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Abstract: We have studied a recent experiment reported in [1] which manifests the discrete
nature of the electromagnetic �eld inside a cavity. There, it is observed the coupling of atoms to
the e.m. �eld. We have reproduced the calculations leading to the observation of discrete transition
frequencies between two states of the atom. These frequencies are proportional to the square root
of successive integers, which is a direct evidence of �eld quantization. Also, we have discussed the
validity of the approximations that we have made.

I. INTRODUCTION

We have studied the probability transitions of a two
level atom placed in a cavity enclosed between two mir-
rors separated by a distance such that the fundamental
cavity mode is resonant with the atom energy gap.
The two atom states |a〉 and |b〉 are adjacent circular

Rydberg states with principal quantum numbers n = 50
and n = 51 of Rubidium atoms corresponding to a tran-
sition frequency ωba/2π = 51.099GHz. In these atoms,
the valence electron is con�ned near the classical Bohr
orbit which, due to the high principal quantum number,
is far distant from the nucleus (〈r〉 ∼ 103Å). Moreover,
in such states the atoms have a long radiative lifetimes
(32ms and 30ms for |b〉 and |a〉 respectively), which make
atomic relaxation negligible [5].
Based on a quantum treatment of both the atom and

the electromagnetic �eld in the cavity, we have repro-
duced these transitions which have been observed in the
experiment reported in [1].
In the experiment, the Rubidium atoms cross the cav-

ity made of two niobium superconducting mirrors whose
lower frequency mode is tuned into resonance with the |b〉
to |a〉 transition frequency. Thus, the joint atom-cavity
system undergoes Rabi oscillations as well as revival pat-
terns depending on the initial state of the �eld: With a
given number of photons or with a small coherent �eld
[4].
The oscillation frequencies, which are directly related

with the number of photons of the �eld, not only uncovers
the discrete nature of the radiation stored in the cavity,
but also gives us a method to discern the mean number
of photons of an electromagnetic �eld.
Thus, the article is organized as follows: at �rst, we

have given a quantum description of the contributing
mode of the electromagnetic �eld in the cavity. After-
wards, we have analyzed the Hamiltonian of the atom-
cavity system by introducing further approximations. Fi-
nally, we have obtained the transition probabilities be-
tween the states |b〉 and |a〉 as a function of time with
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di�erent states of the electromagnetic �eld, contrasting
our calculations with the experimental results obtained
in [1].

II. QUANTIZED RADIATION FIELD

We will consider a cavity with a height L and area S,
with mirrors in the planes z = 0 and z = L (FIG:1) in
which we can contain di�erent modes of a electromag-
netic �eld.
In the Coulomb transverse gauge, and in c.g.s. units,

the expression of the contributing modes of the �eld can
be written as

~A(z) =
∑
k

ε̂

√
4πc2~
2ωV

(ak + a†k) sin(kz) (1)

with k =
2π

L
m ; m = 0, 1, 2 . . .

where ω = ck; a, a† are the annihilation and creation
operators for each mode that satisfy the relation [a, a†] =
1; and ε̂ is the polarization vector perpendicular to the
vector ~k = (0, 0, k) [2]. Also, we have chosen ε̂ as the
vector î = (1, 0, 0).

FIG. 1: Simpli�ed scheme of the cavity; the mirrors are con-
tained in z = 0 and z = L planes.

Moreover, in our case, there is only one contributing
mode of the �eld k = ωba/c.
The expression of the radiation Hamiltonian, hence-

forth Hrad, once subtracted the zero point energy, can
be written as
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Hrad = ~ω a†a = ~ωN̂. (2)

Notice that the n photon states |n〉 are eigenstates of
Hrad with eigenvalues n~ω

III. COUPLING OF THE FIELD WITH AN

ATOM

Following with the experiment mentioned in [1] we will
consider Rubidium atoms. These atoms are Alkali atoms
with only one valence electron. Thus, the Hamiltonian
that describes the complete atom radiation system with
one valence electron is

HT = Hrad +
1

2me
(P̂ − q

c
Â)2 + V̂eff (r) +HPauli (3)

where ĤPauli = gµB
Ŝ · B̂
~

is the Spin interaction with

the magnetic �eld where µB is the Bohr magneton and
g ≈ 2 is the gyromagnetic constant; and Veff (r) is the
potential felt by the valence electron.
At this point, we make two further approximations:

On the one hand, we only keep linear terms of the elec-
tric charge in the atom radiation interaction; on the other
hand the Pauli term, which is proportional to the pho-
ton momentum (∼ ~/λ), is much smaller than

q

mc
Â · P̂

because the electron momentum in the atom is propor-
tional to ~/〈r〉 where 〈r〉 is the mean radius of the elec-
tron orbits. For the transitions that we shall consider
〈r〉/λ ∼ 10−5.
Thus, the Hamiltonian reads as

HT = Hrad +Hat −
q

mc
Â · P̂ (4)

where Hat = P̂ 2

2m + Veff (r).
The experiment is performed with Rubidium atoms

and deals with transitions between adjacent Rydberg
states with principal quantum numbers n = 50 and
n = 51, |a〉 and |b〉 respectively. The cavity is such that
its lower frequency mode is tuned into resonance with
these two states, which selects the contributing mode
of the electromagnetic �eld. Thus, the set of orthonor-
mal states {|a, n〉,|b, n〉} where |a, n〉 ≡ |a〉 ⊗ |n〉 and
|b, n〉 ≡ |b〉 ⊗ |n〉 forms a basis of the Hilbert space of
the entire system. Here |n〉 denotes the �eld state with
n photons.
As (4) suggests, the non-vanishing terms of the Hamil-

tonian matrix di�er by one photon. This is because the
expression of Â in (1) allows transitions from |n〉 to |n+1〉
and |n−1〉 corresponding to photon emission and absorp-
tion processes respectively. In order to evaluate them, we
will introduce the electric dipole approximation which
consists of freezing the value of z to the position of the

atomic nucleus z0. The corrections to this are powers of
k 〈r〉/ ∼ 10−5 that we neglect. Finally, with the help of

P̂ =
im

~
[Hat, X̂]

we �nd:

Emission:

〈i, n+ 1| − q

mc
P̂ · Â|j, n〉 = iC(ω)

√
n+ 1 ωijXij

Absorption:

〈i, n− 1| − q

mc
P̂ · Â|j, n〉 = iC(ω)

√
n ωijXij

Where C(ω) = −q sin(kz0)
√

4π~
2ωV , Xij = 〈i|X̂|j〉 and

ωij =
Ei − Ej

~
. The indices i, j run in {a, b}

Finally, using the above expressions and setting the
zero point energy in Ea = 0 the Hamiltonian matrix is



0 0 0 iγXab 0 . . .
0 ~ω iγXba 0 0 . . .
0 −iγXab ~ω 0 0 . . .

−iγXba 0 0 2~ω i
√

2γXba . . .

0 0 0 −i
√

2γXab 2~ω . . .
...

...
...

...
...

. . .


,

In this expression, the states of the basis are ordered
as follows: {|a, 0〉; |b, 0〉, |a, 1〉; |b, 1〉, |a, 2〉; . . . }. Also,
γ = C(ω)ωba. Notice that Xab = X∗ba and |Xab| ∼ 〈r〉 ∼
103Å for our Rydberg states.
As we can see, HT is block-diagonal except for a

group of terms corresponding to the photon absorption
from |b〉 to |a〉 and the photon emission from |a〉 to |b〉.
These terms, which violate energy conservation, and the
processes they give rise to are very much suppressed
(|γXab|/~ω ∼ 10−6). Thus, we will neglect them (This
approximation is explicitly justi�ed in the appendix).
By doing this, the matrix is completely 2 × 2

block-diagonal which involve degenerate state doublets
{|b, n〉, |a, n + 1〉} with energy (n + 1)~ωba. Notice that,
within the resonant approximation, ωba = ω. Thus, our
system is a set of 2-dimensional subspaces spanned by
the state doublets such that

(
~ω(n+ 1)

√
n+ 1γXab√

n+ 1γXba ~ω(n+ 1)

)
(5)

which can be readily diagonalized with the diagonal basis

|φ+
n 〉 = 1√

2
(|b, n〉+ i|a, n+ 1〉)

|φ−n 〉 = 1√
2
(|b, n〉 − i|a, n+ 1〉)
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with energies En± = (n + 1)~ω ± γ|Xab|
√
n+ 1. More-

over, the degeneracy is lifted by the interaction.(FIG:2)

|a, 2〉 |b, 1〉

|a, 1〉 |b, 0〉

|a, 0〉 |a, 0〉

|φ−0 〉

|φ+
0 〉
|φ−1 〉

|φ+
1 〉

E = 0

E = ~ω

E = 2~ω γ|Xab|
√

2

γ|Xab|

FIG. 2: Energy levels of (4). On the left hand side, the degen-
erate doublets are shown; On the right hand side, we represent
the e�ect of the interaction which splits the energy of these
doublets.

IV. TRANSITION PROBABILITIES

Now we are going to �nd the transition probabilities
|b〉 → |a〉 as a function of time in the following cases:
starting from |b, 0〉 (the electromagnetic �eld in the vac-
uum); |b, n〉 (with a n photons state) and |b, α〉 (a small
quantum coherent �eld)

A. Interaction with the vacuum |0〉

The initial wave function is |ψ(0)〉 = |b, 0〉, which, in
terms of the diagonal basis is

|b, 0〉 =
1√
2

(|φ+
0 〉+ |φ−0 〉)

And its time evolution is

|ψ(t)〉 =
1√
2
e−iωt

(
e−iΩt|φ+

0 〉+ eiΩt|φ−0 〉
)

Where we have de�ned Ω ≡ |Xab|γ/~. Rewritten in
the original basis it reads

|ψ(t)〉 = e−iωt ( −i sin(Ωt)|a, 1〉+ cos(Ωt)|b, 0〉 )

Finally, the transition probability to the state |a, 1〉 is

P (t)|b,0〉→|a,1〉 = |〈a, 1|ψ(t)〉|2 = sin2(Ωt) =

= 1
2 −

1
2 cos(2Ωt)

(6)

This is a typical oscillatory behavior, characteristic of
transitions in a two level system, with frequency 2Ω.

B. Interaction with an eigenstate of the �eld |n〉

In this case the initial wave function is |b, n〉, and pro-
ceding as before, we obtain

|ψ(t)〉 = e−iωt(−i sin(Ω
√
n+ 1 t)|a, n+ 1〉+

+ cos(Ω
√
n+ 1 t)|b, n〉)

as well as the transition probability P|b,n〉→|a,n+1〉 =

= |〈a, n+ 1|ψ(t)〉|2 = sin2(Ω
√
n+ 1 t) =

= 1
2 −

1
2 cos(2Ω

√
n+ 1 t).

(7)

Again, the same oscillatory behaviour is observed as in
(6) which manifests the two level nature of the coupled
doublet in (5). These are the so called Rabi oscillations of
the joint atom-cavity system between |b, n〉 and |a, n+1〉.
It is interesting to note that the state of the full system
|ψ(t)〉 is a superposition of states with di�erent number
of photons, which has no classical analogue whatsoever.
Moreover, notice that the oscillation frequencies are dis-
crete and depend on the number of photons, proportion-
ally to

√
n+ 1.

It is worth pointing out that the symmetry of the
matrix in (5) implies that the transition from |a, n + 1〉
to |b, n〉 occurs with the same frequency.

C. Interaction with a coherent state

Finally let us consider the transitions from a coherent
state |b, α〉 which is the closest approximation of a classi-
cal monochromatic plane wave, which can be reproduced
in the laboratory. We recall that |α〉 satis�es a|α〉 = α|α〉
from which

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉

where α is a complex number, the modulus squared of
which is the photon number expectation value |α|2 =

〈N̂〉 ≡ n0. Furthermore the uncertainty of the photon
number turns out to be σN = |α|
Thus, proceeding as before we �nd

|ψ(t)〉 = e−
|α|2
2

∞∑
n=0

αne−iωt√
n!
×

×
[
− i sin(Ω

√
n+ 1 t)|a, n+ 1〉+ cos(|Ω

√
n+ 1 t)|b, n〉

]
Since we are looking for the probability of ending in

state |a〉 irrespectively of the number of photon, we sum
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up the probabilities for any possible �nal number of pho-
tons.

Pα ≡ Pb,α→a =

∞∑
k=1

|〈a, k|ψ(t)〉|2 =

=

∞∑
k=1

e−|α
2||αk|2

2k!
(1− cos(2Ω

√
k + 1t))

(8)

Unfortunately, the analytical summation is not avail-
able. Even so, we have found numerically the result
shown in FIG:3. We have extended the summation up to
the contribution which amounts the 0.01% of the domi-
nant term k ≈ |α|

FIG. 3: Transition probability and its Fourier transform for
a coherent �eld calculated in (8)(above) and obtained experi-
mentally in [1](below) with |α|2 = 0.85. The Frequency peaks
are observed in 47.3KHz, 66.4KHz, 88.2KHz and 94.5KHz,
corresponding to the �rst four photon states.

If |α|2 ≥ O(1) the pattern observed is that of oscilla-
tions that die o� and resurrect after a certain time inter-
val during which the transition probability remains essen-
tially �at. Moreover, this revival phenomenon evidences
the quantum nature of the �eld in a cavity [6]. Also, the
revival time grows with the mean number of photons n0,
disappearing in the n0 >> 1 limit as we shall show in D.
Notice that the Fourier transform of the probability

evidences the discreteness of the oscillation frequencies
which uncovers the selection of electromagnetic modes
obtained in the cavity. These allowed frequencies are
Ω
√
n+ 1/π. And only the ones centered around n = |α|2

have large Fourier components and signi�cant contribu-
tion. In this case Ω/π = 47KHz ( ωab/2π = 5 · 107KHz;
|Xab| = 10−7m and Vcavity = 1.87 · 10−6m3 [1][4]).
Moreover, a damping of the oscillation is observed ex-

perimentally, which is due to experimental imperfections
[1].

D. Large number of photons approximation

When |α|2 >> 1 the series in (8) can be approximated
by an integral. To this end, one can use the Gaussian
limit of the Poisson distribution in (8) by using the Stir-
ling formula and expanding in the vicinity of n = n0, the
average photon mumber. That is

e−|α|
2 |α|2n
n!
≈ 1√

2πn0
exp

(
− (n− n0)2

2n0

)
Also, by linearizing the dependence of Ωn ≡ Ω

√
n+ 1

in the vicinity of n0 as

Ωn = Ωn0
+ Ω0

n− n0

2
√
n0 + 1

one �nds

Pα =
1

2
− 1

2

∫ ∞
−∞

1√
2πn0

exp

(
− (n− n0)2

2n0

)
cos(2βt)dn

β = Ωn0
+ Ω0

n−n0

2
√
n0+1

where the lower limit of the integral has been extended
to negative values of n with negligible error, given that
|α|2 >> 1. Thus, the result of the integral is:

Pα =
1

2
− 1

2
cos(Ωn0

t) exp

(
− Ω2

0t
2n0

8(n0 + 1)

)
(9)

In this case, Pα does not exhibit the revivals we found
in the previous section, FIG:3, as can be seen in FIG:4.

FIG. 4: Transition probability in the approximation |α|2 >>
1; in this case |α|2 = 10.

V. CONCLUSIONS

We have studied the transition probability between
Rydberg states of rubidium atoms that travel across a
cavity with an electromagnetic �eld in the context of
quantum �eld theory. The theoretical results, contrasted
with the experimental results obtained in [1], show Rabi
oscillations of the transition probability the frequencies
of which are directly related to the number of photons
of the �eld; this fact gives us a method to evaluate the
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number of photons for extremely small �elds, a highly
di�cult task.
Moreover, the transition probability patterns show re-

vival features when the atom interacts with a coherent
electromagnetic �eld with a small mean number of pho-
tons |α|2 ∼ O(1). These revivals are observed experimen-
tally, and cannot be explained by a classical treatment of
the �eld. This fact not only gives validity to the studied
model, but also compels to a quantum interpretation of
the atom-cavity system.

VI. APPENDIX

A. 3-state toy model

The analytical solutions we have obtained have been
found under the approximation of retaining the Hamil-
tonian matrix elements between states of equal energy
(Hrad + Hat) only. This provides the main contribution
to these results. In order to justify this, we propose the
following toy model with three levels, two of which are
energy degenerate. In a basis {|a〉, |b1〉, |b2〉}:

H =

 Ea
Eb

Eb

+ ~

 0 γ γ
γ 0 γ′

γ γ′ 0


According to the approximation above mentioned, we

neglect the matrix elements ~γ between |a〉 and |b1〉,|b2〉

Happrox =

 Ea 0 0
0 Eb ~γ′
0 ~γ′ Eb


Thus, under this approximation we �nd:

P
(approx)
b1→b2 (t) = sin2(γ′t); P

(approx)
b1→a (t) = 0 (10)

The exact results are:

Pb1→a(t) =
γ2

∆2 + 2γ2
sin2(

√
δ2 + 2γ2 t) (11)

where ∆ = (ωba + γ′)/2. If γ << ωba this probability
remains very small at any time giving validity to our
approximation.
Also

Pb1→b2(t) = sin2
(

Ω−ΩA
2 t

)
−

−2
(
1− ∆

Ω

)
sin(Ωt) cos

(
Ω+ΩA

2 t
)

sin
(

Ω−ΩA
2 t

)
+

+
(
1− ∆

Ω

)2
sin2(Ωt)

(12)

where Ω =
√

∆2 + 2γ2 and ΩA = ∆− 2γ′.
In the limit γ = 0, (12) and (11) reduce to (10). Notice

that
Ω− ΩA

2
= γ′+O(

γ2, γ′2

ω2
ba

) and
(
1− ∆

Ω

)
= O

(
γ
ωba

)2

so that the (10) expressions are excellent approximations
especially for not too large times (FIG:5).

FIG. 5: Transition probability Pb1→b2 calculated via (12)(red)
and via the approximation (10)(blue). In this case, to illus-
trate the validity of the approximation in (10) we have chosen
γ/2π = 23.5KHz and γ/ωab = 10−2 >> |γXab|/~ωba.
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