing with the VMC results, the accuracy of the Sk = (A2)

J’ 2 !
HNC/O energies are better than 1%, except at the highest VE(K) + 2tk Vipr(k)

dqn_’sity,x:_o.l, where the error is s_tiII less than 3%. The EL wheret(k)=%%k?/2m is the free-particle energy spectrum and
minimization lowers the energy with respect to the SR cory (k) is the particle-hole interaction. The latter can be ex-

from a complete DMC calculation. The low density expan-contripution of elementary diagrams,

sions start to severely deviate from the variational results 2

already atx~0.001, and the most accurate of them appears _ 2

to be the Cherny and Shanenko expansion in terms of the Ven(r) = gNV(r) + E' VgD +[g(r) ~ Le(r),

parametets. However, their use for estimating corrections to (A3)

the 2D Gross-Pitaevskii equation, especially in the large gas

parameter regime, seems questionable. in terms of the induced interactiom(r). In momentum
Finally, the condensate fractions lies well below the val-space, we have

ues predicted by the low density theories and also below the

results for the three dimensional gas of hard spheres at the (k) = - }t(k)[ZS(k) +1][Sk) - 1]

same gas parameter. 2 SK)

We conclude that the variational theory is a powerful and . .
y P Equations (A2)—(A4) are to be solved simultaneously.

reliable tool to study dilute systems, also in 2D. Moreover,_., . : . .
y y his can be done starting from a suitable choice dam),

the h It in a local densil
e homogeneous gas results may be used in a loca densb%rforming ts FT to geS(K), evaluatinga(k) and Vy(r).

(A4)

1.0 and then deriving a ne®(k) with the help of Eq(A2). This
2 1 procedure is iterated until the difference between two con-
0.8 - secutive iterations is as small as desired.
Up to this point there are no formal differences between
_ 06 . the 2D and 3D cases. The main deviation is the way in which
Z ot 1 the Fourier transforms are carried out. In 2D and for a gen-
S04 . eral function,f(r), the FT and its inverse read
02 - *
| f(k) = 27rnf drrf(r)Jo(kr), (A5)
0.0 1 1 | 1 0
100 10t 100 10 1w 1
X 1 0
FIG. 8. Condensate fraction as a functionxofBlack circles, f(r= 277nfo dkktk) Jo(kr). (AB)

triangles, and solid line correspond to the EL/HNC, SR/VMC, and . '
low-density expansion results, respectively. Open squares stand févhere n is the (constant density andJy(x) the zero order
the corresponding 3D values taken from |I. Bessel function of the first kind. One way to implement these
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transformations is to use a finite box in configuration and L N
momentum spaces of lengthand K, respectively. The ad- f drrf(r)Jqo(kjr) = > oK (1),
ditional conditionsf(r=L)=0 andf(k=K)=0 lead to a dis- a=1

cretized set of coordinates and momenta, related to the zeros

0

\; of Jo(x) through the relations K N
N A, f dkk(k) Jo(kr,) = 2 wJo(kir)f(k),  (A9)
k=1 re=L (A7) 0 =1
N

with j,a=1,2,... N, N being the total number of points in with the integration weights

the grids. A Gauss integration rule based on series expansion

in Bessel functions and the orthogonality relation, w, = % = 2# (A10)
L 5 AMIJ1I(N ) L=J1(N)
JO drrJo(kir)Jo(kir) = m‘sﬁ' (A8) Equations(A9) turn integrals into algebraic products that
™ can be carried out numerically in a neat and fast way using
can then be built, leading to available standard libraries.
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