Human Risk assessment of Chlorinated hydrocarbons (DNAPLs) in contaminated groundwaters

Célia BARATIER, Amparo CORTES
Department of Natural Product, Plant Biology and Soil Science
Faculty of Pharmacy,
University of Barcelona
Introduction

- Industrial utilization since middle 20th century
 - Dry cleaning
 - Metal degreasing
 - Pharmaceutical production

- Soil and groundwater contaminants

- Exposed people
 - Workers (producer and user)
 - General population: Drinking water

→ Public Health issue
DNAPLs’ chemical properties

- Chlorinated hydrocarbons
- DNAPLs: Denser-than water No Aqueous-Phase Liquid

![Chemical structures of chlorinated hydrocarbons]

- Tetrachloroethene
- Trichloroethene
- cis 1,2 Dichloroethene
- trans 1,2 Dichloroethene
- Vinylchloride
- Tetrachloroethane
- 1,1,2 Trichloroethane
- 1,2 Dichloroethane
- Chloroethane
- Carbon tetrachloride
- Cloroform
- Dichloromethane
- Chloromethane
DNAPLs’ physical properties

- Denser than water
- Volatile
- Mobile in the soil
- Poorly soluble in water
- Form pools in soils and plumes in groundwater

ORICA – Cleaning groundwater project
Biodegradation

- Degradation by microorganism

- But possibility that daughter molecules are
 - more persistent in environment
 - more toxic

[Scheutz C and Al., 2011]
Human Toxicity

- High toxicity in low concentration

- Targets organs
 - Central Nervous System
 - Liver
 - Heart
 - Lung
 - Kidneys
 - Skin

- Toxicity Acute or Chronic

- Carcinogenicity (IARC classification)
 - Vinyl chloride: Group 1 → Angiosarcoma
Objectives

- To assess human risk of contaminated groundwater by Chlorinated Hydrocarbons with RBCA model.

- To verify the correct toxicological and exposure values to be used in the model.

- To establish representative exposure scenarios.
Methodology

- **RBCA: Risk Based Corrective Action**
 - Tool for determining the amount and urgency of action necessary regarding to the human health

- **Uses**
 - Identify exposure pathways and receptors at a site
 - Determine the level and urgency of response required at a site
 - Determine the level of surveillance appropriate for a site
 - Incorporate risk analysis into all phases of the corrective action process
Methodology

- Steps of the risk assessment with RBCA
 - Exposure assessment
 - Identification of source
 - Identification population exposed
 - Determination of the exposure scenario and pathway exposure
 - Exposure factors
 - Exposure dose
 - Toxicity assessment
 - For non-carcinogenic: Exposure dose without significant effect
 - According to the entrance way (dermal, oral, inhalation)
 - For carcinogenic: Slope Factor (SF)
 - According to the entrance way (dermal, oral, inhalation)
 - Risk Analysis
 - For non-carcinogenic: Hazard Ratio (HR) >1 = Risk
 \[
 HR = \frac{\text{Exposure Dose}}{\text{Exposure dose without significant effect}}
 \]
 - For carcinogenic: Exposure Calculated x SF > 10E-5 = Risk
 - Uncertainties
 - Values use

Booth P, 2011
Study area

- Tarragona, Spain
 - Industry
 - Pollution detected in 1996
 - CT and CF

- Groundwater characteristics polluted plume:
 - 4 m of thickness
 - 2 m big
 - 7.5 m : depth of water table
Scenarios

- Play with the different value of:
 - Toxicological parameters
 - Exposure parameters
 - According the ages
 - According the genders
 - According the life style
 - Soil parameters
 - pH
 - Concentration of Organic Carbon
 - Groundwater parameters
 - pH
 - Concentration of Organic Carbon
Results: Water pollution

Mean Groundwater concentrations used for the risk analyses (in μg L-1)

<table>
<thead>
<tr>
<th>Chloromethane</th>
<th>Chloroethene</th>
<th>Chloroethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>CF</td>
<td>CM</td>
</tr>
<tr>
<td>164.08</td>
<td>103.71</td>
<td>1.96</td>
</tr>
</tbody>
</table>

Drinking water WHO guideline (in μg L-1) (WHO 2004)

<table>
<thead>
<tr>
<th>Chloromethane</th>
<th>Chloroethene</th>
<th>Chloroethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>CF</td>
<td>CM</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>-</td>
</tr>
</tbody>
</table>

- CT and CF: majority compounds
- Carcinogenic compounds: no threshold
- CT and VC in excess according the guideline
Results: Risk assessment for Catalonia

Excess cancer risk and HR by exposition to the polluted groundwater for commercial and residential receptors

<table>
<thead>
<tr>
<th>Excess cancer risk: GW Expo</th>
<th>Study area</th>
<th>Acceptable value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commercial</td>
<td>Res 1</td>
</tr>
<tr>
<td>Female</td>
<td>1.9E-04</td>
<td>7.4E-07</td>
</tr>
<tr>
<td>Male</td>
<td>1.9E-04</td>
<td>6.8E-07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard ratio : GW</th>
<th>Study area</th>
<th>Acceptable value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commercial</td>
<td>Res 1</td>
</tr>
<tr>
<td>Female</td>
<td>1.2</td>
<td>8.6E-03</td>
</tr>
<tr>
<td>Male</td>
<td>1.2</td>
<td>8.6E-03</td>
</tr>
</tbody>
</table>

- Excess risk of cancer and toxicological effect
 - Commercial receptors

- Acceptable risk:
 - Residential receptors

- Low variation between genders
Results: European exposure parameters

Excess cancer risk and HR by exposition to the polluted groundwater according different life style in European countries and USA for commercial receptors

Excess Risk

<table>
<thead>
<tr>
<th>Countries</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
<tr>
<td>USA</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
<tr>
<td>Germany</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
<tr>
<td>Uk</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
<tr>
<td>Italie</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
<tr>
<td>Ndl</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
<tr>
<td>France</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
<tr>
<td>Catalo</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
</tbody>
</table>

HR

<table>
<thead>
<tr>
<th>Countries</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>1,0E+00</td>
<td>1,0E+00</td>
</tr>
<tr>
<td>USA</td>
<td>1,0E+00</td>
<td>1,0E+00</td>
</tr>
<tr>
<td>Germany</td>
<td>1,0E+00</td>
<td>1,0E+00</td>
</tr>
<tr>
<td>Uk</td>
<td>1,0E+00</td>
<td>1,0E+00</td>
</tr>
<tr>
<td>Italie</td>
<td>1,0E+00</td>
<td>1,0E+00</td>
</tr>
<tr>
<td>Ndl</td>
<td>1,0E+00</td>
<td>1,0E+00</td>
</tr>
<tr>
<td>France</td>
<td>1,0E+00</td>
<td>1,0E+00</td>
</tr>
<tr>
<td>Catalo</td>
<td>1,0E+00</td>
<td>1,0E+00</td>
</tr>
</tbody>
</table>
Results: European exposure parameters

Excess risk of cancer and HR by exposition to the polluted groundwater according different lifestyle in European countries and USA for residential receptors

Excess risk

HR
Conclusion

- Risk:
 - Excess risk: commercial receptor
 - Acceptable risk: receptors residential

- Variation of the risk with exposure factors
 - Excess risk: commercial receptor (BC, Cat, USA, UK female)
 - Acceptable risk: receptors residential + commercial receptors (NdI, Fr, It, Uk male)

- No risk variation with water and soil parameters

 → Carcinogenic compounds = Risk
 → But acceptable risk by exposure to polluted water after 500 m from the polluted site
References

2. Encyclopedia of environmental health, editor in chief: Jerome O Nriagu, Elsevier 2011, tome 3 page 514, tome 4 page 301 and 304
9. IARC (2008), 1,3-Butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide), vol 97, IARC Monogr Eval Carcinog Risks Hum., Lyon
13. ChemicalBook 2010, chloroform
14. The Dow Chemical Company, Chlorinated solvent: physical properties
16. INERIS - Fiche de données toxicologiques et environnementales des substances chimiques. Chlorure de vinyle. Mai 2010
18. SIDS Initial Assessment Report For SIAM 15 (Boston, USA, October 2002) Chloromethane
19. Agency for Toxic Substances and Disease Registry, Toxicological profile for Dichloroethane
20. MEGS, 1, 1, 2-Trichloroethane-Material safety data sheet 1999
22. CEFIC: The European Chemical Industries Council. 2011
23. WHO, Appendix 1: Potential sources and uses of Chemicals considered in the WHO Guidelines for drinking-water Quality, WHO 2004
24. Data base Reaxys. Centre de Recursos per a l'Aprenentatge i la Investigació Biblioteques. Universitat de Barcelona.
25. EPA 2000, introduction to phytoremediation National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency, Ohio
27. SCOEL/SUM/142, Recommendation from the Scientific Committee on Occupational Exposure Limits for Trichloroethylene. 2009
Thank you for your attention