

AMINOCATÁLISIS ASIMÉTRICA Y CATÁLISIS COOPERATIVA EN REACCIONES CASCADA

Carlos Arróniz, Alberto Gil, Mercedes Amat, Joan Bosch, Carmen Escolano

FÁRMACOS ENANTIOPUROS

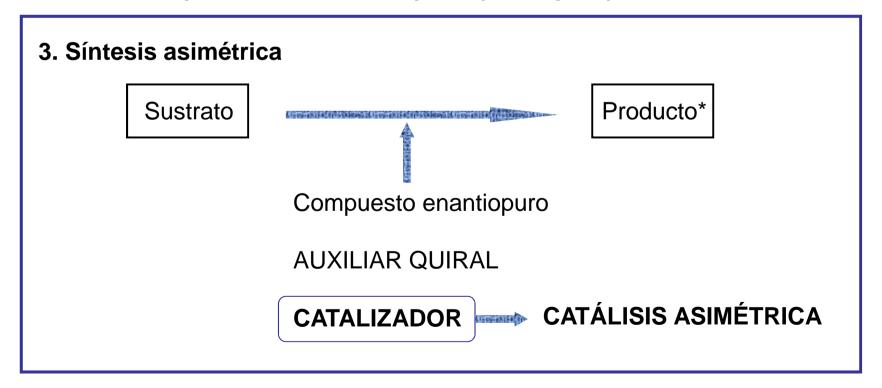
Pharmaceutical Sales 2009

The following is a list of the top 200 pharmaceutical drugs by retail sales in 2009, listed by U.S. sales value and brand name.

Top 200 Drugs for 2009 by Sales

View data for: 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009

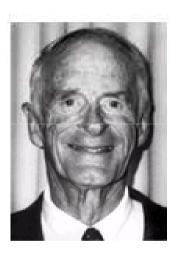
(By Units)


Rank	Drug	Current Manufacturer	Total Sales (\$000)	% change 2008
1	<u>Lipitor</u>	Pfizer Inc	5,363,193	-8.8%
2	<u>Nexium</u>	AstraZeneca Pharmaceuticals	5,014,827	4.6%
3	Plavix	Bristol-Myers Squibb Company	4,223,124	11.2%

http://www.drugs.com/top200.html

Estrategias para la generación de compuestos enantiopuros

- 1. Procesos de resolución de mezclas de enantiómeros (racémicos)
- 2. Síntesis a partir de la reserva quiral (chiral pool)



The Nobel Prize in Chemistry 2001

"for their work on chirally catalysed hydrogenation reactions"

"for his work on chirally catalysed oxidation reactions"

William S. Knowles ● 1/4 of the prize

St. Louis, MO, USA

Ь. 1917

USA


Ryoji Noyori

0 1/4 of the prize

Japan

Nagoya University Nagoya, Japan

Ь. 1938

K. Barry Sharpless

1/2 of the prize

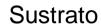
USA

The Scripps Research Institute La Jolla, CA, USA

Ь. 1941

- Proporciona directamente enantiómeros a partir de un compuesto proquiral
- Cantidades subestequiométricas
- Activación del sustrato REVERSIBLE
 - Economía de átomo óptima para el proceso
 - Minimiza residuos tóxicos generados
 - *Multiplicación de la quiralidad*: a partir de cantidades subestequiométricas de catalizador se obtienen cantidades estequiométricas de producto enantioenriquecido.

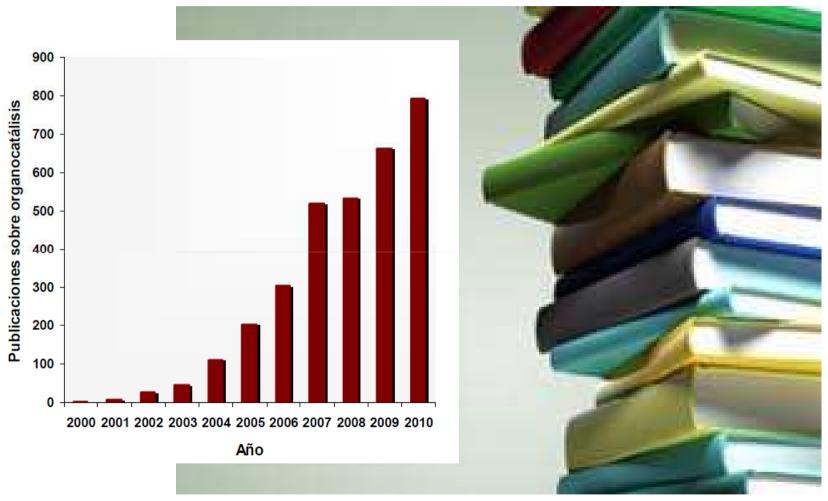
Ventajas


- 1. Catálisis enzimática (biocatálisis)
- 2. Catálisis organometálica

- 1. Catálisis enzimática (biocatálisis)
- 2. Catálisis organometálica
- 3. Organocatálisis

Aceleración de reacciones químicas mediante moléculas orgánicas de bajo peso molecular, en ausencia de metales.

3. Organocatálisis


Aceleración de reacciones químicas mediante moléculas orgánicas de bajo peso molecular, en ausencia de metales.

Organocatálisis

- Los organocatalizadores suelen ser insensibles a la humedad y al oxígeno del aire.
- No requieren estrictas condiciones de trabajo ni material especial como el uso de cajas secas, gas inerte o disolventes anhidros.
- Son compuestos enantiopuros disponibles en la naturaleza o fácilmente asequibles. Obtención barata y rápida.
- Ambas series enantioméricas disponibles.
- Respetuosos con el medio ambiente:
 - Baja o nula toxicidad
 - Se aíslan fácilmente del crudo de reacción
 - Reacciones en elevada concentración, disminuye la cantidad de disolvente

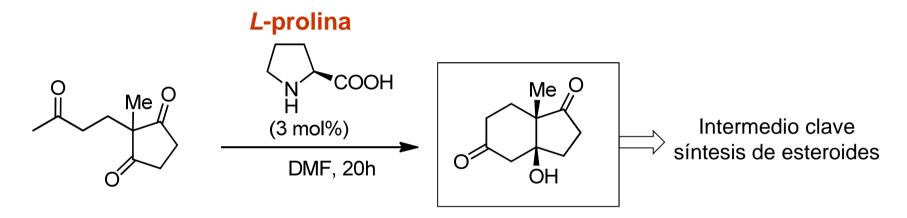
Organocatálisis

Número de publicaciones en las que aparece el término "organocatálisis" en el título o abstract desde el año 2000 hasta 2010 a partir de SciFinder (2007).

Organocatálisis

Catálisis con aminas (aminocatálisis)

Aminocatálisis

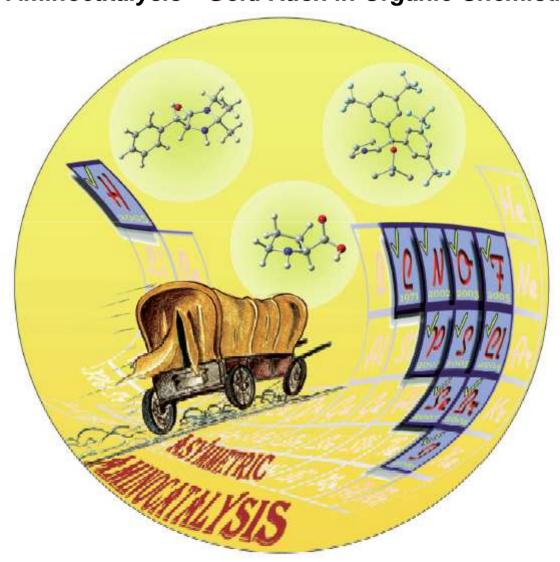

Las aminas catalizan la reacción de β-cetoésteres o malonatos con aldehidos o cetonas

Aminocatálisis

Reacción de Hajos-Parrish-Eder-Sauer-Wiechert (1970s)

Aminocatálisis

Reacción de Hajos-Parrish-Eder-Sauer-Wiechert (1970s)



Asymmetric Aminocatalysis—Gold Rush in Organic Chemistry

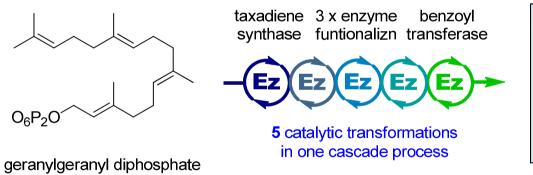
Reacciones cascada (dominó, tándem, one-pot)

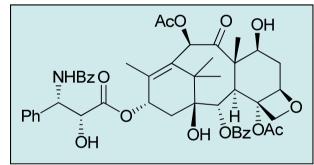
- Proceso químico en el que se forman dos o más enlaces bajo las mismas condiciones de reacción, sin la adición de otros reactivos o catalizadores, y que ocurren en el mismo matraz de reacción.

Reacción de Mannich

- Formación de varios enlaces a la vez.
- No hay necesidad de purificación de intermedios, ni de hacer finales de reacción. (síntesis "stop-and-go").

Costes
Tiempo
Residuos

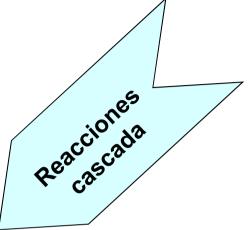

IDEAL PARA ACCEDER A
UNA COMPLEJIDAD
MOLECULAR DE MANERA
EFICIENTE Y ECOLÓGICA



- Aislado de *Taxis brevifolia* (1966)
- -Tratamiento para cáncer de ovario y mama utilizado a nivel mundial.
- Uno de los compuestos activos más atractivos

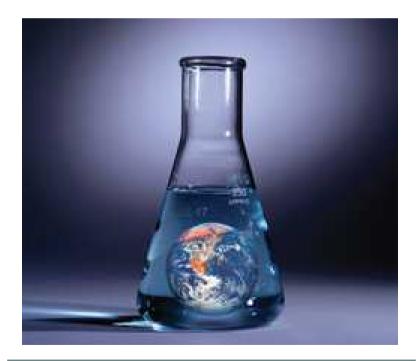
Taxol

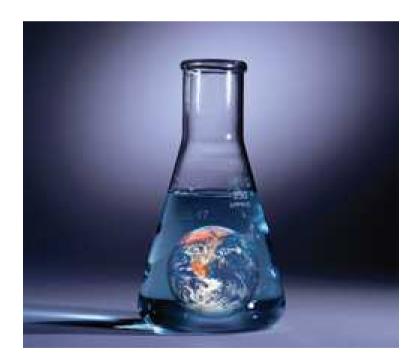
Taxol a partir de geranil difosfato en cinco etapas catalizadas por enzimas



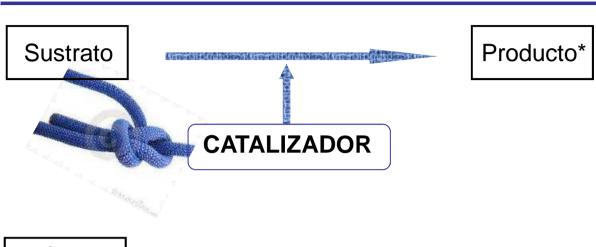
Taxol

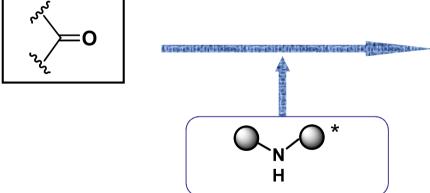
- -La síntesis más eficiente publicada por Wender consta de 37 pasos con un 0.44% de rendimiento (1997).
- "Stop-and-go" synthesis



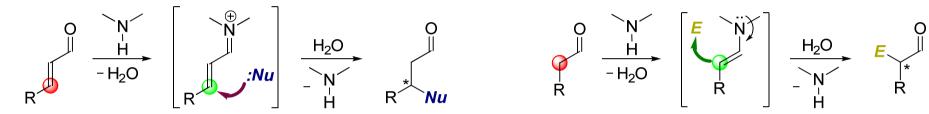

Tesis Dr. Carlos Arróniz

- Búsqueda de nuevos aminocatalizadores
- Búsqueda de nuevas reacciones organocascada


Tesis Dr. Carlos Arróniz


- Búsqueda de nuevos aminocatalizadores
- Búsqueda de nuevas reacciones organocascada

Interacción sustrato-catalizador


Producto*

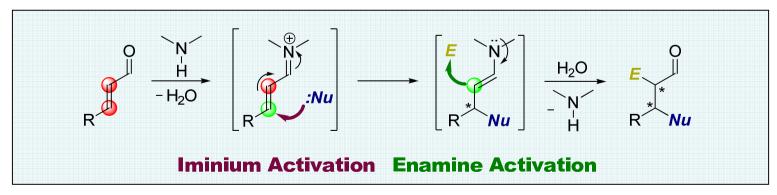
- Activación del sustrato REVERSIBLE

Iminium Activation

Enamine Activation

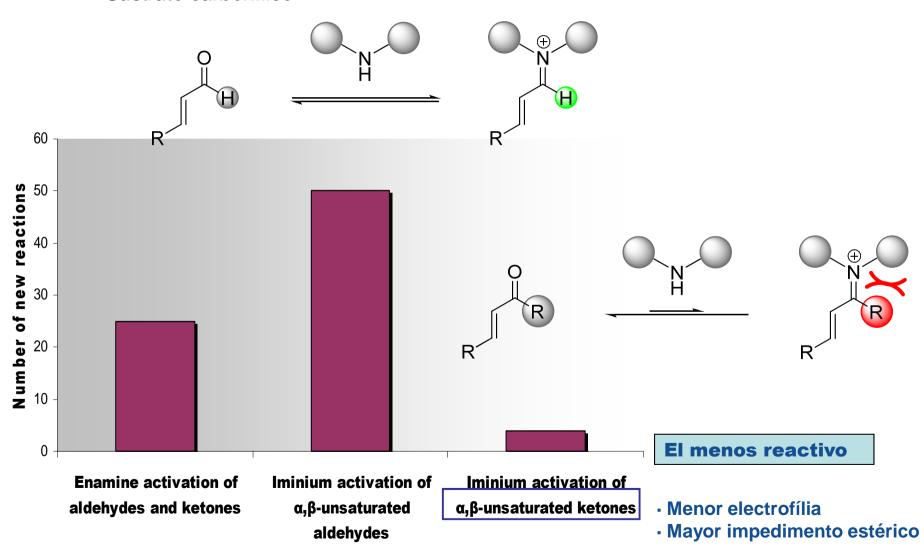
$$X \xrightarrow{\mathsf{N}} \mathbb{R} \xrightarrow{\mathsf{N}} \mathbb{R} = \mathbb{R}$$

Ammonium Activation

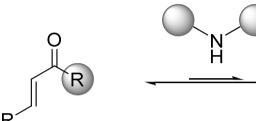

$$\begin{array}{c|c}
O & N \\
\hline
H & H_2O
\end{array}$$

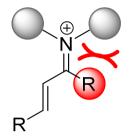
$$\begin{array}{c|c}
E & N \\
\hline
R & H_2O
\end{array}$$

$$\begin{array}{c|c}
R & R
\end{array}$$


Iminium Activation

Enamine Activation





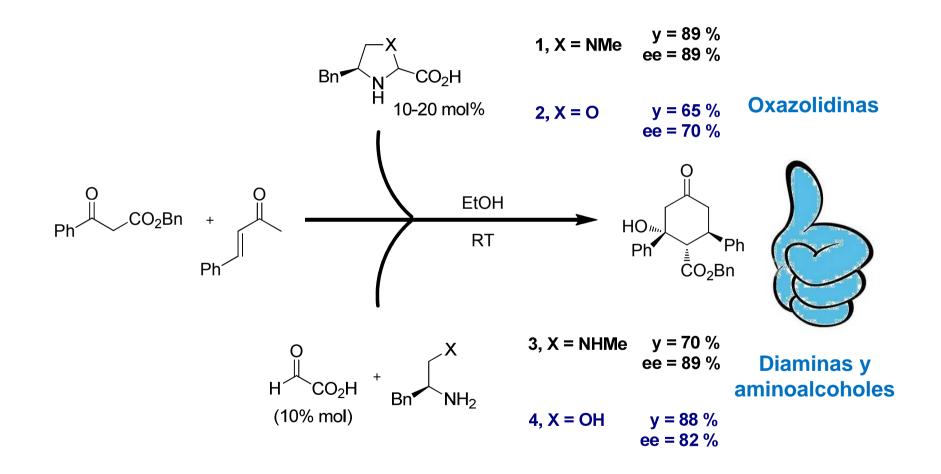
Congested iminium adducts

Catalizador real: amina secundaria vs amina primaria

Fast iminium ion formation

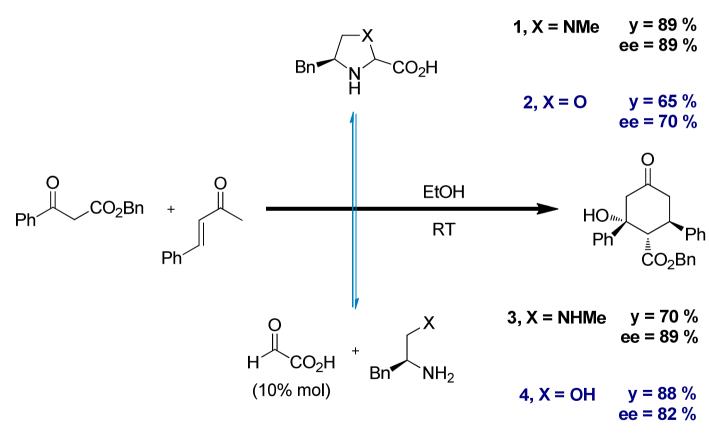
Bartoli, G.; Melchiorre, P. Synlett 2008, 1759.

- Aminocatálisis (amina y co-catalizador ácido)
- Reacción en cascada (Michael-aldólica)
- Hasta cuatro centros quirales
- Elevado dr y ee



¿ Pueden las oxazolidinas catalizar la reacción ?

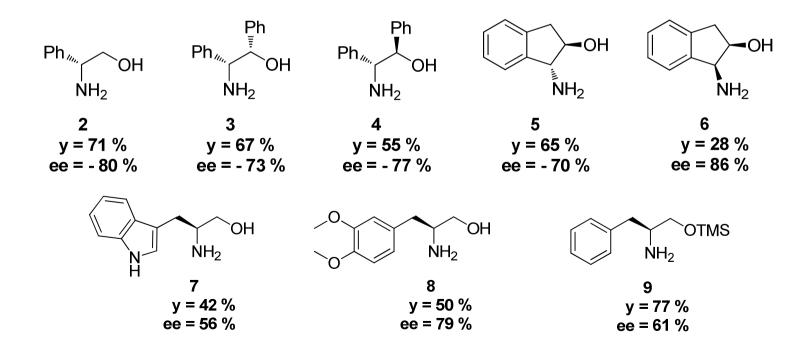
Catalizador real de la reacción: amina primaria o secundaria



¿Es la amina secundaria el catalizador?

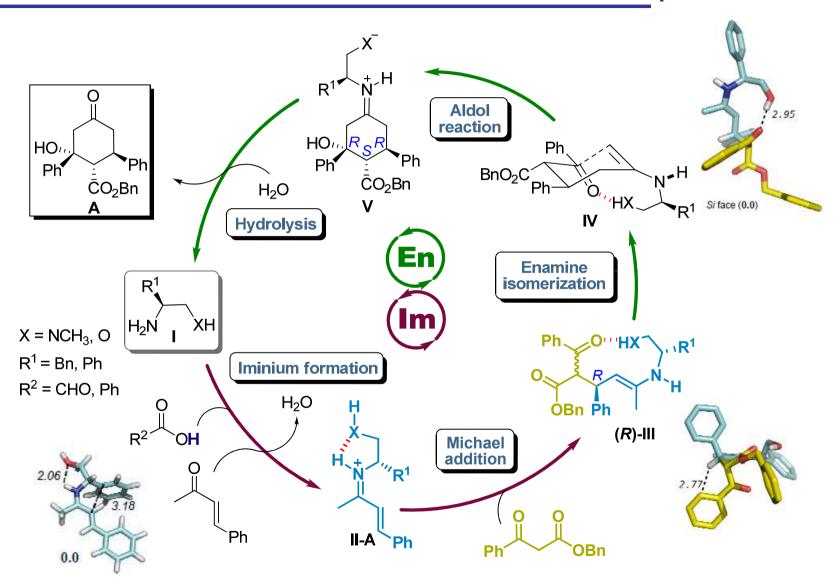
¿Se forma la amina secundaria in situ?

¿ Pueden las diaminas o aminoalcoholes (aminas primarias) catalizar la reacción ?


Ph CO₂Bn + Ph CO₂Bn
$$y = 82\%$$
 $y = 82\%$
 $y = 82\%$

Las aminas primarias catalizan la reacción

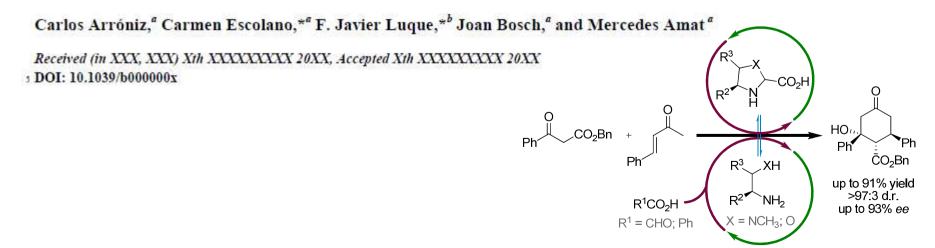
Búsqueda de nuevos aminocatalizadores: Amino alcoholes



AMINO ALCOHOLES: A partir de aminoácidos naturales en un paso de síntesis

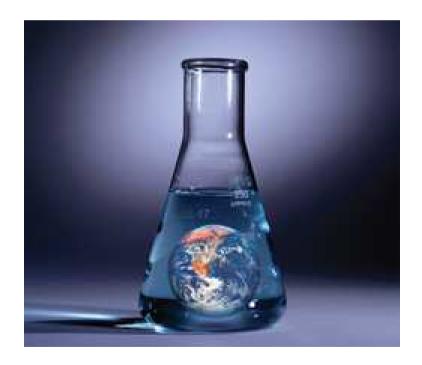
Consideraciones teórico-mecanísticas: Prof. F. J. Luque

Conclusiones

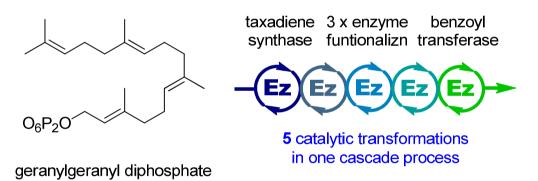

- Primera reacción cascada en la que se han utilizado amino alcoholes quirales
- Estudios encaminados a la elucidación de la especie catalítica real
- Estudios mecanístico-teóricos del proceso

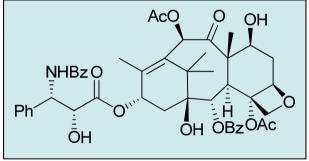
Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx


ARTICLE TYPE

First Asymmetric Cascade Reaction Catalysed by Chiral Primary Amino Alcohols

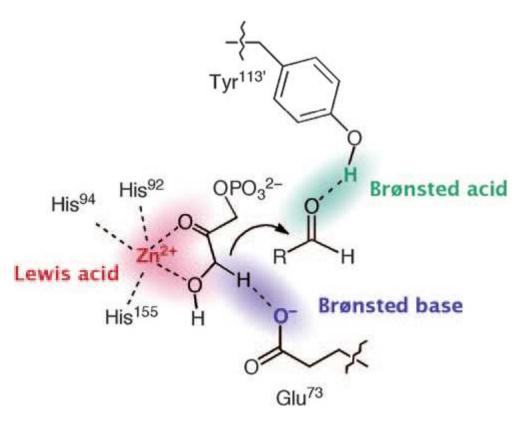

Tesis Dr. Carlos Arróniz


- Búsqueda de nuevos aminocatalizadores
- Búsqueda de nuevas reacciones organocascada

Reacciones en cascada

Taxol a partir de geranil difosfato en cinco etapas catalizadas por enzimas

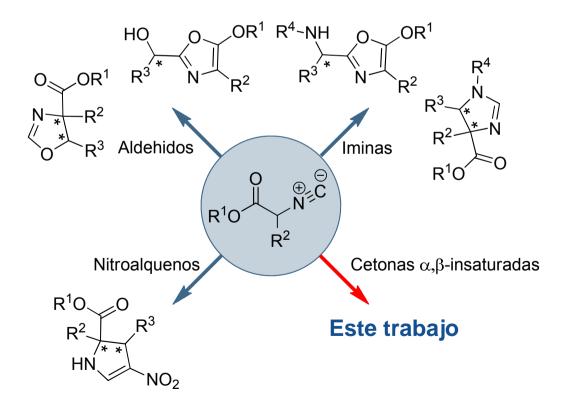
Taxol


¿Cómo promueve la naturaleza las reacciones?

¿Cómo funcionan los enzimas?

- H ·Formación de enlaces de hidrógeno
- c •Enlaces covalentes
- (A-B) •Catálisis ácido-base
- (M) •Catálisis con metales, etc.

Activación cooperativa de la dihidroacetona fosfato (DHAP) en aldolasas (clase II)



Nelson, D. L.; Cox, M. M. *Principles of Biochemistry*, 4th ed.; W. H. Freeman & Co., New York, **2005**; p 200. Kumagai, N.; Shibasaki, M. *Angew. Chem. Int. Ed.* **2011**, *50*, 4760.

Catálisis cooperativa: Búsqueda de nuevas reacciones

Isocianoacetatos

Adiciones enantioselectivas de isocianoacetatos

Gulevich, A. V.; Zhdanko, A. G.; Orru, R. V. A.; Nenajdenko, V. G. Chem. Rev. 2010, 110, 5235.

Adiciones racémicas de isocianoacetatos a cetonas α,β-insaturadas

Grigg, R.; Lansdell, M. I.; Thornton-Pett, M. Tetrahedron 1999, 55, 2025.

Zhang, D.; Xu, X.; Tan, J.; Liu, Q. Synlett. 2010, 917.

Tan, J.; Xu, X.; Zhang, L.; Li, Y.; Liu, Q. Angew. Chem. Int. Ed. 2009, 48, 2868.

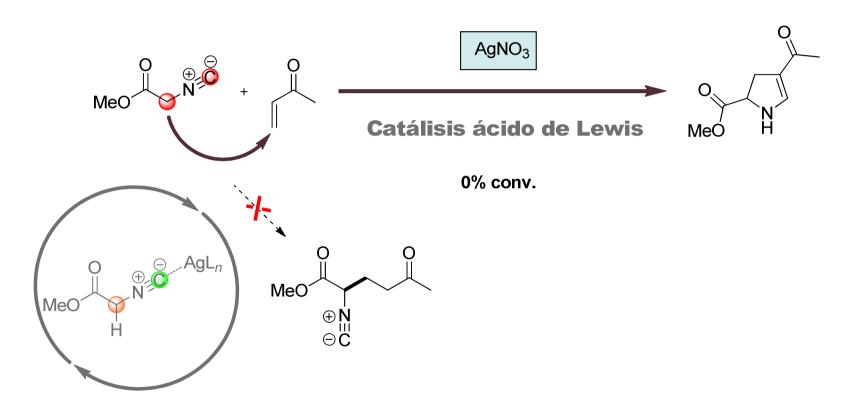
Catálisis cooperativa: Primera cicloadición [3+2] asimétrica de isocianoacetatos a cetonas α,β -insaturadas

$$R^{1}O$$
 R^{2}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}

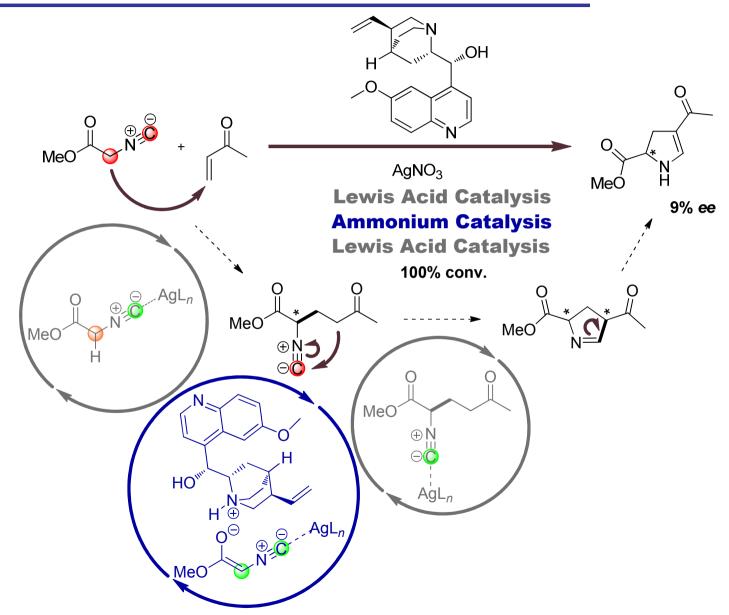
2,3-dihidropirroles enantiopuros

Estrategia serie racémica

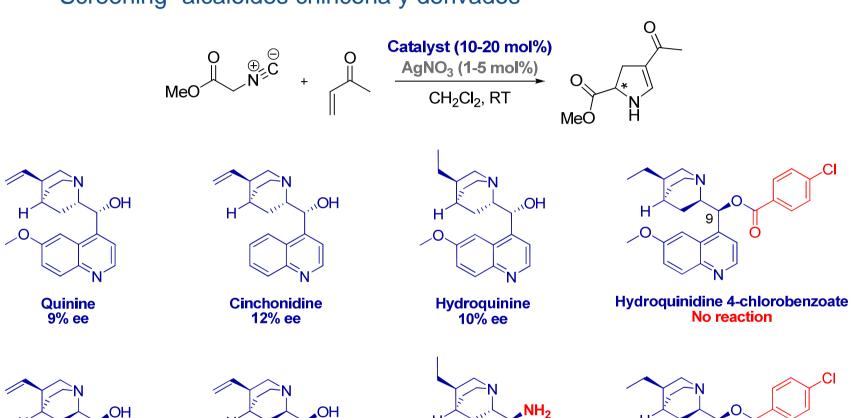
Grigg, R.; Lansdell, M. I.; Thornton-Pett, M. Tetrahedron 1999, 55, 2025.



Ammonium Activation Brønsted Base OR catalyst catalyst **Lewis Acid Activation** Metal **H** bond acceptor **H-bond donor**


Hydrogen Bonding Activation

"Screening" de sales de plata


Quinidine

- 7% ee

"Screening" alcaloides chincona y derivados

Cinchonine

- 4% ee

9-Amino Hydroquine No reaction

HO 9 O

Hydrocupreine 4-chlorobenzoate No reaction

"Screening" alcaloides chincona y derivados

"Screening" estructura sustratos de partida

Entry	R ¹	R^2	R ³	Yield (%)	ee (%)
1	Me	н	Et	49	74
2	Me	H	Et	20	89
3	Me	Bn	Me	85	16
4	Me	Bn	Et	66	36
5	<i>t</i> Bu	Н	Me	59	58
6	Et	Н	Me	48	68
8	Et	Н	Et	43	52

Mecanismo propuesto

$$R^{1}O \stackrel{\bigoplus}{N^{2}}C + Q^{2}O \stackrel{\bigoplus}{N^{2}}C$$

DOI: 10.1002/ejoc.201100409

Cooperative Catalysis for the First Asymmetric Formal [3+2] Cycloaddition Reaction of Isocyanoacetates to α,β-Unsaturated Ketones

Carlos Arróniz, [a] Alberto Gil-González, [a] Vladislav Semak, [a] Carmen Escolano, *[a] Joan Bosch, [a] and Mercedes Amat [a]

Asymmetric Formal [3+2] Cycloaddition Reactions

Cooperative Catalysis

$$R^{1}O$$
 R^{2}
 R^{3}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}

Cooperative cascade catalysis Up to 85% yield Up to 89% ee

Cooperation is the key: Cinchona alkaloid derived organocatalysts were combined with silver nitrate to achieve the first asymmetric formal [3+2] cycloaddition reaction of isocyanoacetates to α,β -unsaturated ketones.

Cooperative Catalysis for the First Asymmetric Formal [3+2] Cycloaddition Reaction of Isocyanoacetates to α,β -Unsaturated Ketones

Keywords: Silver / Organocatalysis / Ketones / Domino reactions / Asymmetric synthesis

CENTRE de RECERCA i DESENVOLUPAMENT en SÍNTESI ORGÀNICA per a la INDÚSTRIA QUIMICO FARMA CÈUTICA

Prof. Joan Bosch Prof. Mercedes Amat

Vladislav Semak Alberto Gil Sonia Abas Laura Casals

Dr. Carlos Arróniz

Ministerio de Ciencia e Innovación (CTQ 2009-0702/BQU AGAUR, Generalitat de Catalunya (2009-SGR-111)
Becas Ministerio Ciencia y Tecnologia y Facultat de Farmacia (Beca d'estiu)

GRACIAS POR VUESTRA ATENCIÓN