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ABSTRACT 

 

Scope. To identify the most discriminant dietary biomarkers of nuts exposure in 

subjects with metabolic syndrome (MetS), and investigate the potential association 

between exposure and the severity of the MetS diagnostic traits.  

Methods and results. We applied the untargeted LC-ESI-qToF-MS-driven 

metabolomic workflow to explore the changes occurring in the plasma metabolome of 

MetS subjects following 12-week intake of mixed nuts (30 g/d) (nuts versus control 

groups). Urolithin A glucuronide was the most discriminative biomarker of nut 

exposure, showing the highest predictive capacity [ROC AUC = 89.6% (80.8–98.4)] 

despite the inter-individual variation expected for a host-microbial cometabolite. 

Furthermore, the detection of urolithin A glucuronide in plasma showed significant 

inverse correlation with basal abdominal adiposity (waist circumference: r=-0.550, 

p<0.01; waist-hip ratio: r=-0.409, p<0.05) and impaired glycemic control (fasting 

insulin: r=-0.414 & HOMA-IR: r = -0.417, p<0.05). Significant changes in medium-

chain dicarboxylic acids, recognized as alternative energy substrates that are particularly 



2 

 

relevant in the case of glycemic control impairment, were also associated with nut 

consumption. 

Conclusions. Higher levels of urolithin are reported in subjects with less severe MetS 

traits, especially in females. We believe that this inverse correlation may be related with 

profile of gut microbial dysbiosis, recently associated to subjects with MetS.  

 

INTRODUCTION 

 

Tree nuts such as walnuts (Juglans regia L.), almonds (Prunus dulcis (Mill.) D.A. 

Webb) and hazelnuts (Corylus avellana L.) are key healthy components of several 

dietary patterns such as the Mediterranean diet [1] and the New Nordic Diet [2], and are 

also emphasized in the recently updated Dietary Guidelines for Americans [3]. The 

protective effects of nut consumption have been particularly evidenced against the 

constellation of interrelated metabolic complications that characterize the metabolic 

syndrome (MetS) [4]. Both clinical [5] and epidemiological studies [6-8] have 

associated nut intake with improvements in the diagnostic parameters of MetS, namely 

abdominal obesity [9], hyperglycemia [3] hypertension [10] and dyslipidemia, and with 

the reduction of CVD [1, 11-13] through reduction of inflammation and oxidative stress 

and, enhancement of the endothelial function [14, 15]. 

Despite the huge amount of literature in this regard, the nuts bioactives are not fully 

characterized, hence the need for hypothesis-generating research to identify unexplored 

mechanisms of nut exposure and effect. The implication in the observed health effects 

of minority components besides the well-known macro- and micronutrients contained in 

nuts (e.g. MUFAs and n-3/n-6 PUFAs, proteins rich in essential amino acids, vitamins, 

biogenic amines and fiber) [4, 12] only attracted attention recently, as well as the role of 

diet and host-microbial interactions in the health outcomes. The intake of the most 

abundant polyphenols in walnuts, namely ellagitannins (ETs) [16] has particularly been 

associated with improvements of metabolic disorders, hence acquiring a growing 

interest in the food industry as potential functional ingredient [17]. However, due to 

their high molecular weight, ETs require gut microbial biotransformation to be 

metabolized into smaller compounds (urolithins) absorbable in the intestine, and the 

necessary enzymatic machinery does not seem to be ubiquitous among bacterial strains 

[18, 19]. In turn, diagnostic components of MetS such as obesity and impaired glycemic 

control are known to be associated with alterations in the gut microbiota composition 

(dysbiosis) [20], thus the urolithin-producing capacity may be affected by the presence 

of these cardiometabolic risk factors, thereby impacting on the bioavailability of 

bioactives from nut polyphenols.  

Nutritional metabolomics is a highly relevant research domain of modern nutrition [21] 

since, mapping the metabolic fate of food components in biological specimens, it 

provides more objective measures of food exposure (biomarker discovery) and their 

effects in the prevention and reduction of disease risk [22]. Due to its data-driven 

approach, untargeted metabolomics especially offers a valuable tool for identifying new 

nutritional biomarkers without the need for a starting hypothesis, hence helping to 

decipher unexplored mechanisms of action and so linking dietary exposure to clinical 

outcomes [23]. Although the application of nutritional metabolomics has been focused 

so far to the analysis of the urinary metabolome [29], blood plasma is a particularly 

informative biosample. Blood in fact gives a snapshot of what is actually transported at 

the systemic level to and from tissues, even hours following the last intake (permanence 

in circulation and bioaccessibility to body compartments),, thereby sustaining the 
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potential bioactivity of the dietary components (association between exogenous and 

endogenous diet-related changes) [23, 26]. 

We recently analysed the changes occurring in the urinary metabolome after a 12-week 

regular consumption of mixed nuts in subjects with diagnosed MetS [16, 27]. To go 

forward with the hypothesis generated by the previous studies, here we aimed to 

identify the most discriminant biomarkers of nuts exposure still circulating in 12h fasted 

plasma, and then investigate the potential direct or inverse association between exposure 

and the severity of the MetS diagnostic traits, at baseline and post-intervention.  

 

EXPERIMENTAL SECTION 

Subjects in Study  

Fifty male and female volunteers aged between 18 and 65 years with at least three MetS 

risk factors as defined by the Adult Treatment Panel III [28, 29] were recruited in a 

prospective, randomized, controlled, parallel-designed, 12-week interventional feeding 

trial (ISRCTN36468613). The design of the trial has been reported in detail previously 

[14, 15]. Briefly, participants were stratified by sex and age (≤50 or >50 years) and then 

randomly assigned to the control (CT) or the nuts (NU) intervention groups. Both 

groups received the same qualitative dietary recommendations according to the AHA 

dietary guidelines [30] in order to follow a low-fat diet. The NU group received a daily 

supplement of 30 g of raw mixed nuts with skin (15 g of walnuts, 7.5 g of almonds and 

7.5 g of hazelnuts), while the CT group was recommended to avoid consumption of 

nuts. Information about the food intake of the subjects and their adherence to the 

interventions was collected by 3-day food records at baseline and in control visits, 

namely every 4 weeks during the trial, and energy, nutrient and polyphenol intakes were 

calculated as previously described [16]. Good adherence to the dietary 

recommendations was reported for both intervention groups [14, 15].  

Fasting blood samples were collected at baseline (T0) and after 12 weeks of nut 

consumption (T3) and centrifuged at 2500 rpm for 10 min at 4 ºC. For metabolomic 

analysis, plasma EDTA aliquots were separated and stored at -80 ºC until further 

analysis. Three subjects were excluded from the metabolomic analysis due to evidence 

of haemolysis in the stored plasma (final sampling: n = 23 CT group, n = 24 NU group). 

 

Material and Methods 

Standards and Reagents 

α-hydroxyisobutyric acid, gallic acid, L-phenylalanine, L-tryptophan, (-)-epicatechin, 

syringic acid, sebacic acid, dodecanedioic acid, glycochenodeoxycholic acid, 1-O-

stearoyl-sn-glycero-3-phosphocholine, glycocholic acid-(glycyl-1-
13

C) monohydrate, 

indole-3-acetic-2,2-d2 acid, acetyl-d3- -                                            

                                -                               -                

                                                                          se 

(Genay, France). Urolithin A glucuronide was chemically synthesized by Kylolab S.A. 

(Murcia, Spain). UHPLC-MS-grade methanol, acetone, formic acid and HPLC-grade 

acetonitrile were purchased from Scharlau Chemie S.A. (Barcelona, Spain). Ultrapure 

water (Milli-Q) was obtained from a Milli-Q Gradient A10 system (Millipore, Bedford, 

MA). An aqueous standard mix (QC2) composed of exogenous and endogenous 

compounds of the plasma metabolome chemical variety was prepared (details in 

Supporting Information Table S1). Aqueous solutions of isotopically labelled and 

unlabelled compounds were also prepared for use as internal standard (ISmix: 

glycocholic acid-(glycyl-1-
13

C) monohydrate and 1-O-stearoyl-sn-glycero-3-
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phosphocholine, 25 ppm) and external standard mixtures (ESmix: indole-3-acetic-2,2-d2 

acid and acetyl-d3-L-carnitine hydrochloride, 25 ppm), during sample extraction. 

 

Sample Extraction and Data Acquisition 

Plasma samples (50 μL) were extracted through in-plate deproteinization by acidic 

solvent precipitation (acetonitrile, 1% formic acid) followed by phospholipid SPE-

mediated removal (Ostro
TM

, Waters), according to our previously published protocol 

[31, 32]. The extracts were analyzed by a LC-ESI-qToF-MS-driven untargeted  

metabolomic pipeline (Agilent 1200 Series Rapid Resolution HPLC system coupled to a 

QSTAR Elite System mass spectrometer, Applied Biosystems/MDS Sciex, 

Framingham, MA, USA.) in negative ionization mode (70 – 850 m/z). Data were 

acquired using Analyst QS 2.0 software (AB Sciex Toronto, Ontario, Canada). Three 

types of quality control (QC) were included in the injection plate design to check for the 

analytical quality grade: QC1, Milli-Q water samples; QC2, aqueous solution of a 

standard metabolite mix (5 ppm final standard concentration); QC3, randomly selected 

biological samples reinjected in opposite positions within each batch. Details of 

analytical protocol in Supporting Information Tables S1 and S2. 

 

Data Analysis and Metabolite Identification 

Mass feature extraction by peak finding and alignment was carried out by using 

MarkerView
TM

 1.2.1 software (AB Sciex, Toronto, Ontario, Canada), as detailed in 

Supporting Information Table S3. Prior to MVA, the data set was filtered out to 

remove any ions that did not appear in more than 35% of the samples of each class 

separately [33]. Data were then log transformed (to improve normality) and Pareto 

scaled [34]. The                                                 ‘    ’  N  v   T      

‘                  ’          T0 v  T3) were explored in the OSC-filtered data set 

through a partial least squares discriminant analysis (PLS-DA) (SIMCA 13.0 software, 

Umetrics, Umeå, Sweden). The predictive ability of the PLS models was evaluated 

through the R
2
X, R

2
Y, cross validation (Q

2
cum) and permutation test (n = 200; plot and 

CV ANOVA). As a final quality test, the whole data set was randomly split into five 

equal-size subsamples (20% of samples each), four of which were used as training set 

whereas the remaining were used as validation set. This process was repeated five 

times, each subsample being used as the validation set at least once, and the correctly 

classified individuals in each validation set (%) were calculated (Supporting 

Information Table S4). The importance of mass features in the discrimination among 

classes was visualized by plotting the Variable Importance Projection (VIP) values. To 

avoid false positives, the significant mass features explaining the class separation were 

selected by combining the VIP cut-off (VIP ≥ 2                                     

within the statistical model (|p ≥ 0 05|) and its correlation with the modelled class 

designation (|p(corr) ≥ 0 5|) as previously described [27], and then submitted to the 

metabolite identification procedure. First, a two-way HCA based on Pearson correlation 

    W   ’                                              v                        

features originating from the same metabolite (i.e. in-source molecular fragments, 

adducts, 
13

C isotopes) and so reduce the queried masses (PermutMatrix 1.9.3 software). 

Plausible identification hypotheses were then generated (MAIT R package, Rstudio 

3.0.1 Inc. [35, 36]) by matching experimental mass clusters with both in-house and 

Web-accessible mass spectral databases [37-39] (± 10 mDa mass error tolerance). 

Identity confirmation was finally carried out by matching peak chromatographic and 

MS responses (XIC, PIS) to those of commercial reference standards, when available, 

spiked in Milli-Q water and plasma (50 ppb final concentration). Finally, the 
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performance of the level 1 identified metabolites (Metabolomics Standards Initiative 

criteria, [40]) in discriminating nut exposure was evaluated by constructing receiver 

operating characteristic (ROC) curves on the OSC-filtered data set, and estimating the 

area under the curve [AUC (95% CI)] values (pRoc R package, Rstudio 3.0.1 Inc.) [41, 

42]. 

 

Biomarker Performance and Association with MetS Traits 

After checking for data distribution normality,        ’                 fficients (r) 

were calculated between plasma metabolite levels (peak area) and anthropometric and 

laboratory measures previously described [14] (SPSS 21.0 software, SPSS Inc., 

Chicago, IL, USA).        ’                                                           

after the intervention (post-intervention).Variables were grouped into four main 

categories related cardiometabolic risk (adiposity, glycemic control, lipidemia and 

blood pressure measures) : a) adiposity markers: waist circumference (cm), body mass 

index (BMI, calculated as weight in kg/height
2
 in m

2
), waist-hip index and body fat (%); 

b) glycemic control markers: fasting glucose (mmol/L), fasting          μ /        

HOMA-IR; c) blood pressure markers: diastolic and systolic blood pressure (mm Hg); 

d) blood lipid markers: high-density lipoprotein cholesterol (c-HDL) and triglycerides 

(mmol/L). A value of p < 0.05 was considered statistically significant. 

 

RESULTS and DISCUSSION 

 

Data Acquisition Quality. The extraction reproducibility and the LC-MS analytical 

stability during data acquisition were first confirmed by monitoring the ISmix and ESmix 

peak intensity in the plasma samples over time (CV < 1% across the analysis), with no 

need for data normalization being noticed. As shown in Supporting Information 

Tables S2 and S3, the run-to-run repeatability of RT and mass accuracies of the QC2 

standard metabolite components across the whole data set met the quality criteria 

proposed for metabolomic analysis protocol (retention time shifts ≤ 0 05    , mass 

accuracy deviations < 10 mDa), and the signal intensity variation was satisfactory (peak 

areas CV < 20%) except for one metabolite with a very low response to ionization [32, 

34]. In addition, PCA analysis was used to display the classification of plasma samples. 

Details in Supplemental Information Figure S1. 

 

Plasma Metabolomic Biomarkers of Nut Exposure. The OSC filter applied to the 

processed data set removed 11 components, maintaining the 43% non-orthogonal 

variation of the original data set. After confirming the absence of significant 

metabolomic differences between the two intervention groups at baseline, a three-class 

model was first built to assess the presence of significant variation within the plasma 

metabolome at baseline and post intervention (Model 1: T0 vs CT_T3 vs NU_T3 

classes). Then, pairwise discriminations between the NU_T3 class and, alternatively, 

the CT_T3 and T0 classes were carried out and the information resulting from the two 

models merged, in order to discriminate mass features uniquely up- and downregulated 

in the NU group, following the intervention (Model 2: T0 vs NU_T3; Model 3: CT_T3 

vs NU_T3). The parameters employed to assess the OSC-PLS-DA modelling quality 

are summarized in Table 1 and in Supporting Information Table S4. 

Following the 12-week regular administration of mixed nuts, the plasma metabolome of 

the Control (CT_T3) and Nuts (NU_T3) groups differed markedly between them and in 

respect to the baseline samples (Figure 1). A total of twenty-three mass features were 

responsible for the clear variation in the metabolic fingerprints following nut intake 
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(Figure 2). Individual mass features grouped into nineteen ion clusters (including 

adducts, isotopes, etc..) significantly up- or downregulated following nut exposure 

(Table 2).  Level 1 identification was obtained for three of them, namely a marker of 

gut microbial-host cometabolism of nut phenolics (urolithin A glucuronide, 

upregulated) and two medium-chain, even-numbered dicarboxylic acids (dodecanedioic 

acid and sebacic acid, respectively up- and downregulated). For the latter, the most 

significant mass feature of the ion cluster corresponded to the dimeric form of the 

compound ([2M – H]
-
, m/z = 403.2377) probably generated in source and co-eluting 

with the monomer ([M – H]
-
, m/z = 201.1132). In all cases, the final identification was 

obtained by overlapping the chromatographic and MS response (XIC, PIS) of the 

metabolite obtained before and after spiking plasma with the commercially available 

reference standards (Supporting Information Figure S2). Although several other mass 

features matched with known theoretical masses (chemical libraries available online,) 

the low intensity prevented to successfully perform MS/MS experiments, necessary for 

putative identification (unidentified metabolites). 

 

Biomarkers of Gut Microbial-Host Cometabolism of Nut Polyphenols. Nuts are rich 

sources of non-ubiquitous classes of polyphenols, namely hydrolyzable tannins (i.e. ETs 

in walnuts) and condensed tannins (i.e. proanthocyanidins in hazelnuts and almonds), 

which contribute to the peculiar composition of these fruits and possibly to their health 

benefits [16, 17]. Walnuts, in particular, are considered a major source of ETs in 

Mediterranean regions, where nut consumption per person is relatively high compared 

to other countries [43], in respect to other ET food sources such as berries and 

pomegranate. These high-molecular-weight polyphenols are known to be subjected to 

intense gut microbial biotransformation, which is responsible for the production of 

smaller and more easily absorbed bioactives currently implicated in the protection 

against cardiometabolic disease risk, namely urolithins (dibenzopyran-6-one derivatives 

with different hydroxyl substitutions) [18, 19].  

In the present data-driven study, urolithin A glucuronide was the most discriminant 

marker of a 12-week intake of nuts detected in the plasma metabolome (VIP > 4, 

Figure 2). A range of urolithin structure conjugates have been described as the last 

products of gut microbial-human cometabolism of ETs (i.e. phase II metabolites of 

urolithin A, B, C and D) and the most stable and detectable forms in different human 

specimens such as urine, plasma, faeces and tissue [44]. In plasma, conjugated 

urolithins have been previously described to circulate at concentrations ranging from 

          μ                     v             T F-MS analysis) [45-47], and urolithin 

A glucuronide was especially detected in plasma of a human volunteer after up to 20 h 

from walnut intake [46]. However, the majority of the available data were extrapolated 

from healthy subjects, with only two reported interventions on MetS individuals [46, 

48]. Although different in its analytical nature (non-selective and non-specific LC-MS 

methodology) and scope (data-driven and hypothesis-generating approach), our plasma 

metabolomic fingerprinting was in line with previous findings. Overall, our observed 

findings matched with changes detected in the whole urinary metabolome of the same 

subjects in the study, as recently described [27], despite the diversity of the (fasted) 

blood and excretory system physiology. In both biological matrices, in fact, phase II 

conjugates of urolithin A were the only products of ET metabolism detected through an 

untargeted approach, with urolithin A glucuronide being the most significant marker 

among them (Supporting Information Figure S3). Although a subgroup (~ 40%) of 

the MetS subjects in study revealed to produce other non-A urolithin conjugates by 

applying targeted LC-MS/MS analysis (e.g. urolithin B metabolites) [16, 44], the 
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interindividual variation in the qualitative and quantitative occurrence of these further 

metabolites hampered them to rise to the role of potential exposure biomarkers, at least 

when evaluating the study population as a whole, and when applying untargeted 

metabolomics (non-selective and non-specific analytical nature, data-driven and 

hypothesis-generating approach).  

 

Biomarkers of Fatty Acid Metabolism. Dodecanedioic acid (C12) and sebacic acid 

(C10) were respectively up- and down-regulated in fasting plasma following a 12-week 

exposure to nut intake. The increase in plasma dodecanedioic acid was particularly in 

line with its increased urinary excretion recently observed [27]. Due to the known 

occurrence of dicarboxylic acids in some Mediterranean nuts including walnuts, 

almonds and hazelnuts [27, 49]), dodecanedioic acid may reasonably be a direct 

biomarker of nuts intake. However, its endogenous origin from the ω- and β-oxidative 

metabolism of MUFAs and PUFAs, highly contained in nuts, cannot be discarded [4, 

12, 50] which could contribute to explain part of the health benefits related the intake of 

these lipids [3, 51]. In any case, the biological relevance of its increased exposure 

following nut intake, particularly in subjects with metabolic impairment, may rely on its 

recognized role as an alternative energy substrate. Once available, in fact, 

dodecanedioic acid is promptly oxidized and, due to the intermediate biochemical and 

metabolic characteristics between free fatty acids and glucose, may supply succinyl-

CoA (besides acetyl-CoA, like any other fatty acid) at the end of its β-oxidation [50], 

providing an alternative entry into the tricarboxylic acid cycle and a means of metabolic 

improvement [52, 53]. The positive effects of dodecanedioic acid infusion have already 

been described, particularly in those clinical conditions characterized by altered 

glycemic control, and range from improved mitochondrial function efficiency to 

reduction of gluconeogenesis, improvement in glycogen synthesis and significant 

increase in lipid oxidation, in turn leading to reduced body fat mass [52, 54, 55]. The 

decrease in sebacic acid, in contrast, was not reported previously and may result from an 

increased downstream or upstream metabolism, suggesting a possible alteration in the 

              ω-oxidation of fatty acids in the cytosol of the cells [56, 57]. Finally, no 

changes in other possible and more expected          k               k           α-

linolenic acid, were observed, in line with previous findings [27], possibly due to the 

nature of the analytical technique used [58]. Taken together, our data-driven approach 

                                             ‘     ’                                 

composition of nuts and their potential health effects, not considered so far, to the best 

of our knowledge. 

Nuts Exposure: Biomarker Performance and Association with Clinical Traits. 

ROC curves are widely considered to be the most objective and statistically valid 

method for the evaluation of biomarker performance in metabolomics studies [41].  

Both the upregulated metabolites identified in this study showed a good predictive 

capacity of nut consumption [AUC = 89.6% (80.8 – 98.4) and AUC = 83.7% (74.5 – 

92.9), respectively for urolithin A glucuronide and dodecanedioic acid] (Figure 3). 

Urolithin A glucuronide was the most sensitive and specific plasma biomarker of nut 

polyphenol intake. These findings are in agreement with recent observations from 

intervention and cohort studies [27, 59], and suggested how plasma collected at least 12 

h from the last intake may be a valuable alternative to dietary survey and urine 

metabolic fingerprinting for assessing the consumption of ellagitannin-containing food.  

The biological significance of urolithins has been extensively investigated in recent 

research, especially through in vitro experiments, suggesting anti-inflammatory, 

antiglycative and selective antimicrobial or prebiotic effects [14, 45, 60]. Since they are 
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the net result of a gut microbial and host interaction following nut intake, we secondly 

assessed whether the systemic exposure to urolithin A glucuronide was influenced by 

the MetS traits known to alter the intestinal microbiota. Table 3 and Supporting 

Information Figure S4 show the association between the plasma levels of urolithin A 

glucuronide following the 12 weeks of nut intake and the severity of the five clinical 

traits of MetS, at baseline and after the intervention (Pearson correlation coefficient, *p 

< 0.05; **p < 0.01). Correlations ranged from 0.576 (maximum direct correlation) to 

−0 55                                   significant inverse correlation was found 

between the levels of urolithin A glucuronide detected in plasma after nut intake and 

key parameters of abdominal adiposity (waist circumference: r = -0.550, p = 0.005; 

waist-hip ratio: -0.409, p = 0.047) and impaired glycemic control (fasting insulin: -

0.414, p = 0.049; HOMA-IR: -0.417, p = 0.048) at baseline. Linear regression analysis 

was developed to check for interaction with sex variable. Waist circumference, p = 

0.241; waist-hip ratio, p = 0.865; fasting insulin, p = 0.229; and HOMA-IR, p = 0.185; 

It shows that there is no interaction with sex variable. The negative association persisted 

when testing the correlation with other clinical parameters (e.g. BMI, fasting glucose, 

percentage of body fat,), although not reaching statistical significance. Furthermore, 

although the short duration of the dietary intervention allowed the complete remission 

of the syndrome in only two of the 24 subjects of the NU group (Supporting 

Information Table S5), the changes in fat percentage following the nut intake 

positively correlated with levels of urolithin A glucuronide in plasma (r = 0.456, p = 

0.025). Similar correlation trends persisted after adjusting for sex and drug treatments. 

Interestingly, much higher correlation coefficients were observed in female (n = 9) than 

in male (n = 15) volunteers, when analyzing the sex response separately (Table 3), so 

that the lack of   statistical significance should be interpreted in the context of the 

reduction of the sample size/statistical power in gender analysis (Supplemental 

Information Figure S4). 

Urolithin A glucuronide did not show similar correlations with the other 

cardiometabolic risk factors, including hyperlipidemia and hypertension parameters.  

These findings allow us to hypothesize that subjects with lower levels of abdominal 

obesity and insulin resistance may have a microbiota best suited to metabolizing 

phenolic compounds otherwise indigestible and unabsorbable, such as those derived 

from nut ETs, once exposed to a dietary challenge, therefore modulating their health 

impact.  

Taken together, the observed associations would confirm the crucial role of the gut 

microbial community in modulating the production and bioavailability of bioactives 

from dietary polyphenols. Evidence suggests that the enzymatic machinery responsible 

for the bioconversion of ETs into urolithins may not be ubiquitously shared across the 

gut microbial community, but little is still known about the specific strains responsible 

for urolithin production [18, 19, 44]. Consequently, no data exist to date on the impact 

that the gut microbial dysbiosis observed in co-occurrence with metabolic alterations 

may have on the systemic exposure to these bioactives from nut polyphenols. Further 

research aimed at assessing the prevalence of urolithin-producing bacteria in the gut of 

metabolically healthy versus diseased individuals is urgently required. 

The potential association between the plasma levels of dodecanedioic acid and the 

severity of the MetS diagnostic traits were also analyzed, at baseline and after the period 

of nuts intake. Although no significant variations were overall observed, specific gender 

effects were also noticed (details in Supporting Information Table S6). 
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Concluding remarks  

In the present study, the exploration of the plasma metabolome by untargeted 

metabolomics enabled to identify discriminant metabolites of nut consumption, namely 

conjugated urolithins and fatty acid metabolites such as dodecanedioic acid, in systemic 

circulation at least 12 h following the last intake. Nut consumption was recently 

associated with an increased urinary excretion of the detected metabolites, in both 

intervention studies and free-living conditions [16, 27, 59], hence our findings represent 

an important step in the validation of these compounds as biomarkers of nuts exposure. 

Moreover, the correlations observed between the identified metabolites and the MetS 

clinical traits provided a first overview of the link between exposure (referred as the 

               ‘    k ’     ‘    -                            ’      cardiometabolic 

risk. Although further studies are highly recommended to verify the generated 

hypotheses, our findings have confirmed the role of a healthy gut microbial community 

in modulating the production and bioavailability of healthy bioactives from dietary 

polyphenols. 
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Figures 

 

Figure 1. OSC-PLS-DA score plot (Model 1). Figures and colors indicate the type of 

plasma samples to improve visualization: baseline samples (CT_T0 and NU_T0) are 

gray and black circles, CT_T3 are triangles and CT_T3 are pentagons, respectively. 
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Figure 2. VIP value of models T0 vs NU_T3 and CT_T3 vs NU_T3. Dotted line 

                              k         VI  v     ≥ 2                             

glucuronide (black box), dodecanedioic acid (black pentagon) and sebacic acid 

(monomer and dimer, black diamante) are examples of some discriminant biomarkers. 
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Figure 3. ROC curve analysis of urolithin A glucuronide and dodecanedioic acid (up-

regulated biomarkers of nuts exposure (NU_T3 subjects vs T0 and CT_T3). 
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Tables 

 

Table 1. Summary of parameters for assessing the OSC-PLS-DA modeling quality. 

Model
a
 No. Sample Classes No. 

b
 R

2
X(cum)

c
 R

2
Y(cum)

c
 Q

2
(cum)

c
 

R 

intercept
d
 

Q intercept
d
 p

e
 

1 3 (T0 vs CT_T3 vs NU_T3) 2 0.057 0.886 0.669 0.562 -0.223 8.92E-35 

2 2 (T0 vs NU_T3) 1 0.040 0.942 0.744 0.645 -0.147 1.83E-21 

3 2 (CTT3 vs NU_T3) 1 0.047 0.928 0.621 0.709 -0.152 2.07E-10 

 
a 

In model, the generation of the OSC filters  removed respectively 11 and 8 components (Eigenvalue > 2), maintaining 52% and 43% non-

orthogonal variation in the original data set. 
b 

Number of components selected. 
c 

R
2
X(cum) and R

2
Y(cum) are the cumulative modeled variation 

in X and Y matrix, respectively, and Q
2
Y(cum) is the cumulative predicted variation in Y matrix.  

d 
Obtained after a permutation test (n = 200). 

e 

Value from ANOVA based on the cross-validated predictive residuals. The models were considered significant value with p < 0.001. 

 

 

Table 2. Identified and nonidentified metabolites associated with nuts intake in the plasma metabolome of MetS subjects
a
. 

No. 

cluster  
RT (min) 

 Detected mass 

(m/z)
b
  

Theoretical 

mass (m/z)  

Error 

(mDa) 
Assignation 

Potential 

biomarker 
Change

c
 

VIP value
d
 

Level of 

evidence
e
 T0 vr 

NU_T3 

CT_T3 vr 

NU_T3 

Markers of microbial-derived and phase II metabolism of nuts phenolics         

1 5.61 403.0734 403.0671 -6.35 [M - H]
-
  

Urolithin A 

glucuronide 
↑ 4.47 4.54 1 

Markers of fatty acids metabolism (Medium-chain, even-numbered dicarboxylic acids)         

2 6.16 403.2377 403.2337 -4.00 [2M - H]
-
  Sebacic acid ↓ 2.89 2.33 1 

  6.18 201.1081 201.1132 5.10 [M - H]
-
    ↓ 1.52 1.76   
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3 6.49 229.1352 229.1445 9.30 [M - H]
-
  

Dodecanedioic 

acid 
↑ 2.61 2.01 1 

Unidentified markers  

4 0.5 352.0023     [M - H]
- 
   ↓ 3.76 3.59   

5 5.69 145.0519     [M - H]
-
    ↑ 3.42 2.20   

6 0.60 583.1809     [M - H]
- 
   ↑ 3.03 2.44   

7 0.47 605.1648     [M - H]
-
    ↑ 3.00 2.04   

8 7.86 253.2187     [M - H]
- 
   ↑ 2.92 2.12   

9 6.63 194.0835     [M - H]
-
    ↓ 2.73 2.11   

10 6.23 527.2204     [M - H]
-
    ↓ 2.73 2.72   

11 6.41 421.1493     [M - H]
-
    ↓ 2.71 2.86   

  6.41 422.1508     
13

C [M - H]
-
    ↓ 2.64 2.76   

  6.41 423.1468     2
13

C [M - H]
-
    ↓ 2.73 2.77   

  6.43 424.1482     3
13

C [M - H]
-
    ↓ 2.74 2.85   

12 6.41 807.3249     [M - H]
-
    ↓ 2.55 2.48   

  6.41 808.3294     
13

C [M - H]
-
    ↓ 2.17 2.29   

13 0.6 354.9976     [M - H]
-
    ↑ 2.45 2.77   

14 0.6 347.0152     
13

C [M - H]
-
    ↑ 2.27 2.31   

15 4.47 217.0284     [M - H]
-
    ↑ 2.20 2.60   

16 6.38 607.2990     [M - H]
-
    ↓ 2.19 2.56   

17 6.43 475.2045     [M - H]
-
    ↓ 2.04 2.25   

18 5.83 317.1167     [M - H]
-
   ↑ 1.99 1.74   

 5.83 318.1196     
13

C [M - H]
-
    ↑ 2.04 2.11   

19  5.78 175.6309     [M - H]
-
    ↑ 2.01 2.94   

a 
Clusters are listed according the decreasing VIP value; all the proposed mass features met the significance criteria proposed  | ≥0 05|     

|       ≥0 5|   
b 

Data obtained by LC-ESI-q-TOF mass spectrometry (see text for details). 
c 

Direction of changes observed following the nuts 

consumption. 
d 
Calculated from the two-class OSC-PLS-DA models M2 and M3. 

e 
According to Metabolomics Standards iniciative.  

 



18 

 

Table 3. Pearson rank correlation coefficient for correlation of changes in plasma levels 

of urolithin A glucuronide and the severity of the five clinical traits of MetS (waist 

circumference, fasting glucose, c-HDL, triglycerides and elevated blood pressure-SPB 

& DPB) at baseline and after nuts intervention. *p < 0.05; **p < 0.01.  

  
  

All subjects 
Female 

(n= 9) 

Male 

(n = 15)   Variable 
 

r 
r 

(adjusted) 

A
d

ip
o
si

ty
 

Waist circumference (cm) Baseline  -0.550**  -0.359
a
 -0.517 -0.272 

  
Post-

intervention 0.184 0.128
a
 0.406 -0.056 

Waist-hip ratio Baseline  -0.409* 0.041
a
 -0.033 0.137 

  
Post-

intervention 0.147 0.048
a
 0.266 -0.045 

BMI (kg/m
2
) Baseline -0.228  -0.383

a
 -0.376 -0.400 

  
Post-

intervention 0.213 0.243
a
 0.482 -0.018 

Body fat (%) Baseline 0.222  -0.369
a
 -0.309 -0.445 

  
Post-

intervention 0.456* 0.309
a
 0.576 0.224 

G
ly

ce
m

ic
 c

o
n

tr
o
l 

Fasting glucose (mmol/L) Baseline -0.254  -0.202
a
 -0.272 -0.184 

  
Post-

intervention 0.272 0.322
a
 0.396 0.333 

I        μ /    Baseline  -0.414*  -0.277
a
 -0.501 -0.128 

  
Post-

intervention 0.205 0.084
a
 0.2 -0.021 

HOMA-IR Baseline  -0.417*  -0.265
a
 -0.522 -0.115 

  
Post-

intervention 0.226 0.094
a
 0.199 0.013 

L
ip

id
em

ia
 c-HDL (mmol/L) Baseline 0.366 0.181

b
 0.402 0.103 

  
Post-

intervention -0.312  -0.208
b
 -0.298 -0.011 

Triglycerides (mmol/L) Baseline -0.188  -0.090
b
 -0.399 0.024 

  
Post-

intervention 0.108 0.143
b
 0.265 -0.115 

B
lo

o
d

 P
re

ss
u

re
 

SPB (mm Hg) Baseline 0.126 0.184
b
 0.321 -0.065 

  
Post-

intervention -0.062 0.186
b
 0.144 0.246 

DPB (mm Hg) Baseline 0.242 0.304
b
 0.181 0.432 

  
Post-

intervention 0.092 0.032
b
 0.138 -0.055 

Unskewed data distribution. 
a 

Adjusted for sex. 
b
 Adjusted for sex and specific drug 

treatment. 


