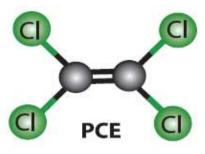


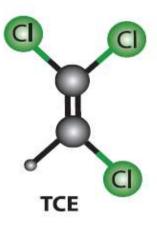
SEMINARIS DE RECERCA 2010-11 FACULTAT DE FARMÀCIA. UB.

CHLORINATED SOLVENTS USES

Industrial process

Industry


<u> </u>	industrial process
Electronics manufacturing	Metal cleaning
Solvent production	Metal machining
Pesticide / herbicide manuf.	Tool and die operations
Dry cleaning	Vapour and liquid degreasers
Instrument manufacturing	Paint stripping
Solvent recycling	Storage and transfer of solvents
Engine manufacturing	
Steel product	
manufacturing	
Chemical production	
Rocket engine / fuel manufacturi	ng
Aircraft cleaning / engine degreas	sing


CHLORINATED SOLVENTS

<u>Chlorinated Ethenes</u> Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-Dichloroethene (cDCE) trans-1,2-Dichloroethene (tDCE) Vinyl Chloride (VC or Chloroethene)

<u>Chlorinated Ethanes</u> 1,1,1-Trichloroethane (1,1,1-TCA) 1,1,2-Trichloroethane (1,1,2-TCA) 1,2-Dichloroethane (1,2-DCA or EDC) Chlorothane (Ethyl Chloride)

<u>Chlorinated Methanes</u> Carbon Tetrachloride (CT) Chloroform (CF or Trichlormethane) Dichloromethane (DCM or Methylene Chloride)¹ Chloromethane (Methyl Chloride)

1. pharmaceuticals, chemical processing, aerosols, food extraction, urethane foam blowing and surface treatment

Compound	CAS Number	Liquid Density	Vapor Density	Flash Point, %	ppm Odor Threshold
Perchloroethylene	127-18-4	1.6	5.8	NA	47
1,1,2,2-Tetrachloroethane	79-34-5	1.6	5.8	NA	72
1,1,2-Trichloroethane	79-00-5	1.4	4.6	NA	
Carbon tetrachloride	56-23-5	1.6	5.3	NA	250
Chloroform	67-66-3	1.5	4.1	NA	192
Methylene chloride	75-09-2	1.3	2.9	NA	160
Trichloroethylene	79-01-6	1.5	4.5	NA /	82
Methyl chloroform	71-55-6	1.3	4.6	NA	390
(1,1,1-Trichloroethane)					
1,2,3-Trichloropropane	96-18-4	1.4	5.1	164	
Ethylene dichloride	107-06-2	1.2	3.4	56	26
1,2-Dichloropropane (<i>Propylene dichloride)</i>	78-87-5	1.2	3.9	60	0.5
1,2-Dichloroethylene	540-59-0	1.3	3.4	37	
1,1-Dichloroethane	75-34-3	1.2	3.4	17	445

Dense Non-Aqueous Phase Liquids DNAPL

- \rightarrow Chloromethanes,
- → Tetra and trichloroethane,
- Tetra and trichloroethene,
 Chlorobenzenes,
 PCBs (electrical transformer oils),
 Creosote (wood treaters),
 Coal tar (manufactured gas plants [MGPs]).

Chlorinated solvent DNAPL

Dense Non-Aqueous Phase Liquids DNAPL

Immiscibility with water - they form separate 'phases'.

Chlorinated solvent DNAPL

Low absolute solubilities - DNAPL can't dissolve quickly in groundwater: it may persist for decades before dissolving.

Relatively high densities - DNAPLs are denser than water, and can therefore sink beneath the water table, polluting the full thickness of an aquifer.

Low viscosities – that allows rapid subsurface migration.

Toxicity - Many DNAPLs are suspected or proven human carcinogens.

Compound Name	Chemical Formula	MW (g/mol)	Density (g/mL- 20°C)	Solubility (g/100mL- 20°C)	Log Kow
Carbon Tetrachloride	CC14	153.823	1.594	0.08048	2.64
Chloroform	CHC13	119.3779	1.498	0.795	1.97
3,3-Dichlorobenzidine	C ₁₂ H ₁₀ Cl ₂ N ₂	253.1304		0.00123	3.21, 3.5
1,1-Dichloroethene	C ₂ H ₂ Cl ₂	96.9438	1.213	0.225	1.32
cis-1,2-Dichloroethene	C ₂ H ₂ Cl ₂	96.9438	1.284	0.08	1.86
trans-1,2- Dichloroethene	C ₂ H ₂ Cl ₂	96.9438	1.257	0.63	2.09 ^a
1,1-Dichloroethane	C ₂ H ₄ Cl ₂	98.9596	1.176	0.506	1.79
1,2-Dichloroethane	C ₂ H ₄ Cl ₂	98.9596	1.253	0.8608	1.48
Methylene Chloride	CH ₂ Cl ₂	84.9328	1.325	1.32	1.3
Perchloroethylene	C ₂ Cl ₄	165.834	1.623	0.015	3.4
Polychlorinated Biphenyls	*	*	*	*	*
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃	133.404	1.3376	0.1495	2.49
1,1,2- Trichloroethane	C ₂ H ₃ Cl ₃	133.404	0.442	1.4411	2.42
Trichloroethylene	C ₂ HCl ₃	131.388	1.462	0.11	2.42
Vinyl Chloride	C ₂ H ₃ C1	62.4987	0.9106	0.11	1.36
Data for this table extracted from t Registry (ATSDR) ToxFaqs™ an * 209 possible PCBs. See the ATS a recommended	d Pankow and Cherry (19	996)	_	-	es and Disease

CHLORINATED SOLVENTS TOXICITY

CHLORINATED METHANES

Carbon tetrachloride is listed as a suspect carcinogen, an animal carcinogen at relatively high doses, not a likely human carcinogen; however, liver cancer has been reported. It can be absorbed through intact skin. It causes CNS depression, can damage the kidneys, liver, or lungs, and can cause anemia, rapid and irregular heartbeats. Health effects appear to be greatly increased by alcohol consumption.

Chloroform is a suspect carcinogen. It causes CNS depression, rapid and irregular heartbeat, and liver and kidney damage.

Methylene chloride is listed as a potential carcinogen. It causes CNS depression, liver and kidney damage, and can cause elevated blood carboxyhemoglobin (also caused by exposure to carbon monoxide). Contact of the liquid with skin or eyes causes painful irritation and possible burns.

CHLORINATED ETHANES

1,1-Dichloroethane is highly flammable. It is a CNS depressant, but seems to be less likely than other chlorinated solvents to cause liver or kidney damage.

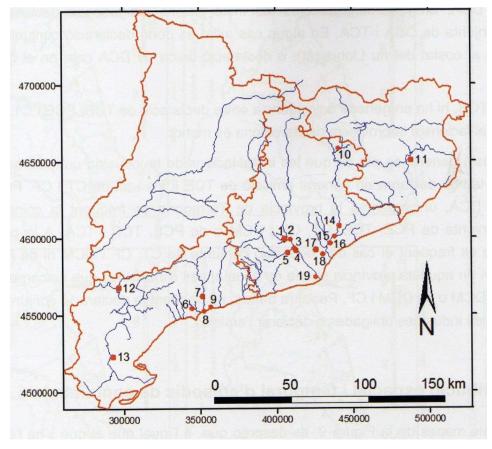
1,1,1-Trichloroethane: Effects reported in humans due to acute inhalation exposure to methyl chloroform include hypotension, mild hepatic effects, and CNS depression.

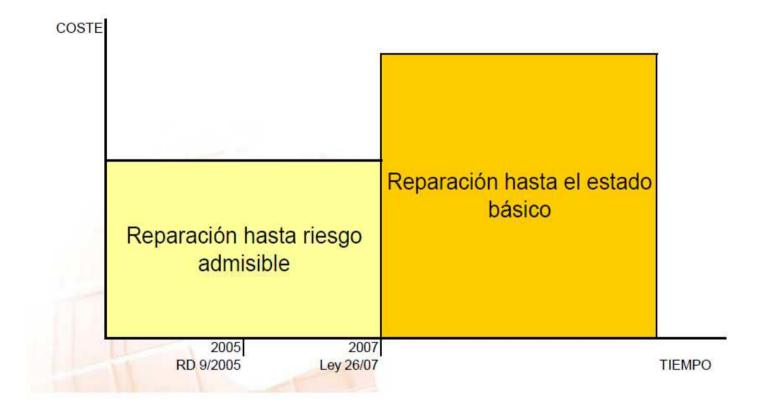
1,1,2-Trichloroethane: Studies on dermal exposure in humans have reported stinging and burning sensations and transient whitening of the skin.

CHLORINATED SOLVENTS TOXICITY

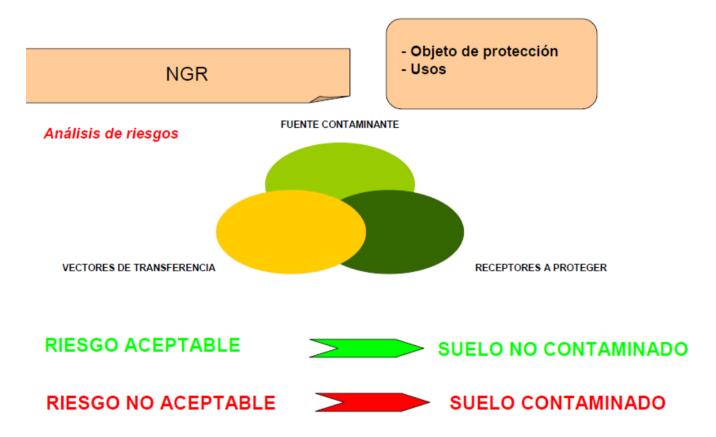
CHLORINATED ETHENES

- **PCE Tetrachloroethylene** causes irritation of the upper respiratory tract and eyes, kidney dysfunction, and at lower concentrations, neurological effects, such as reversible mood and behavioral changes, impairment of coordination, dizziness, headache, sleepiness, and unconciousness.
- **TCE Trichloroethylene**: Short-term exposure causes irritation of the nose and throat and central nervous system (CNS) depression, with symptoms such as drowsiness, dizziness, giddiness, headache, loss of coordination. High concentrations have caused numbness and facial pain, reduced eyesight, unconsciousness, irregular heartbeat and *death*.
- VC Vinyl Chloride: Aside from being a known *carcinogen*, it has been found to cause a number of other conditions, including Raynaud's syndrome, angiosarcoma, and acroosteolysis.


CHLORINATED SOLVENTS EFFECTS



CHLORINATED SOLVENTS PRODUCTION IN CATALONIA



1 (A) [6]:	HOL SHOULD	DCA	PCE		CT	CF	DCM
2 (B) [2]:		DCA			/		DCM
3 (A) [5]:	TCA	DCA	PCE	TCE	СТ		DCM
4 (B) [5]:	TCA	DCA		TCE	CT		DCM
5 (B) [6]:		DCA	PCE		CT	ÒF	DCM
6 (B) [1]:		DCA					b 25.00
7 (B) [10]:	TCA	DCA		TCE	CT	CF	DCM
8 (B) [9]:	TCA	DCA	PCE	TCE	CT	CF	DCM
9 (B) [11]:	TCA	DCA	PCE	TCE	CT	CF	DCM
10 (A) [1]:	DCA						
11 (B) [3]:			PCE	TCE	СТ		
12 (B) [6]:	TCA	DCA	PCE	TCE	СТ	CF	19, 1990 J
13 (B) [8]:	TCA	DCA	PCE	TCE	CT	CF	DCM
14 (B) [7]:		DCA	PCE	TCE	CT	CF /	DCM
15 (B) [1]:							DCM
16 (B) [4]:			PCE	TCE	CT		DCM
17 (B) [9]:			PCE	TCE	CT	∠ F	DCM
18 (B) [4]:			PCE	TCE	CT		DCM
19 (B) [6]:		DCA	PCE	TCE	CT	CF	DCM

SOIL POLLUTION CONTROL IN SPAIN

SOIL POLLUTION CONTROL IN SPAIN

CHLORINATED SOLVENTS NGRs

I TOLECCION de la Salud Numana	Protección	de	la sa	lud	humana
--------------------------------	------------	----	-------	-----	--------

Sustancia	Número CAS	Uso industrial	Uso urbano	Otros usos
		(mg/kg	peso seco)
 Diclorometano. 1,1-Dicloroetano. 1,2-Dicloroetano. 1,2-Tricloroetano. 1,1,2-Tricloroetano. 1,1,2-Tricloroetano. 1,1-Dicloroetileno. Tricloroetileno. Tetracloroetileno. 1,2-Dicloropropano. 1,3-Dicloropropeno. Acenafteno. Acetona. Aldrin. Antraceno. Benzo(a) antraceno. Dibenzo(a,h) antraceno. 1,2-Diclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno. 1,2-Diclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno. 1,2,4-Triclorobenceno.	75-35-4 79-01-6 127-18-4 78-87-5 42-75-6 83-32-9 67-64-1 309-00-2 120-12-7 56-55-3 53-70-3 71-43-2 108-90-7 95-50-1 106-46-7 120-82-1 106-47-8 57-74-9 67-66-3 75-01-4	60*** 100** 5*** 10*** 3*** 10*** 10*** 100** 100** 100** 100** 100** 100** 100** 100** 100** 100** 100** 3*** 100** 35 100** 35 100** 35 100** 30*** 1*** 5 1***	6*** 70*** 0,5*** 1*** 0,3*** 0,1*** 1*** 0,5*** 0,7*** 0,7*** 0,7*** 0,1*** 10*** 0,1*** 10*** 0,3*** 10*** 0,3*** 10**** 10**** 10**** 10**** 10**** 10**** 10**** 10**** 10***** 10***** 10**** 10******* 10***** 10******* 10****** 10********	0,6 7 0,05 0,1 0,03 0,01 0,7 0,1 0,05 0,07 6 1 0,01 45 0,2 0,03 0,1 7 0,4 0,9 0,3 0,01 7 0,01*
Cresol.	95-48-7	100**	40***	4

Protección de los ecosistemas

Sustancia	Número CAS	Orga- nismos del suelo	Orga- nismos acuáticos	Verte- brados terrestres
		(mg	j/kg peso se	eco)
1,1-Dicloroetano.	75-34-3		0,06	4,18
1,2-Dicloroetano.	107-06-2		0,16	0,24
1,1,2-Tricloroetano.	79-00-5		0,16	0,3
1,1,2,2-Tetracloroetano.	79-34-5		0,02	0,04
Tricloroetileno.	79-01-6		0,21	0,45
Tetracloroetileno.	127-18-4	0,01*	0,06	0,15
1,2-Dicloropropano.	78-87-5	4,24	0,07	0,43
1,3-Dicloropropeno.	42-75-6		0,01*	0,58
Acenafteno.	83-32-9		0,02	4,85
Acetona.	67-64-1		0,54	6,71
Aldrin.	309-00-2	0,01*	0,01	0,01*
Antraceno.	120-12-7		0,01*	22
Benzo(a) antraceno.	56-55-3	3,8	0,01	
Benceno.	71-43-2	1	0,2	0,11
Clorobenceno.	108-90-7	1	0,03	7,66
1,2-Diclorobenceno.	95-50-1	0.1	0,11	3,15
1,4-Diclorobenceno.	106-46-7	0,1	0,16	0,53
1,2,4-Triclorobenceno.	120-82-1	0,05	0,79	0,94
p-Cloroanilina.	106-47-8	0,14	0,01*	0,09
Clordano.	57-74-9	0,04	0,01*	0,01*
Cloroformo.	67-66-3	0.14	0,01	0,01
p,p [^] _DDE.	72-55-9	0,14	0,01*	0,01*
p,p´–DDT.	50-29-3	0.12	0,01	0,01*
Dieldrin.	60-57-1	0,13	0,01*	0,01
1,4-Dioxano.	123-91-1	1,45	13,9	0.04
Endosulfan.	115-29-7	0,01	0,01* 0,01*	0,04
Endrin.	72-20-8	0,68	0,01	100**
Estireno.	100-42-5	0,00	0,25	4,6
Etilbenceno.	100-41-4		2,66	59,7
Decabromofenil éter.	1163-19-5	0,32	5,18	0,01*
Pentabromo difenil éter. Octabromo difenil éter.	32534-81-9 32536-52-0	0,52	0,51	0,24
Fenol.	108-95-2	0,27	0,03	23,7
2-Clorofenol.	95-57-8	0,04	0.01*	0,12
		0,15	0,01*	
Benzo(a)pireno.	50-32-8	0,15	0,01	
Tetracloruro de carbono.	56-23-5	0,3	0,12	13,5
Tolueno.	108-88-3	0,5	0,24	15,5

GROUNDWATER POLLUTION CONTROL

LA DIRECTIVA DE AGUAS SUBTERRÁNEAS

Directiva 118/CE 2006

"Relativa a la protección de las aguas subterráneas contra la contaminación y el deterioro"

Objetivo:

- Establecer criterios y procedimientos para valorar el estado químico y sus tendencias
 - NORMAS DE CALIDAD:
 - NO3- (50 mg/l), Plaguicidas (totales 0.5 ug/l, individuales 0.1 ug/l)
 - VALORES UMBRAL (lista mínima a establecer por los Estados miembros): Hg, Cd, As, Pb, NH₄⁺, Cl⁻, SO₄²⁻, TRI, PER, conductividad

Procedimiento de evaluación del buen estado químico

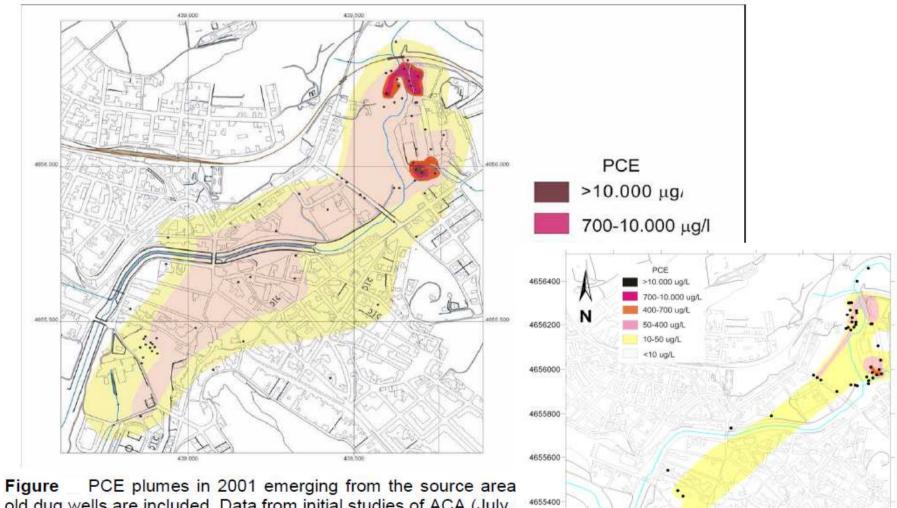
- Cumplir las condiciones básicas establecidas en la DMA
- No superar las Normas de calidad y Valores Umbral
- En caso de superar alguno:
 - No presentar riesgo significativo
 - · El resto de condiciones se continúan cumpliendo
 - · A pesar del incumplimiento es posible mantener los usos
 - Se están aplicando medidas para reducir la contaminación

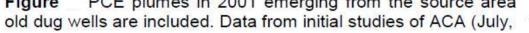
gència Catalana le l'Aigua

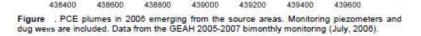
CHLORINATED SOLVENTS CATALONIAN VGs

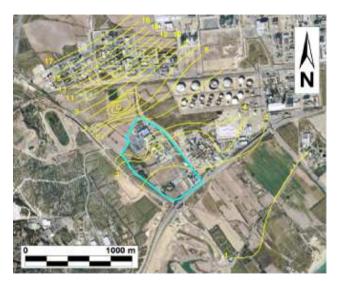
Els nivells dels contaminants que s'estableixen com a criteri de gestió inclouen:

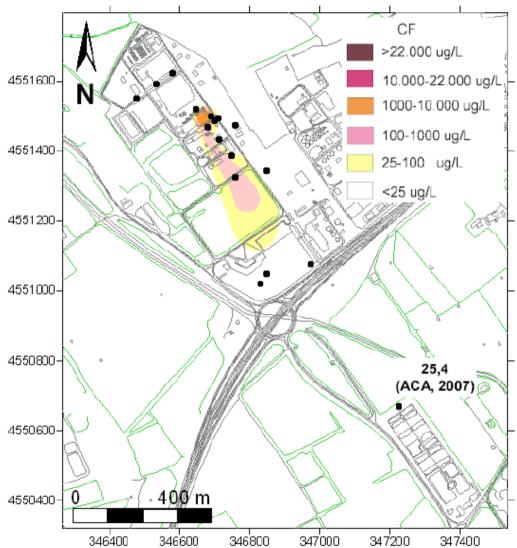
- valor genèric de no risc (VGNR): concentració del contaminant que s'estableix com a valor objectiu de restauració.
- valor genèric d'intervenció (VGI): concentració del contaminant a partir del qual es considera necessària una actuació de restauració de la qualitat del medi.


Paral·lelament, es defineix també:


 valor de fons: concentració d'una substància a les aigües subterrànies que es considera com a propi o representatiu de la qualitat de les aigües en un emplaçament fora de l'àrea o volum afectat per la contaminació de l'episodi objecte de gestió.

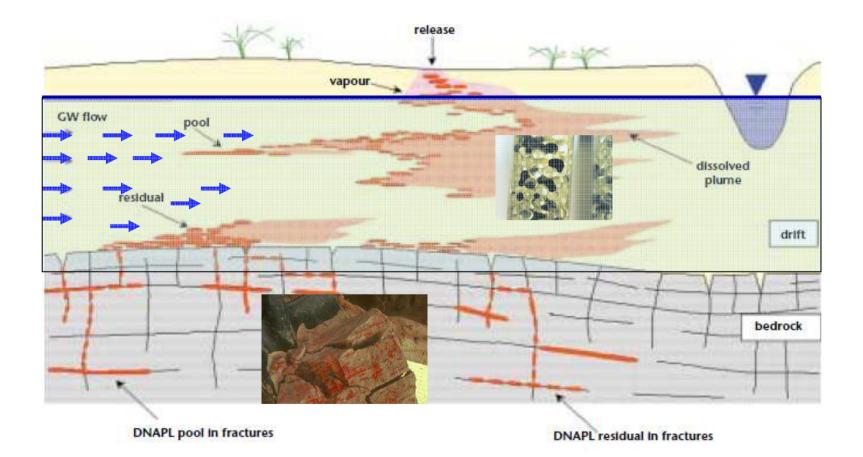

	Valor Genèric de No Risc (VGNR) μg/l.	Valor Genèric d'Intervenció (VGI) μg/l.				
Substàncies del GRU	P 2					
Hexaclorobenzè	0,05	1				
Tetracloroetà, 1,1,2,2	7	30				
Tetraclorur de Carboni	8	30				
Diclororetà, 1,2	10	50				
Benzè	20	90				
Tricloroetà, 1,1,2	20	90				
Naftalè	10	500				
Substàncies del GRUP 3						
Cloroform	70	210				
Clorobenzè	80	240				
Dicloroetilè, trans-1,2	80	240				
ETBE	100	300				
Etilbenzè	100	300				
Bromoform	150	450				
Xilens suma	200	600				
Diclorometà	250	750				
Substàncies del GRU	P 4					
Tricloroetilè		50				
Dicloroetilè, 1,1	* 10	60				
Tetracloroetilè		75				


SITE 1

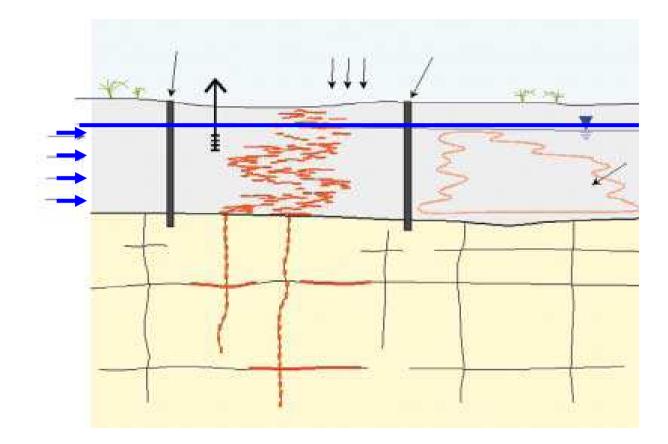


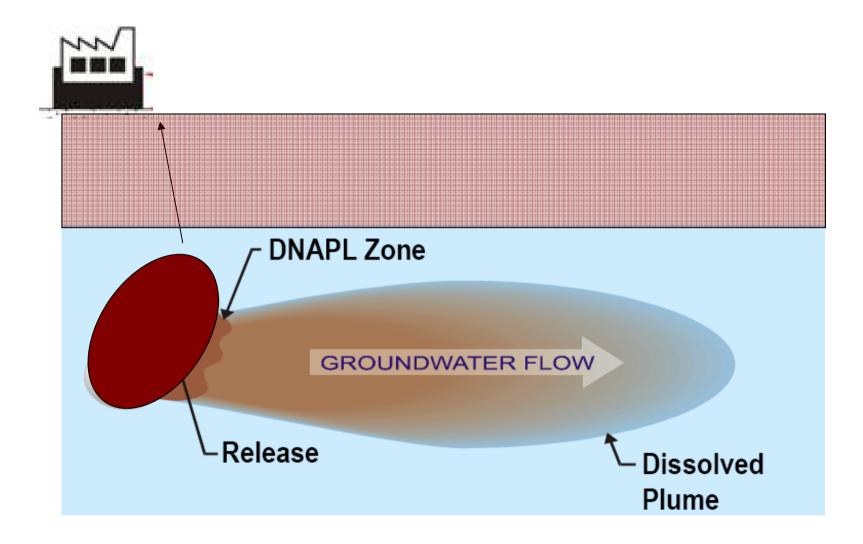
400 m

SITE 2

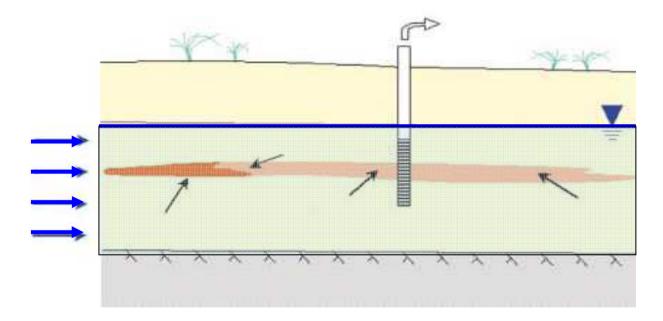


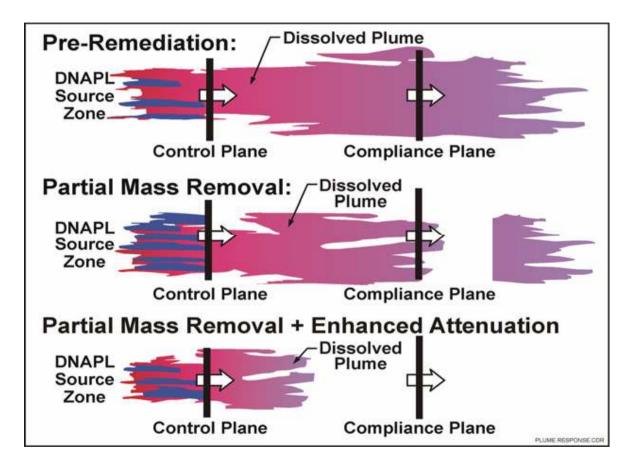
concentrations of CF and CT in groundwater.

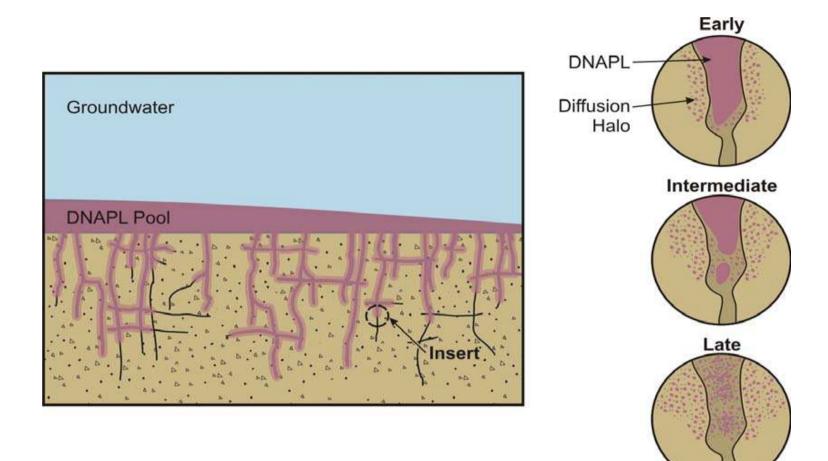

	1997	2006	1997	2006	
	CT (ug/L)	CF(µg/L)		
Max	771	160	19,370	960	
Min	7	ND	843	1	
Average	196	26	11,700	79	


Figure 1: Location map of the network monitoring wells and the contaminant CF plume in October 2008,

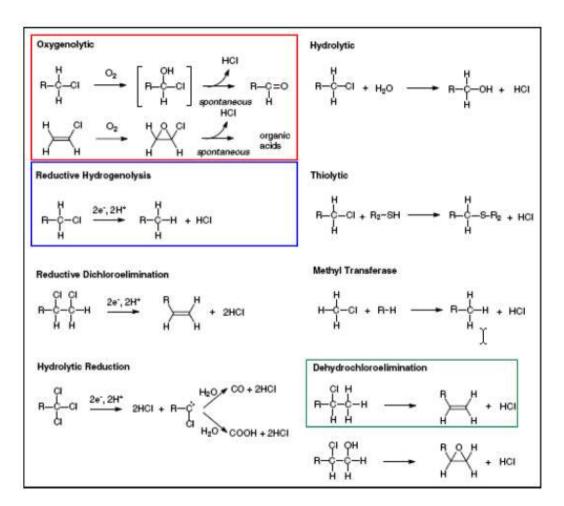
CHLORINATED SOLVENTS ENVIRONMENTAL DISTRIBUTION




PHYSICAL ISOLATION OF DNAPL SOURCE ZONE

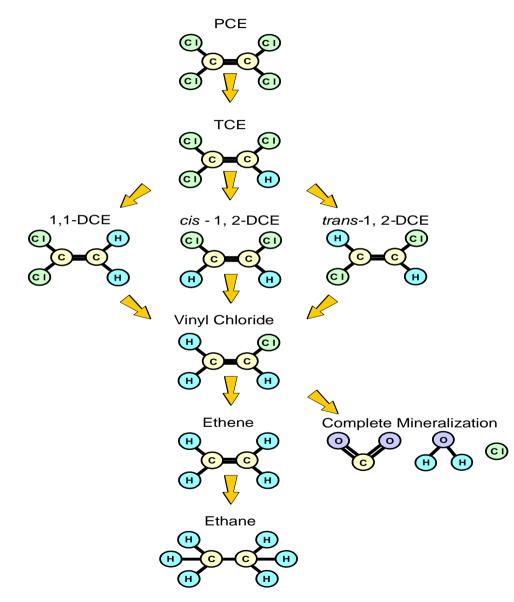

DNAPL EXTRACTION: Pump and treat

POTENTIAL NEGATIVE IMPACTS OF DNAPL MASS REDUCTION

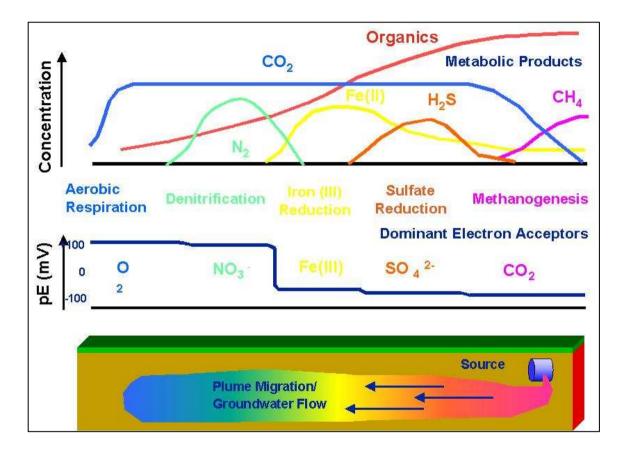

- Expansion of the source zone due to mobilization of residual DNAPL
- Undesirable changes in the DNAPL distribution
- Undesirable changes in physical, geochemical, and microbial conditions
- Adverse impact on subsequent remediation technologies
- Increased life-cycle costs of site cleanup

ABIOTIC AND BIOTIC TRANSFORMATIONS

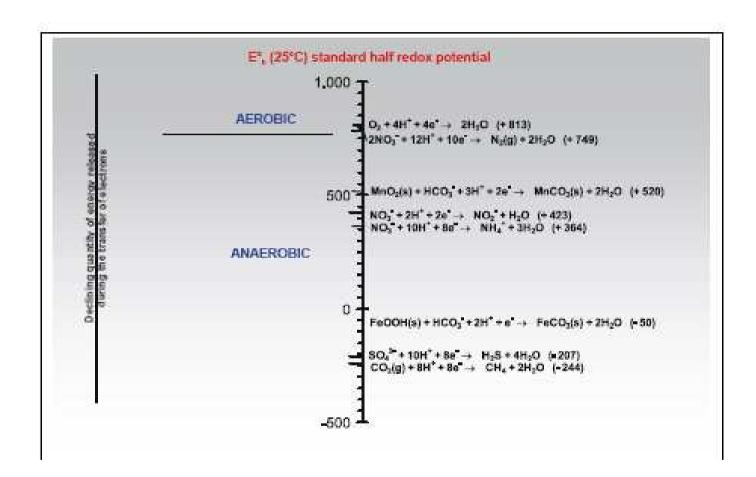
DEHALOGENATION MECHANISMS


Oxygenolytic: Biodegradation process that requires O₂ for mono- or dioxygenases.

Reductive hydrogenolysis (aka reductive dehalogenation): Most common anaerobic biodegradation mechanism for PCE and TCE. Also occurs abiotically.


Dehydrochloroelimination:

Common abiotic process that converts haloakanes to haloalkenes


ANAEROBIC REDUCTIVE DEHALOGENATION

ELECTRON ACCEPTORS IN GROUNDWATERS

This schematic illustrates the relative performance range for the major biodegradation processes.

BIOTIC REDUCTIVE DEHALOGENATION

Organism	Dechlorination reactions	Electron donors	Other electron acceptors	Morphology	Phylogenetic position	References
Dehalobacter restrictus	PCE, TCE <i>→cis-</i> DCE	H ₂	None	Rod	Gram + <i>Desulfotomaculum</i> group	Holliger <i>et al</i> ., 1998; 1999
Dehalospirillum multivorans	PCE, TCE <i>→cis</i> -DCE	H₂, formate, pyruvate, etc.	Thiosulfate, nitrate, fumarate, etc.	Spirillum	Proteobacteria	Neumann <i>et al.</i> , 1994, 1998
Strain TT4B	PCE, TCE <i>→cis</i> -DCE	Acetate	None	Rod	?	Krumholz <i>et al</i> ., 1996
Enterobacter agglomerans	PCE, TCE <i>→ cis-</i> DCE	Nonfermentable substrates	O2, nitrate, etc.	Rod	Υ Proteobacteria	Sharma and McCarty, 1996
Desulfitobacterium sp. strain PCE1	PCE, TCE \rightarrow (<i>cis</i> -DCE) <i>o</i> -chlorophenols	Lactate, pyruvate, butyrate, ethanol, etc.	Sulfite, thiosulfate, fumarate	Curved rod	Gram + <i>Desulfotomaculum</i> group	Gerritse <i>et al.</i> , 1996
Desulfitobacterium frappieri strain TCE1	PCE, TCE→(<i>as-</i> DCE)	H ₂ formate, lactate, butyrate, crotonate ethanol, etc.	Sulfite, thiosulfate, nitrite fumarate	Curved rod	Gram + motile	Gerritse <i>et al.</i> , 1999
Dehalococcoides ethenogenes strain 195	PCE, others→ethane	H ₂	None	Irregular coccus	Novel eubacterium	Maymó-Gatell <i>et al</i> ., 1997
Dehalococcoides sp. strain BAV1	VC, <i>cis</i> -DCE, <i>trans</i> -DCE, 1,1-DCE, others → ethene	H ₂	None	Non-motile disc	?	He <i>et al.</i> , 2003
Desulfuromonas michiganensis sp. nov. (Strain BB1, BRS1)	PCE → <i>cis</i> -DCE	Acetate, lactate, pyruvate, succinate, malate, fumarate	None	Short, ovoid rods (some club- shaped rods seen in early stationary phase when grown on fumarate)	Desulfuromonas cluster of 8 Proteobacteria	Sung <i>et al.</i> , 2003

ANAEROBIC BIOREMEDIATION

lf

Aerobic conditions

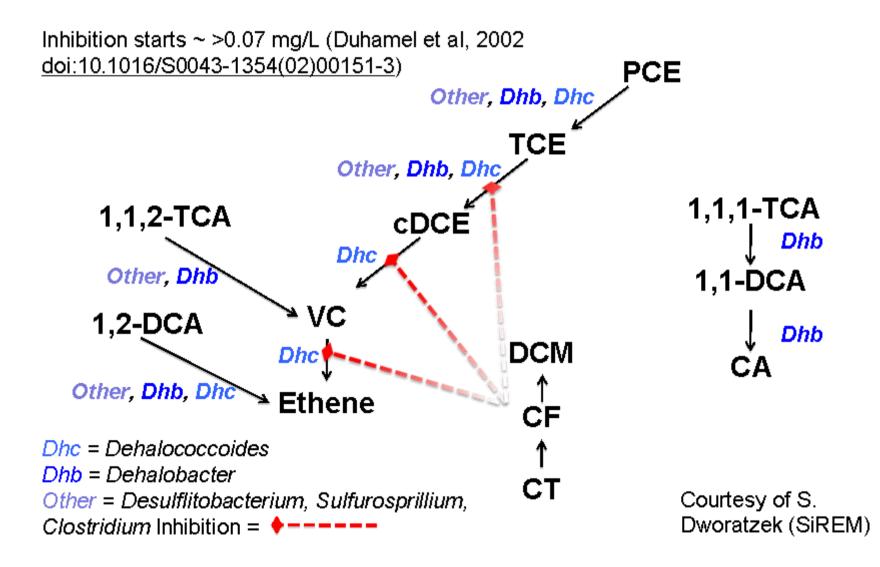
Limited carbon

Limited nutrients

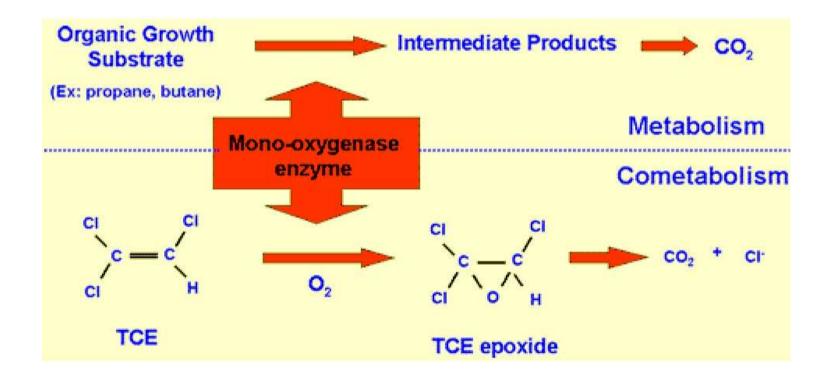
Low pH Incomplete dechlorination

Solution

Add carbon (aerobic biodegradation of C will consume the dissolved O₂ present).
Add carbon (propionate, lactate, butyrate, molasses, hydrogen releasing compound®.
Add nutrients (Ammonia and phosphate).
Add buffer (bicarbonate)
Add microbial consortium.


SUSTAINABILITY

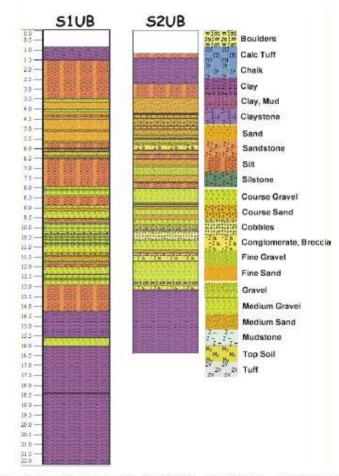
Ability of a system to maintain important attenuation mechanisms through time.


In the case of reductive dechlorination, sustainability might be limited by the amount of electron donor, which might be used up before remedial goals are achieved.


Sustainability is affected by the rate at which the contaminants are transferred from the source area and whether the protecting mechanisms are renewable.

CF DECHLORINATION INHIBITION

AEROBIC COMETABOLISM



Residual DNAPL in (a) unsaturated and (b) saturated porous media

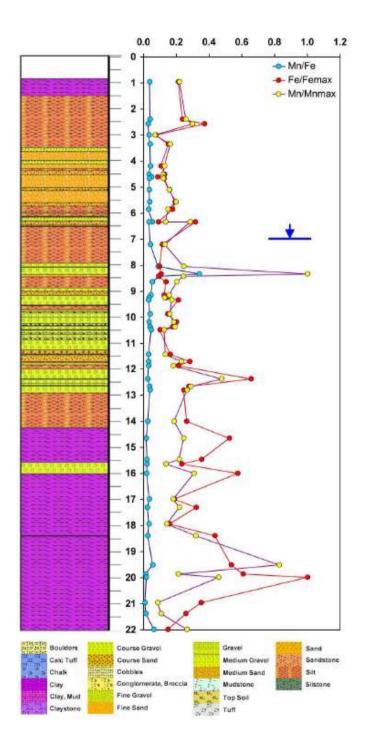
CONTAMINANT CHARACTERISTICS TO ESTABLISH

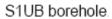
Parameter	Example use of Information						
DNAPL density	DNAPL mobility and pool height calculations						
DNAPL viscosity	Determine if DNAPL could still be moving Design of NAPL recovery system						
DNAPL component composition	Effective solubility calculations Predict future composition of plume						
DNAPL-water Interfacial tension	Determine importance of capillary forces Pool height calculations						
Organic carbon partition coefficient	Determine degree of aqueous phase sorption and rate of plume migration						
Contaminant half-life	Determine degree of degradation and rate of plume migration						
DNAPL vapour pressure	Determine if vapour migration is a potential issue; Estimate lifespan of DNAPL above water table						
Date and volume of DNAPL release	Estimate of depth of DNAPL migration. Is DNAPL still moving?						
Potential DNAPL release locations	Help guide monitoring well placement						

SITE 2

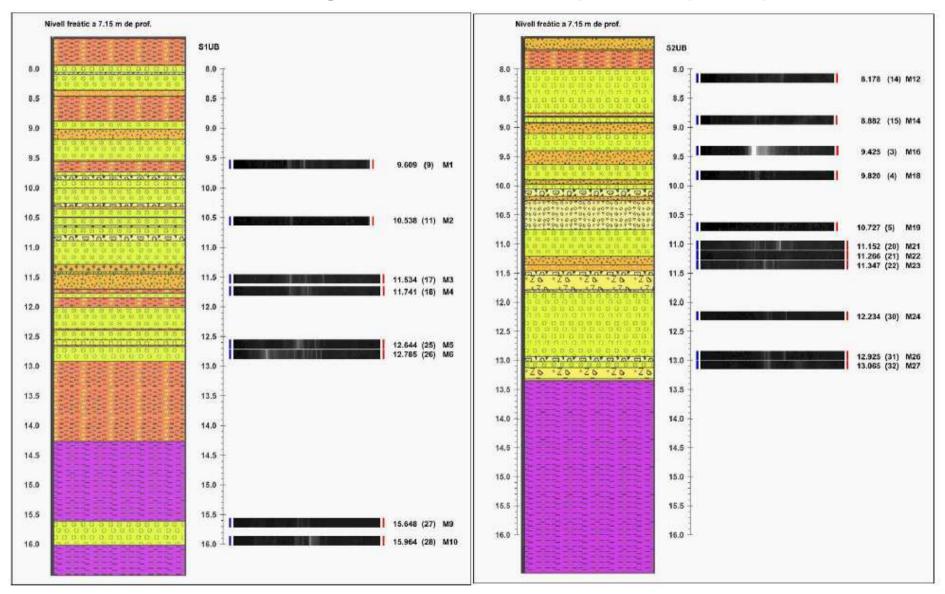
Geological testing of boreholes. A: S1UB. B: S2UB. April 2008.

	í –								64116	lug/L)							
	Chl	orometha	anos		Chloroe	thanes		S1UB (µg/L) Chloroethenes					BTEX				
% Samples >DL	33,3	81,0	41,3	25,4	15,9	17,5	33,3	42,9	17,5	6,3	22,2	20,6	20,6	87,3	42,9	71,4	71,4
VOCs	ст	CF	DCM	1,1,1,2 PCA	1,1,2,2 PCA	1,1,1 TCA	1,1,2 TCA	PCE	TCE	1,1 DCE	tDCE	cDCE	Benzene	Toluene	Ethylbenzene	M_xilene	P_xiler
Max	563,56	1468,48	5730,38	131,57	2258,95	78,83	98,47	139,37	78,63	15,28	152,49	24,92	50,41	593,28	98,08	180,76	354,54
Min	1,14	3,83	1,46	1,67	1,38	1,47	1,55	1,34	1,59	1,34	1,38	2,35	0,96	1,86	0,97	0,94	0,95
Geom. mean	11,32	87,75	31,55	8,59	5,36	5,12	7,93	11,31	5,57	4,16	5,64	4,79	3,65	60,03	6,21	12,39	12,95
Std. Dev.	113,27	250,64	1357,19	26,90	293,55	11,27	20,68	31,94	11,38	2,83	20,30	4,73	7,15	145,02	19,10	36,11	53,77
Geom. mean + 2 Std. Dev.	237,87	589,03	2745,92	62,39	592,46	27,65	49,30	75,19	28,34	9,82	46,24	14,24	17,94	350,07	44,41	84,61	120,48
									S2UE	3 (µg/L)							
	Chic	prometha	anes		Chloroe		Chloroethenes					BTEX					
% Samples >DL	25,4	73,1	35,8	52,2	19,4	22,4	19,4	58,2	23,9	11,9	14,9	16,4	22,4	77,6	58,2	71,6	59,7
VOCs	ст	CF	DCM	1,1,1,2 PCA	1,1,2,2 PCA	1,1,1 TCA	1,1,2 TCA	PCE	TCE	1,1 DCE	tDCE	cDCE	Benzene	Toluene	Ethylbenzene	M_xilene	P_xilen
Max	406,37	1286,29	9053,49	848,62	1782,11	98,91	214,93	996,73	101,06	50,61	72,12	52,35	117,71	10056,28	215,33	263,04	713,28
Min	1,38	2,69	2,57	2,80	2,19	2,26	2,61	1,63	2,51	2,30	2,32	2,25	1,61	1,35	1,31	1,15	1,35
Geom. mean	7,32	122,69	23,51	19,96	, in the second s	0.3						-	4,60	89,32	9,48	15,28	15,57
Std. Dev.	60,93	340,31	1606,59	164,58	1		ina	s-DCE					20,41	1279,53	40,35	59,06	141,54
Geom. mean + 2 Std. Dev.	129,18	803,30	3236,70	349,11	. (m	²⁵ a)	uai			TCE			45,42	2648,37	90,18	133,40	298,65
					ance (21	0.2 -	cis	-DCE	1,1	I-DCE							


Main statistical parameters of VOCs in porewater (µg/L) from sediment samples of S2UB S1UB boreholes. DL detection limit. (April-May,

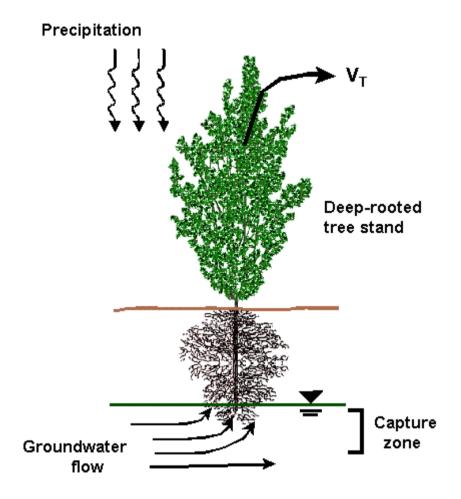

Time (min)

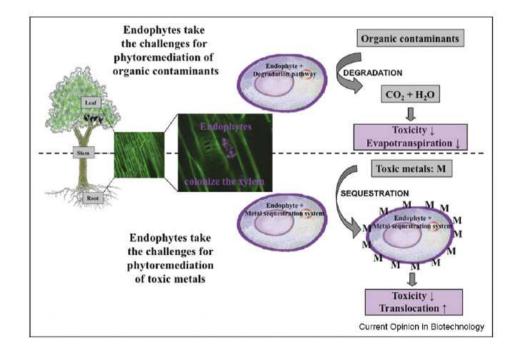
9 10


1 2 3 4 5 6 7 8

0




Denaturing Gradient Gel Electrophoresis (DGGE)


DGGE in the S1UB and S2UB core.

PHYTODEGRADATION

PHYTODEGRADATION & BIOTECHNOLOGY

PHYTODEGRADATION & BIOTECHNOLOGY

Area A (contaminated): Salix alba; poplar hybrids DN-34 and NM-6

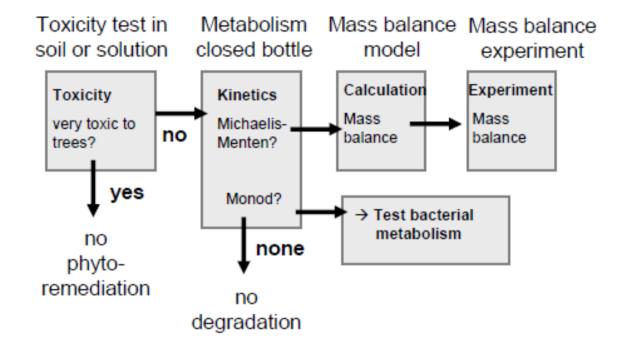
Area B (uncontaminated): Poplar hybrids DN-34 and NM-6

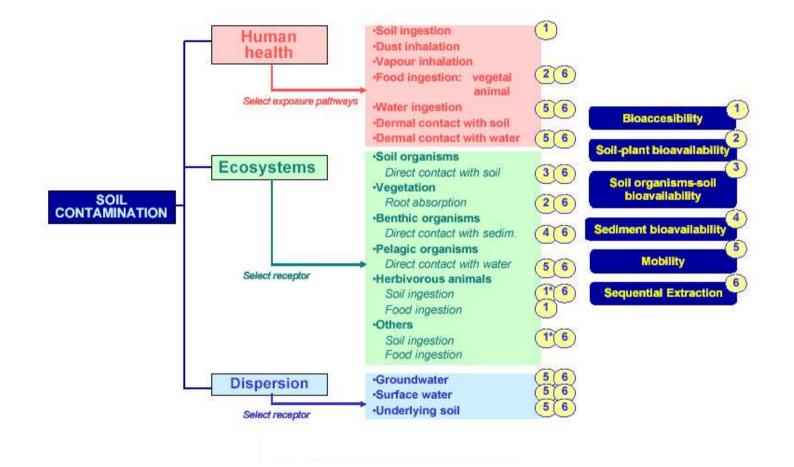
Clones

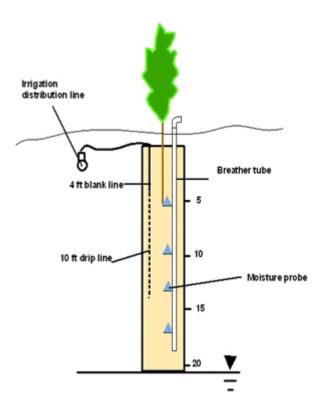
ADVANTAGES OF *Populus* sp. IN PHYTOREMEDIATION

- Greater than 25 species worldwide
- Fast growing (3 to 5 meters/year)
- High transpiration rates (100 liters/day for 5 year old tree)
- Not part of food chain
- Trees can be used for paper production or as biomass for energy
- Long lived (25-30 years)
- Grow easily from cuttings
- Can be harvested and then regrown from the stump

Adapted from Gordon (1997) and Schnoor et al. (1995)




Test scheme phytoremediation


Poplars are able to survive when grown in water containing 50 ppm TCE (Gordon et al., 1997).

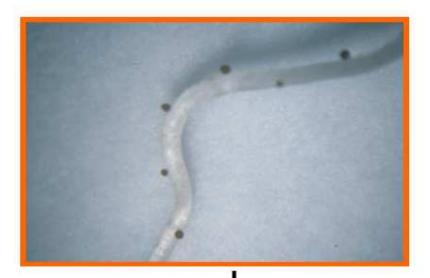
TCE is acutely toxic to a variety of crop plants at concentrations of about 2 mM in the gas phase (Ryu et al. 1996).

TOXICITY TESTS

Planting Methods and Cultural Practices

- · Planting methods
 - boreholes, backfilled with sand/compost
 - vertical drip lines
 - breather tubes
 - moisture probes
 - poplar/willow poles deeply planted
- Subsurface irrigation
 - 2003 2006
 - no irrigation in 2007
 - using nutrient solutions in spring

RATE OF WATER USE


 $V_T = ET_0 \cdot \theta \cdot LAI \cdot A$

- V_T = volumetric rate of water use by the stand
- ET_o = reference evapotranspiration: rate of transpiration by a well-watered 15-cm tall fescue turf
- e water use multiplier for the trees within the stand: rate of water use per unit leaf area as a percentage of ET₀
- **LAI** = leaf area index: the leaf area per unit area of ground surface
- A = area of the stand

SELECTION AND PRODUCTION OF INOCULS

IRTA

GROUP PRESENTATION

Dra. Amparo Cortés (UB-Farmàcia) Dr. José M^a Carmona (UB-Geologia) Dra. Diana Puigserver (UB-Geologia) Dra. Magdalena Grifoll (UB-Biologia) Dr. Nieto (UB-Biologia) Dra. Victòria Estaum (IRTA-GC) Dra. Cinta Calvet (IRTA-GC)

GROUP OBJECTIVES

• Improving knowledge on media, and on health and environmental risks;

• Reducing costs of sustainable soils and ground waters remediation, while increasing efficiency.

Dra. Amparo Cortés Lucas

S.D. Edafologia D. Productes Naturals, Biologia Vegetal i Edafologia Universitat de Barcelona

Tel. 93 402 44 94 Fax 93 402 44 95

acortes@ub.edu