ON THE ZEROS OF FUNCTIONS IN DIRICHLET-TYPE SPACES

JORDI PAU AND JOSÉ ÁNGEL PELÁEZ

Abstract. We study the sequences of zeros for functions in the Dirichlet spaces D_s. Using Carleson-Newman sequences we prove that there are great similarities for this problem in the case $0 < s < 1$ with that for the classical Dirichlet space.

1. Introduction and main results

The problem of describing the zero sets for the Dirichlet-type spaces D_s is an old one, and to the best of our knowledge, is still an open problem whose best results are the ones given by Carleson in [8], [11], and by Shapiro and Shields in [39]. The purpose of this paper is to give some light on this difficult problem. Since the Dirichlet-type spaces are subclasses of the Hardy space H^2, any zero sequence $\{z_n\}$ satisfies the Blaschke condition $\sum (1 - |z_n|^2) < \infty$ ([18, p. 18]). However, this condition is far from being sufficient. Many examples of Blaschke sequences that are not D_s- zero sets can be found in the literature (see [12], [29] and [39]). When $0 < s < 1$, Carleson proved in [8] that the condition

$$\sum (1 - |z_n|^2)^s < \infty$$

implies that the Blaschke product B with zeros $\{z_n\}$ belongs to the space D_s, and therefore, it is a sufficient condition for the sequence $\{z_n\}$ to be a D_s-zero set. Concerning the Dirichlet space D (the case $s = 0$), since it does not contain infinite Blaschke products, one must go in a different way. In [11], by constructing a function $g \in D$ with $gB \in D$, Carleson found the sufficient condition $\sum \left(\log \frac{1}{1 - |z_n|^2} \right)^{-1 + \epsilon} < \infty$, for a sequence $\{z_n\}$ to be a zero set for the Dirichlet space. Using Hilbert space techniques, this was improved in [39] by Shapiro and Shields, who proved that the condition

$$\sum_n \left(\log \frac{1}{1 - |z_n|^2} \right)^{-1} < \infty$$

is sufficient for $\{z_n\}$ to be a Dirichlet zero set.

Received by the editors December 22, 2008.

2000 Mathematics Subject Classification. Primary 30C15, 30D45, 30D50, 30H05.

Key words and phrases. Dirichlet spaces, zero sets.

The first author was partially supported by SGR grant 2005SGR 00774 and DGICYT grant MTM2008-05561-C02-01 (MCyT/MEC), while the second author was supported by: the Ministerio de Educación y Ciencia, Spain” (MTM2007-60854 and MTM2007-30904-E); from “La Junta de Andalucía” (FQM210 and P06-FQM01504), and by the Ramón y Cajal Program of MICINN (Spain).

©2010 American Mathematical Society
Note that the spaces D_s are Hilbert function spaces with the norm of the corresponding reproducing kernels k_z comparable to $(\log(1/|z|))^{1/2}$ if $s = 0$, and to $(1 - |z|^2)^{-s/2}$ if $s > 0$. So, the corresponding sufficient conditions stated before can be restated as $\sum ||k_z||_{D_s}^2 < \infty$. On the other hand, if $\{r_n\} \subset (0,1)$ and $\sum ||k_{r_n}||_{D_s}^2 = \infty$, with $0 \leq s < 1$, in \[29\], Nagel, Rudin, and Shapiro constructed a sequence of angles $\{\theta_n\}$ such that $\{r_ne^{i\theta_n}\}$ is not the zero set of any function in D_s. Together with the previous sufficient condition, this implies that given $\{r_n\} \subset (0,1)$, then $\{r_ne^{i\theta_n}\}$ is a zero set for D_s for any choice of angles $\{\theta_n\}$ if and only if
\[
\sum_n ||k_{r_n}||_{D_s}^2 < \infty.
\]

We also note that, in \[7\], Bogdan described the regions $\Omega \subset \mathbb{D}$ for which any Blaschke sequence of points in Ω must be a Dirichlet zero set. For example, it follows that any Blaschke sequence that lies in a region with finite order of contact with the unit circle must be a Dirichlet zero set.

What about conditions on the angles? Here we touch the notion of a Carleson set. Given a sequence of points $\{e^{i\theta_n}\}$, the sequence $\{r_ne^{i\theta_n}\}$ is a zero sequence of D for any choice of radius $\{r_n\}, 0 < r_n < 1$ with $\sum(1 - r_n) < \infty$ if and only if the closure of $\{e^{i\theta_n}\}$ in the unit circle is a Carleson set. Indeed, if the closure of $\{e^{i\theta_n}\}$ in the unit circle is a Carleson set, Caughran proved in \[13\] that there is a function f with all derivatives bounded in the unit disk vanishing at the points $\{r_ne^{i\theta_n}\}$. Conversely, if $\{e^{i\theta_n}\}$ is not a Carleson set, by modifying the construction in \[12\] Theorem 1, he obtained in \[13\] a sequence $\{r_n\}$ for which $\{r_ne^{i\theta_n}\}$ is not contained in the zero set of any function with finite Dirichlet integral. We will see that the same holds for the spaces D_s when $0 < s < 1$.

In \[26\] Corollary 13, Marshall and Sundberg proved that the zero sets of the Dirichlet-type spaces $D_s, 0 \leq s \leq 1$, coincide with the zero sets of its multiplier algebra (see also \[2\] Corollary 9.39)). From this follows the remarkable result that the union of two zero sets is also a zero set for D_s. Note that the corresponding result for the weighted Bergman spaces (the case $s > 1$) is not true; the first example was given by Horowitz in \[22\]. A complete description of the zeros of functions in Bergman spaces is still open, but the gap between the necessary and sufficient known conditions is small. We refer to \[19\] Chapter 4, \[21\] Chapter 4, \[22\], \[25\], \[31\] and \[33\] for more information on this interesting problem.

1.1. Main results. Let \mathbb{D} denote the open unit disk of the complex plane, let T denote the unit circle and let $H(\mathbb{D})$ be the class of all analytic functions on \mathbb{D}. For $s \geq 0$, the weighted Dirichlet-type space D_s consists of those functions $f \in H(\mathbb{D})$ for which
\[
||f||^2_{D_s} \overset{\text{def}}{=} |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^s \, dA(z) < \infty,
\]
where $dA(z) = \frac{1}{2} \, dx \, dy$ is the normalized area measure on \mathbb{D}. As usual, D_0 will be simply denoted by D.

Given a space X of analytic functions in \mathbb{D}, a sequence $Z = \{z_n\} \subset \mathbb{D}$ is said to be an X-zero set if there exists a function in X that vanishes on Z and nowhere else.

A sequence $\{z_n\} \subset \mathbb{D}$ is said to be separated if $\inf_{j \neq k} \varrho(z_j, z_k) > 0$, where $\varrho(z, w) = \frac{|z - w|}{1 - \overline{z}w}$ denotes the pseudohyperbolic metric in \mathbb{D}. This condition is
equivalent to the fact that there is a positive constant $\delta < 1$ such that the pseudo-
hyperbolic discs $\Delta(z_j, \delta) = \{ z : g(z, z_j) < \delta \}$ are pairwise disjoint.

We denote by H^p ($0 < p \leq \infty$) the classical Hardy spaces of analytic functions
on \mathbb{D} (see [18]). We remind the reader that $\{ z_k \} \subset \mathbb{D}$ is an interpolating sequence
if for each bounded sequence $\{ w_k \}$ of complex numbers there exists $f \in H^\infty$ such that $f(z_k) = w_k$ for all k. It is a classical result of Carleson (see e.g. [18]) that $\{ z_k \} \subset \mathbb{D}$ is an interpolating sequence if and only if
\begin{equation}
\inf_k \prod_{j \neq k} \rho(z_j, z_k) > 0.
\end{equation}

Clearly a sequence satisfying (1.2) is separated. A finite union of interpolating
sequences is usually called a Carleson-Newman sequence.

In this research on \mathcal{D}_s-zero sets, $0 < s < 1$, the additional hypothesis of being
a Carleson-Newman sequence enables us to obtain better results. The key is the
following one which moves the problem to a new situation on the boundary.

Theorem 1. Suppose that $0 < s < 1$ and $\{ z_k \}$ is a Carleson-Newman sequence. Then the following conditions are equivalent:

(i) $\{ z_k \}$ is a \mathcal{D}_s-zero set.

(ii) There exists an outer function $g \in \mathcal{D}_s$ such that
\begin{equation}
\sum_{k=1}^{\infty} |g(z_k)|^2 (1 - |z_k|^2)^s < \infty.
\end{equation}

(iii) There exists an outer function $g \in \mathcal{D}_s$ such that
\begin{equation}
\sum_{k=1}^{\infty} (1 - |z_k|^2)^{1+s} \int_T |g(e^{it})|^2 \frac{dt}{|e^{it} - z_k|^2} < \infty.
\end{equation}

We recall that a function $g \in H(\mathbb{D})$ is called an outer function if $\log |g|$ belongs
to $L^1(\mathbb{T})$ and
\begin{equation}
g(z) = \exp \left(\frac{1}{2\pi} \int_\mathbb{T} \log |g(e^{it})| \frac{e^{it} + z}{e^{it} - z} \, dt \right).
\end{equation}

Although obviously there are \mathcal{D}_s-zero sets that are not Carleson-Newman se-
quencies, this additional assumption is not an obstacle in order to construct relevant
examples, and to get analogous results for \mathcal{D}_s to those known for \mathcal{D}. Combining
ideas from [10], [12] and Theorem 1, the next result follows.

Corollary 1. Suppose that $0 < s < 1$ and $\{ z_k \}$ is a Carleson-Newman sequence.
If $\{ z_k \}$ is a \mathcal{D}_s-zero set, then
\begin{equation}
\int_\mathbb{T} \log \left(\sum_{k=1}^{\infty} \frac{(1 - |z_k|^2)^{1+s}}{|e^{it} - z_k|^2} \right) \, dt < \infty.
\end{equation}

We note that this result remains true for $s = 0$ without assuming that the
sequence is Carleson-Newman (see [12]); that is, if $\{ z_k \}$ is a \mathcal{D}-zero set, then
\begin{equation}
\int_\mathbb{T} \log \left(\sum_{k=1}^{\infty} \frac{1 - |z_k|^2}{|e^{it} - z_k|^2} \right) \, dt < \infty.
\end{equation}

Corollary 1 allows us to extend Theorem 1 of [12] to the case $0 < s < 1$.

Theorem 2. Let $0 < s < 1$. Then there exists a Blaschke sequence $\{z_n\}$ which is not a D_s-zero set and with 1 as a unique accumulation point.

Denote by $|E|$ the normalized Lebesgue measure of a subset E of the unit circle \mathbb{T}. A Carleson set is a closed subset $E \subset \mathbb{T}$ of Lebesgue measure zero for which, if the intervals $\{I_k\}$ complementary to E have lengths $|I_k|$, then $\sum_k |I_k| \log |I_k| > -\infty$. This notion was introduced in [3], and in [9] Carleson used it to describe the sets of uniqueness of some function spaces. Corollary [1] is also useful to obtain results on the angular distribution of the D_s-zero sets.

Theorem 3. Let $0 < s < 1$, and $\{e^{i\theta_n}\} \subset \mathbb{T}$. The following are equivalent:

(i) the sequence $\{r_n e^{i\theta_n}\}$ is a D_s-zero set for any choice of $\{r_n\} \subset (0,1)$ with $\sum (1-r_n) < \infty$;

(ii) the closure of $\{e^{i\theta_n}\}$ in the unit circle is a Carleson set.

As noted before, if $0 \leq s < 1$ and $\{r_n\} \subset (0,1)$ is a Blaschke sequence that does not satisfy (1.1), then there is a sequence of angles $\{\theta_n\}$ such that $Z = \{r_n e^{i\theta_n}\}$ is not a D_s-zero set. The sequences doing that which have been constructed in [24] (and also the examples in [39]) satisfy that every $\xi \in \mathbb{T}$ is an accumulation point of Z. Ross, Richter and Sundberg proved in [35] that this can be done in D with a sequence Z which accumulates to a single point in \mathbb{T}. We shall extend this result to the range $0 < s < 1$, which improves our Theorem 2 but whose proof is much more technical.

Theorem 4. Let $0 < s < 1$. Suppose that $\{r_n\} \subset (0,1)$ satisfies

$$\sum_{n=0}^{\infty} (1-r_n)^s = \infty.$$

Then there exists a sequence $\{\theta_n\}$ such that $\{r_n e^{i\theta_n}\} \cap \mathbb{T} = \{1\}$ and $\{r_n e^{i\theta_n}\}$ is not a D_s-zero set.

Let X be a space of analytic functions in \mathbb{D} contained in the Nevanlinna class (see [18]), so every function $f \in X$ has nontangential limits a.e. on \mathbb{T}. Denote also by f the function of boundary values of f (taken as a nontangential limit). A closed set $E \subset \mathbb{T}$ is called a set of uniqueness for X if it has the property that $f \equiv 0$ if $f \in X$ vanishes at all points $\xi \in E$. It is well known that $E \subset \mathbb{T}$ is a set of uniqueness for a Lipschitz class Λ_α if and only if E is not a Carleson set. We remind the reader that $f \in H(\mathbb{D})$ belongs to Λ_α, $0 < \alpha \leq 1$, if there is $C > 0$ such that

$$|f(z) - f(w)| \leq C|z-w|^\alpha, \quad \text{for all } z, w \in \overline{\mathbb{D}}.$$

In [9] Theorem 5, under a very weak additional assumption, the sets of uniqueness for the classical Dirichlet space are described.

If $\alpha > 0$, we denote by $C_\alpha(E)$ the α-capacity of a subset of \mathbb{T} (see Section 4 for a definition). The following result is an extension of Theorem 5 in [9].

Theorem 5. Let $0 \leq s < \alpha < 1$ and $E \subset \mathbb{T}$ with null Lebesgue measure. Suppose that there exists $m > 0$ such that for each interval $I \subset \mathbb{T}$ centered at a point of E,

$$C_\alpha(E \cap I) \geq m|I|.$$

Then E is a set of uniqueness for D_s if and only if E is not a Carleson set.
The paper is organized as follows. Section 2 is devoted to the study of Carleson-Newman sequences as D_s-zero sets proving Theorem 1, Corollary 1, Theorem 2, and Theorem 3. Theorem 3 is proved in Section 4, and Theorem 5 is proved in Section 6. In Section 5, we shall give a new proof of a result of Bogdan [7] on the description of Blaschke sets for D. Finally, in Section 6, between other results, we prove that D_s-zero sets and the zero sets of their generated Möbius invariant spaces coincide.

In the sequel, the notation $A \asymp B$ will mean that there exist two positive constants C_1 and C_2 which only depend on some parameters p, α, s, \ldots such that $C_1 A \leq B \leq C_2 A$. Also, we remark that throughout the paper we shall be using the convention that the letter C will denote a positive constant whose value may depend on some parameters p, α, s, \ldots, not necessarily the same at different occurrences.

2. Carleson-Newman D_s-zero sets

We first recall some useful concepts and results. The Carleson square $S(I)$ of an interval $I \subset \mathbb{T}$ is defined as

$$S(I) = \{r e^{i\theta} : e^{i\theta} \in I, \quad 1 - |I| \leq r < 1\}.$$

Given $s > 0$ and a positive Borel measure μ on \mathbb{D}, we say that μ is an s-Carleson measure if there exists a positive constant C such that

$$\mu(S(I)) \leq C |I|^s, \quad \text{for every interval } I \subset \mathbb{T}. $$

If $s = 1$ we simply say that μ is a Carleson measure. We recall that a sequence $\{z_n\} \subset \mathbb{D}$ is Carleson-Newman if and only if the measure $d\mu_{z_n} = \sum (1 - |z_n|) \delta_{z_n}$ is a Carleson measure (see [27] and [28]). Here, as usual, δ_{z_n} denotes the point mass at z_n. A Blaschke product whose zero sequence is Carleson-Newman is called a Carleson-Newman Blaschke product (a CN-Blaschke product, for short).

Let $P_z(e^{it})$ denote the Poisson kernel at a point $z \in \mathbb{D}$, so that

$$P_z(e^{it}) = \frac{1 - |z|^2}{|e^{it} - z|^2}, \quad e^{it} \in \mathbb{T},$$

and let

$$\Psi(z, \phi) = \frac{1}{2\pi} \int_{\mathbb{T}} \phi(e^{it}) P_z(e^{it}) dt - \exp \left(\frac{1}{2\pi} \int_{\mathbb{T}} \log \phi(e^{it}) P_z(e^{it}) dt \right), \quad z \in \mathbb{D},$$

where ϕ is a positive function which belongs to $L^1(\mathbb{T})$. Observe that the arithmetic-geometric inequality implies that $\Psi(z, \phi) \geq 0$. If $\phi \in L^2(\mathbb{T})$, $\phi \geq 0$, we set

$$\Phi(z, \phi) = \Psi(z, \phi^2).$$

We observe that for an outer function $g \in H^2$,

$$\Phi(z, |g|) = P(|g|^2)(z) - |g(z)|^2,$$

where $P(|g|^2)$ is the Poisson integral of $|g|^2$.

The following result, Theorem 3.1 of [12] (see [6] for related results), characterizes the membership in D_s of an outer function in terms of its modulus on the boundary.

Theorem A. Suppose that $0 < s < 1$ and f is an outer function. Then the following are equivalent:

(i) $f \in D_s$,

(ii) $\int_{\mathbb{D}} \Phi(z, |f|) \frac{dA(z)}{(1 - |z|^2)^{s+1}} < \infty$.

In order to prove Theorem 1 we need some lemmas. The following result is implicit in some places (see e.g. [33, Theorem 5] or [15, Theorem 8]). For completeness we sketch a proof here.

Lemma 1. Suppose that $0 < s < 1$, $f \in \mathcal{D}_s$ and let B be a Carleson-Newman Blaschke product with zeros $\{z_k\} \subset \mathbb{D}$. Then $fB \in \mathcal{D}_s$ if and only if

$$\sum_{k=1}^{\infty} |f(z_k)|^2 (1 - |z_k|^2)^s < \infty.$$

Moreover,

$$\|fB\|_{\mathcal{D}_s}^2 \leq \|f\|_{\mathcal{D}_s}^2 + \sum_{k=1}^{\infty} |f(z_k)|^2 (1 - |z_k|^2)^s.$$

Proof. Suppose first that $fB \in \mathcal{D}_s$. By Theorem 4 of [16],

$$\|fB\|_{\mathcal{D}_s}^2 \leq \|f\|_{\mathcal{D}_s}^2 + \int_{\mathbb{D}} |f(z)|^2 (1 - |B(z)|^2) (1 - |z|^2)^{s-2} \, dA(z).$$

Since B is a CN-Blaschke product, there is a positive constant C such that (see e.g. [16] p. 15)

$$1 - |B(z)|^2 \geq C \sum_{n} \frac{(1 - |z_n|^2)(1 - |z|^2)}{|1 - z_n z|^2}.$$

Therefore, if $\Delta_n = \{ \varrho(z, z_n) < 1/2 \}$, the subharmonicity of $|f|^2$ gives

$$\sum_{n} |f(z_n)|^2 (1 - |z_n|^2)^s \leq C \sum_{n} \int_{\Delta_n} |f(z)|^2 \frac{(1 - |z|^2)^s}{|1 - z_n z|^2} \, dA(z)$$

$$\leq C \sum_{n} (1 - |z_n|^2) \int_{\Delta_n} |f(z)|^2 \frac{(1 - |z|^2)^{s-1}}{|1 - z_n z|^2} \, dA(z)$$

$$\leq C \sum_{n} (1 - |z_n|^2) \int_{\mathbb{D}} |f(z)|^2 \frac{(1 - |z|^2)^{s-1}}{|1 - z_n z|^2} \, dA(z)$$

$$\leq C \int_{\mathbb{D}} |f(z)|^2 (1 - |B(z)|^2) (1 - |z|^2)^{s-2} \, dA(z).$$

For the converse we refer to [4] Proposition 3.2, where an elementary proof is given. \[\square\]

Next, if $g \in H^2$ we shall see that the function $\Phi(z, |g|)$, although it is superharmonic, verifies a certain sub-mean-value property.

Lemma 2. Suppose that g is an outer function which belongs to H^2. Then there is a constant $M > 1$ such that

$$\Phi(z, |g|) \leq \frac{M}{A(D(z, r))} \int_{D(z, r)} \Phi(w, |g|) \, dA(w), \quad \text{for all } r \in \left(0, \frac{1 - |z|}{2}\right),$$

where $D(z, r)$ is the Euclidean disk of center z and radius r.

Lemma 1. Suppose that there is an outer function \(g\) such that
\[
\sum_{k} \|g(z_k)\| (1 - |z_k|^2)^s < \infty.
\]

(iii) \(\Rightarrow\) (ii). Without loss of generality we may assume that \(\{z_k\}\) is separated. Therefore, there is a positive constant \(\varepsilon < 1\) such that the pseudohyperbolic disks \(\Delta(z_k, \varepsilon)\) are pairwise disjoint.

Suppose that there is an outer function \(g\) which satisfies (1.3). It is observed that
\[
\sum_{k} (1 - |z_k|^2)^{1+s} \int_{\gamma} |g(e^{it})|^2 \frac{dt}{|e^{it} - z_k|^2}
\]
(2.5)
\[
\leq \sum_{k} \Phi(z_k, |g|) (1 - |z_k|^2)^s + \sum_{k=1}^{\infty} |g(z_k)|^2 (1 - |z_k|^2)^s.
\]
Next, bearing in mind Lemma 2 the separation of \(\{z_k\} \) and Theorem A we deduce that
\[
\sum_k \Phi(z_k, |g|) (1 - |z_k|^2)^s \leq C \sum_k (1 - |z_k|^2)^{s-2} \int_{\Delta(z_k, r)} \Phi(z, |g|) \, dA(z)
\]
so bearing in mind that \(\log |g| \in L^1(\mathbb{T}) \) and the geometric-arithmetic inequality, the result follows.

Finally, \((iii) \) follows from (1.3), (2.6) and (2.5).

Proof of Corollary 1 By Theorem 1 there is an outer function \(g \in \mathcal{D}_s \) such that
\[
\int_{\mathbb{T}} |g(e^{it})|^2 \left(\sum_k \frac{(1 - |z_k|^2)^{1+s}}{|e^{it} - z_k|^2} \right) \, dt < \infty,
\]
so bearing in mind that \(\log |g| \) is a Carleson-Newman sequence which accumulates only at \(\{z_n\} \), the result follows.

Proof of Theorem 2 The same sequence given in the proof of Theorem 1 works. Choose a sequence \(\{\varepsilon_n\} \) such that \(0 < \varepsilon_n < 1, \sum_n \varepsilon_n \leq 1 \) and \(\sum_n \varepsilon_n \log \varepsilon_n = -\infty \). Next, take disjoint open arcs of \(\mathbb{T} \) with \(|I_n| = \varepsilon_n \) converging to 1. Let \(r_n = 1 - \varepsilon_n \) and \(z_n = r_n e^{i\theta_n} \), where \(\theta_n \) is the center of \(I_n \). If \(I \) is an arc of \(\mathbb{T} \), then
\[
\sum_{\varepsilon_n \in S(I)} (1 - |z_n|) \leq \sum_{|I_n| \leq 2|I|} |I_n| \leq 2|I|,
\]
proving that the measure \(\mu = \sum (1 - |z_n|) \delta_{z_n} \) is a Carleson measure. So, \(\{z_n\} \) is a Carleson-Newman sequence which accumulates only at \(\{1\} \). Moreover, since
\[
\int_{\mathbb{T}} \log \left(\sum_{k=1}^\infty \frac{(1 - |z_k|^2)^{1+s}}{|e^{it} - z_k|^2} \right) \, dt \geq \sum_{j=1}^{\infty} \int_{I_j} \log \left(\sum_{k=1}^\infty \frac{(1 - |z_k|^2)^{1+s}}{|e^{it} - z_k|^2} \right) \, dt \geq \sum_{j=1}^{\infty} \int_{I_j} \log \left(\frac{(1 - |z_j|^2)^{1+s}}{|e^{it} - z_j|^2} \right) \, dt \geq \sum_{j=1}^{\infty} |I_j| \log (4|I_j|^s - 1) = \infty,
\]
it follows from Corollary 1 that \(\{z_n\} \) is not a \(\mathcal{D}_s \)-zero set. The proof is complete.

Proof of Theorem 3 If \(\{e^{i\theta_n}\} \) is a Carleson set and \(\sum (1 - r_n) < \infty \), then it follows from Theorem 2 that there is a function \(f \) with all derivatives bounded that vanishes only at \(\{r_n e^{i\theta_n}\} \).

Suppose now that \(E = \{e^{i\theta_n}\} \) is not a Carleson set. Let \(\{I_n\} \) be the complementary intervals of \(E \), with \(I_n = (e^{i\theta_n}, e^{i(\theta_n + |I_n|)}) \). Set \(r_n = (1 - |I_n|) e^{i\theta_n} \),
which satisfies \(\sum (1 - r_n) < \infty \). Clearly, the sequence \(\{z_n\} = \{r_n e^{i\theta_n}\} \) is Carleson-Newman, and arguing as in the proof of Theorem 2 we have
\[
\int_T \log \left(\sum_n \frac{1 - |z_n|^2}{|e^{it} - z_n|^2} \right) \, dt \geq C \sum_n |I_n| \log (4|I_n|^{-s-1}) = \infty.
\]
Hence, by Corollary 1, the sequence \(\{r_n e^{i\theta_n}\} \) is not a \(D_s \)-zero set.

Proof.

Let \(\Lambda \) be an arc with center \(z_0 \). Arguing as in the proof of Theorem 2, we have
\[
\Lambda \subset \bigcup_{j \in \mathbb{Z}} I_j.
\]

This finishes the proof. \(\square \)

3. Proof of Theorem 4

Some new concepts and preliminary results will be needed in the proof of Theorem 4. For \(0 < s \leq 1 \), the \(s \)-dimensional Hausdorff capacity of \(E \subset \mathbb{T} \) is determined by
\[
\Lambda^\infty_s(E) = \inf \left\{ \sum_j |I_j|^s : E \subset \bigcup_j I_j \right\},
\]
where the infimum is taken over all coverings of \(E \) by countable families of open arcs \(I \subset \mathbb{T} \).

Although we think that the next result is known, a proof is included here since we were not able to find any clear reference.

Lemma 3. Let \(0 < s \leq 1 \). Then there exists a universal constant \(C \) such that \(\Lambda^\infty_s(E) \geq C|E|^s \) for all \(E \subset \mathbb{T} \).

Proof. Let \(E \subset \mathbb{T} \). If \(|E| = 0 \), the result is clear. Suppose that \(|E| > 0 \) and take \(\varepsilon \in \left(0, \frac{|E|^s}{2}\right) \). Then there exists a covering \(\{I_j\}_j \) of \(E \), such that
\[
\Lambda^\infty_s(E) \geq \sum_j |I_j|^s - \varepsilon \geq \left(\sum_j |I_j| \right)^s - \varepsilon \geq |E|^s - \frac{|E|^s}{2} = \frac{|E|^s}{2}.
\]
This finishes the proof. \(\square \)

The homogeneous \(D_s \)-capacity of a set \(E \subset \mathbb{T} \) is defined by
\[
\text{cap} (E, D_s) = \inf \left\{ ||f||^2_{C_s} : f \in L^2(\mathbb{T}) \text{ and } f \geq 1 \text{ a.e. on } E \right\}.
\]

Lemma 4. Let \(J \subset \mathbb{T} \) be an open arc with center \(e^{i\theta_0} \). Suppose that \(F \in D_s \) with \(E = \{e^{it} \in J : |F(e^{it})| \geq 1\} \).

If \(|E| \geq \frac{|J|}{2} \), then there exists a universal constant \(C \) such that
\[
\int_{S(J)} |F'(z)|^2 (1 - |z|^2)^s \, dA(z) \geq C|J|^s.
\]

Proof. Let \(z_0 = (1 - \frac{|J|}{2}) e^{i\theta_0} \). Arguing as in the proof of [36] Lemma 3, we deduce that there is a universal constant \(C \) such that the harmonic measure of \(E \) with respect to \(Q := S(J) \) at \(z_0, \mu_{z_0}^Q(E) \), satisfies
\[
\mu_{z_0}^Q(E) \geq C.
\]

Consider a conformal map \(\varphi : \mathbb{D} \to Q \) with \(\varphi(0) = z_0 \) and take \(g = F \circ \varphi \). Then \(g \geq 1 \) on \(\varphi^{-1}(E) \) and \(|\varphi^{-1}(E)| = \mu_{z_0}^Q(E) \geq C \). Thus, putting together (5.1.3) of [1]
and Lemma 3 we have

\[\|g\|_{L^2(D_s)} \geq \text{cap} (\varphi^{-1}(E), D_s) \geq C \left(A_{s'}^\varphi (\varphi^{-1}(E)) \right)^\gamma \geq C \mu^Q_{s_0}(E)^{s'_\gamma} \geq C, \]

where \(s' \in (s, 1) \) and \(\gamma \in (0, 1) \).

Next, since \(\varphi \) is a conformal map (see [34, Chapter 1]),

\[|\varphi'(z)| \geq \frac{1}{4} |\varphi'(0)| \geq C d(z_0, \partial Q) \geq C |J|, \]

Moreover, since \(Q \) is convex, reasoning as in [20, Proposition 5] and bearing in mind (3.2) we obtain that

\[|\varphi'(z)| \geq \frac{1}{4} |\varphi'(0)| \geq C d(z_0, \partial Q) \geq C |J|, \]

where \(d(z_0, \partial Q) \) is the Euclidean distance from \(z_0 \) to \(\partial Q \).

Taking into account (3.1), (3.2) and (3.3) we deduce that

\[\int_Q |F'(z)|^2 \left(1 - |z|^2 \right)^s dA(z) \geq \int_Q |F'(z)|^2 d(z, \partial Q)^s dA(z) \]

\[\geq \int_{\mathbb{D}} |g'(z)|^2 d(\varphi(z), \partial Q)^s dA(z) \]

\[\geq C \int_{\mathbb{D}} |g'(z)|^2 \left((1 - |z|^2)|\varphi'(z)| \right)^s dA(z) \]

\[\geq C |J|^s \int_{\mathbb{D}} |g'(z)|^2 (1 - |z|^2)^s dA(z) \]

\[\geq C |J|^s. \]

This finishes the proof. \(\Box \)

Proof of Theorem 4. Let \(\{r_n\} \subset (0, 1) \) be an increasing sequence such that

\[\sum_n (1 - r_n)^s = \infty. \]

We can find

\[1 \leq n_1 < m_1 < n_2 < m_2 < \cdots < n_k < m_k < \cdots \]

such that

\[(1 - r_n)^{1-s} < k^{-2} e^{-2k^2} \quad \text{if} \quad n \geq n_k, \quad k = 1, 2, \ldots \]

and

\[ke^{2k^2} \leq \sum_{n=n_k}^{m_k} (1 - r_n)^{s} < ke^{2k^2} + 1, \quad k = 1, 2, \ldots. \]

For each \(k \), lay out arcs \(J_{n_k}, J_{n_k+1}, \ldots, J_{m_k} \) on the unit circle end-to-end starting at \(e^{i\theta} = 1 \) and such that

\[|J_n| = (1 - r_n)^{s} k^{-2} e^{-2k^2}, \quad n_k \leq n \leq m_k. \]

Observe that (3.4) together with (3.5) implies that

\[|J_n| > (1 - r_n). \]
Let $e^{i\theta_n}$ be the center of J_n and set $\lambda_n = (1 - r_n)e^{i\theta_n}$. Suppose that there is $F \in \mathcal{D}_s$ with $F(\lambda_n) = 0$ for all $n_k \leq n \leq m_k$. By [6, Theorem 3.4] we may assume that $||F||_{H^\infty} \leq 1$. Set

$$A_k = \left\{ n : n_k \leq n \leq m_k \text{ and } |F| \geq e^{-k^2} \text{ on a set } E_n \subset J_n \text{ with } |E_n| \geq \frac{|J_n|}{2} \right\},$$

$$B_k = \left\{ n : n_k \leq n \leq m_k, \ n \notin A_k \right\}.$$

Using Lemma 4 and (3.6) with $S(J_n)$, $n \in A_k$, we deduce that

$$\int_{S(J_n)} |F'(z)|^2 (1 - |z|^2)^{s} \ dA(z) \geq Ce^{-2k^2} |J_n|^s \geq Ce^{-2k^2} (1 - r_n)^s.$$

Moreover if $n \in B_k$,

$$\int_{J_n} \log \frac{1}{|F(\xi)|} \ d\xi \geq \frac{1}{2} k^2 |J_n| = \frac{1}{2} (1 - r_n)^s e^{-2k^2}.$$

So, bearing in mind (3),

$$\sum_{n \in A_k} \int_{S(J_n)} |F'(z)|^2 (1 - |z|^2)^{s} \ dA(z) + \sum_{n \in B_k} \int_{J_n} \log \frac{1}{|F(\xi)|} \ d\xi$$

$$\geq Ce^{-2k^2} \sum_{n = n_k}^{m_k} (1 - r_n)^s \geq Ck,$$

which together with the integrability of $\log |F|$ on the boundary (see Theorem 2.2 of [18]), implies that F must be the zero function. Finally, arguing as in the proof of Theorem 2 of [36], the proof can be finished.

4. Zeros on the boundary. Sets of uniqueness

In order to prove Theorem 5 the notion of α-capacity must be introduced. We shall recall some definitions (see [41] and [8]). Given $E \subset [0, 2\pi)$, let $\mathcal{P}(E)$ be the set of all probability measures supported on E. If $\alpha > 0$ and $\sigma \in \mathcal{P}(E)$, the α-potential associated to σ is

$$U_{\alpha}\sigma(\tau) = \int_{E} \frac{d\sigma(\theta)}{|	heta - \tau|^\alpha}.$$

Let

$$V_{E, \alpha} = \inf \int_{E} U_{\alpha}\sigma(\tau) \ d\sigma(\tau),$$

where the infimum is taken over all $\sigma \in \mathcal{P}(E)$. If $V_{E, \alpha} < \infty$, there is $\mu \in \mathcal{P}(E)$ where the value $V_{E, \alpha}$ is attained, and that measure μ is called the equilibrium distribution for the α-potentials of E. It is known that $U_{\alpha}\mu(\tau) = V_{E, \alpha}$ for a.e. (μ).

The α-capacity of E is determined by

$$C_{\alpha}(E) = (V_{E, \alpha})^{-1}.$$

Proof of Theorem 5. Suppose that E is a set of uniqueness for \mathcal{D}_s. Then E is also a set of uniqueness for any Lipschitz class Λ_β with $\beta > \frac{1}{2}$, due to $\Lambda_\beta \subset \mathcal{D}_s$. So, by Theorem 1 of [9], E is not a Carleson set.

For the converse, we shall follow the argument in the proof of Theorem 5 in [9]. Let μ be the equilibrium distribution for the α-potentials of E. Then, if $\{\gamma_n\}$ are
the Fourier-Stieltjes coefficients of μ, there is a constant C which only depends on α such that
\begin{equation}
\sum_n n^{\alpha - 1} |\gamma_n|^2 \leq CV_{E, \alpha}.
\end{equation}

Suppose that there is a bounded function $f \in D$, $f \neq 0$, that vanishes on E. We shall see that this leads to a contradiction. The function $h(\theta) = |f(e^{i\theta})|$ can be written as
\[h(\theta) = \sum_n c_n e^{in\theta}, \]
where
\begin{equation}
\sum_n n^{1-s} |c_n|^2 < \infty.
\end{equation}

For each $t \in (0, \pi)$, let us consider $h_t(\theta) = \frac{1}{2t} \int_{\theta - t}^{\theta + t} h(s) \, ds$. Integrating the Fourier series of h, it follows that the Fourier coefficients of h_t are $\frac{\sin(nt)}{nt} c_n$. Then by (4.1) and Schwarz’s inequality,
\begin{equation}
\left| \int_E h_{t}(\theta) \, d\mu(\theta) \right| = \left| \int_E (h_{t}(\theta) - h(\theta)) \, d\mu(\theta) \right|
= \left| \sum_n \left(1 - \frac{\sin(nt)}{nt}\right) c_n \int_E e^{in\theta} \, d\mu(\theta) \right|
\leq C \sum_n \left(1 - \frac{\sin(nt)}{nt}\right) |c_n||\gamma_n|
\leq C \left(\sum_n \left(1 - \frac{\sin(nt)}{nt}\right)^2 |c_n|^2 n^{1-\alpha}\right)^{\frac{1}{2}} \left(\sum_n n^{\alpha - 1} |\gamma_n|^2\right)^{\frac{1}{2}}.
\end{equation}

We claim that there is $C > 0$ such that
\begin{equation}
n^{s-\alpha} \left(1 - \frac{\sin(nt)}{nt}\right)^2 \leq Ct^{\alpha - s}, \quad t > 0, \quad n = 1, 2, \ldots.
\end{equation}
If $nt \leq 1$, there is a positive constant C which does not depend on n or t, such that $1 - \frac{\sin(nt)}{nt} \leq C(nt)^2$, so
\begin{equation}
n^{s-\alpha} \left(1 - \frac{\sin(nt)}{nt}\right)^2 \leq C^2 n^{s-\alpha}(nt)^4 \leq C^2 n^{s-\alpha}(nt)^{\alpha-s} \leq C^2 t^{\alpha-s}.
\end{equation}

On the other hand, if $nt \geq 1$, bearing in mind that $1 - \frac{\sin(\theta)}{\theta}$ is a bounded function of θ, we deduce that
\[n^{s-\alpha} \left(1 - \frac{\sin(nt)}{nt}\right)^2 \leq Cn^{s-\alpha} \leq Ct^{\alpha-s}, \]
which together with (4.4) gives (4.4).

Therefore, using (4.3), (4.5), (4.1) and (4.2), it follows that
\begin{equation}
\int_E h_{t}(\theta) \, d\mu(\theta) \leq Ct^{\frac{s}{\alpha-1}} \left(\sum_n n^{s-\alpha} |c_n|^2\right)^{\frac{1}{2}} \left(\sum_n n^{\alpha - 1} |\gamma_n|^2\right)^{\frac{1}{2}}
\leq Ct^{\frac{s}{\alpha-1}} \|f\|_{D_2} \|V^{1/2}_{E, \alpha}}.
\end{equation}
Now, let k_n be the number of complementary intervals of E whose lengths are in $[2^{-n}, 2^{-n+1})$. Since E is not a Carleson set,

$$(4.7) \quad \sum \frac{n k_n}{2^n} = \infty.$$

Let $\{\omega_i\}_{i=1}^{k_n}$ be those intervals, and let $\{\theta_i\}_{i=1}^{2 k_n}$ be the endpoints of $\{\omega_i\}_{i=1}^{k_n}$. We consider the open intervals $\\{\delta_i\}_{i=1}^{2 k_n}$ of length 2^{-n} with midpoints $\{\theta_i\}_{i=1}^{2 k_n}$. Take $\gamma \in \left(0, \frac{\alpha}{2}\right)$ and let S be the set of those δ_i such that

$$(4.8) \quad h_\tau(\theta_i) > 2^{-\gamma n}, \quad \tau = 2^{-n}.$$

Observe that (4.8) implies that $h_\tau(x) > 2^{-\gamma n-1}$ holds for $\theta \in \delta_i$ whenever $\delta_i \in S$, which, together with the general relation (4.6), gives that for μ^* the equilibrium distribution for the α-potentials of $E \cap S$,

$$2^{-\gamma n-1} \leq \int_{E \cap S} h_\tau(\theta) \, d\mu^*(\theta) \leq CV^{1/2}_{E \cap S} 2^{-\gamma n} (\alpha - s),$$

so

$$(4.9) \quad C_\alpha(E \cap S) \leq C2^{(2\gamma-(\alpha-s))n}.$$

Let N be the number of intervals δ_i which belong to S. We shall estimate N using condition (1.6). Take μ_i to be the equilibrium distribution for the α-potentials of $E \cap \delta_i$. Let us consider $\sigma = N^{-1} \sum_{\delta_j \subset S} \mu_i$ and u the corresponding α-potential. Suppose that $\tau \in \delta_k$, where $\delta_k \in S$, and let δ_{k-1} and δ_{k+1} be the intervals in S which are on the left and on the right of δ_k. We shall define $F = \{k-1, k, k+1\}$. Then bearing in mind that the intervals $\{\delta_j\}$ are disjoint, the distance between the intervals $\{\delta_j\}$, and condition (1.6) we deduce that

$$u(\tau) = \int_{E \cap S} \frac{d\sigma(\theta)}{\theta - \tau} \leq \sum_{j \in F} \int_{\delta_j \cap S} \frac{d\sigma(\theta)}{\theta - \tau} + \sum_{j=1, j \notin F}^{N} \int_{\delta_j \cap S} \frac{d\sigma(\theta)}{\theta - \tau} \leq N^{-1} \left(\sum_{j \in F} \int_{\delta_j \cap S} \frac{d\mu_j(\theta)}{\theta - \tau} + \sum_{j=1, j \notin F}^{N} \int_{\delta_j \cap S} \frac{d\mu_j(\theta)}{\theta - \tau} \right) \leq CN^{-1} \left(2^n + \sum_{j=1}^{N} \frac{1}{(j2^{-n})^\alpha} \right) \leq CN^{-1} 2^n,$$

which together with (4.3) gives

$$N^{-1} 2^n \geq C \frac{u}{C_\alpha(E \cap S)} \geq C2^{(2\gamma+(\alpha-s))n},$$

so due to $\gamma < \frac{\alpha-s}{2}$, one obtains

$$(4.10) \quad N \leq C 2^{pn}, \quad \text{for some } p \in (0, 1).$$
If \(\omega_\nu = (\theta_{2\nu-1}, \theta_{2\nu}) \) and (4.8) does not hold for \(\theta_{2\nu-1} \) and \(\theta_{2\nu} \), then by the arithmetic-geometric inequality,

\[
\frac{1}{|\omega_\nu|} \int_{\omega_\nu} \log h(\theta) \, d\theta \leq \log \left(\frac{1}{|\omega_\nu|} \int_{\omega_\nu} h(\theta) \, d\theta \right) \\
\leq \log \left[\frac{1}{|\omega_\nu|} \left(\int_{\theta_{2\nu-1}+2^{-n}}^{\theta_{2\nu}+2^{-n}} h(\theta) \, d\theta + \int_{\theta_{2\nu-1}-2^{-n}}^{\theta_{2\nu}-2^{-n}} h(\theta) \, d\theta \right) \right] \\
= \log \left[\frac{2^{-n+1}}{|\omega_\nu|} (h_+(\theta_{2\nu-1}) + h_-(\theta_{2\nu})) \right] \\
\leq -\gamma n + C.
\]

By (4.10), the number of indices \(n \) for which the above inequality is true is greater than \(k_n - 2N \geq k_n - C2^p n \). Hence

\[
\sum_{\nu=1}^{k_n} \int_{\omega_\nu} \log h(\theta) \, d\theta \leq -\gamma n 2^{-n} (k_n - C2^p n) + C \sum_{\nu=1}^{k_n} |\omega_\nu|,
\]

which, joined to the fact that \(p < 1 \), gives

\[
\int_0^{2\pi} \log h(\theta) \, d\theta \leq -\gamma \sum_n n 2^{-n} k_n + C.
\]

Consequently, bearing in mind that \(\gamma > 0 \) and (4.7), this implies a contradiction. \(\square \)

5. Blaschke sets

A subset \(A \) of the unit disc \(\mathbb{D} \) is called a Blaschke set for \(\mathcal{D} \) if any Blaschke sequence with elements in \(A \) is a zero set of \(\mathcal{D} \). These sets were characterized by Bogdan in [2]. Here we shall give a new proof of that result.

Theorem 6. \(A \subset \mathbb{D} \) is a Blaschke set for \(\mathcal{D} \) if and only if

\[
(5.1) \quad \int_\mathbb{T} \log \text{dist}(e^{it}, A) \, dt > -\infty.
\]

Some definitions and results will be introduced. A tent is an open subset \(T \) of \(\mathbb{D} \) bounded by an arc \(I \subset \mathbb{T} \) with \(|I| < \frac{1}{4} \) and two straight lines through the endpoints of \(I \) forming with \(I \) an angle of \(\frac{\pi}{2} \). The closed arc \(\overline{I} \) will be called the base of the tent \(T = T_I \). A tent \(T \) is said to support \(A \) if \(T \cap A = \emptyset \) but \(\overline{T} \cap \overline{A} \neq \emptyset \). A finite or countable collection of tents \(\{T_n\} \) is an A-belt if \(\{T_n\} \) are pairwise disjoint, A-supporting and \(\mathbb{T} \setminus \overline{A} \subset \bigcup_n \overline{T_n} \). The following result can be found in [24, Lemma 1].

Lemma B. Let \(A \subset \mathbb{D} \) such that \(\overline{T} \setminus \overline{A} \neq \emptyset \). Let \(\{T_n\} \) be an A-belt. Then (5.1) holds if and only if \(\overline{A} \cap \mathbb{T} \) has zero Lebesgue measure, and

\[
\sum_n |I_n| \log \left(\frac{e}{|I_n|} \right) < \infty.
\]

Lemma 5. Let \(\{z_n\} \) be a \(\mathcal{D} \)-zero set. If \(\{\lambda_n\} \subset \mathbb{D} \) satisfies that \(g(z_n, \lambda_n) < \delta < 1 \) for each \(n \), then \(\{\lambda_n\} \) is a \(\mathcal{D} \)-zero set.
Proof. Since $Z = \{z_n\}$ is a D-zero set, there is a function g in D such that $gB_Z \in D,$ where B_Z is the Blaschke product with zeros $\{z_n\}$. By Carleson’s formula for the Dirichlet integral (see [11] and also [35]), we have

$$\|gB_\Lambda\|_2^2 = \|g\|_2^2 + \int_T \sum_n P_{\lambda_n}(e^{it}) |g(e^{it})|^2 \, dt$$

$$\leq \|g\|_2^2 + C \int_T \sum_n P_{z_n}(e^{it}) |g(e^{it})|^2 \, dt$$

$$\leq C \|gB_Z\|_2^2 < \infty.$$

Hence, $\{\alpha_n\}$ is a D-zero set, and the proof is complete. \hfill \square

Remark 1. Note that this result implies that, if A is a Blaschke set for D and $\{w_k\}$ is a sequence such that $\varrho(\{w_k\}, A) \leq C < 1,$ then $A \cup \{w_k\}$ is also a Blaschke set for D.

Proof of Theorem 6. Suppose that (5.1) holds, and let Z be a Blaschke sequence of points in A. Then

$$\int_T \log \text{dist}(e^{it}, Z) \, dt > -\infty,$$

and by a result of Taylor and Williams in [40], Z is a Λ_α-zero set for any α. Since $\Lambda_\alpha \subset D$ for $\alpha > \frac{1}{2},$ it follows that A is a Blaschke set for D.

Suppose that A is a Blaschke set for D. We shall use Lemma B to see that (5.1) holds. Suppose that $|A \cap T| > 0.$ Then we can choose a sequence $\{\varepsilon_n\}$ of positive numbers satisfying

$$\sum_n \varepsilon_n \leq |A \cap T|, \quad \sum_n \varepsilon_n \log \frac{1}{\varepsilon_n} = \infty,$$

and a collection of disjoint arcs $\{I_n\}$ in T such that

$$|I_n| = \varepsilon_n, \quad I_n \cap \overline{A} \neq \emptyset, \quad n \geq 1.$$

In order to construct this sequence of subsets $\{I_n\}$, take I_1 with $|I_1| = \varepsilon_1$ and $I_1 \cap \overline{A} \neq \emptyset$, and once I_n has been taken, choose I_{n+1} such that $I_{n+1} \cap \left(\overline{A} \setminus \bigcup_{j=1}^n I_j\right) \neq \emptyset$ with $|I_{n+1}| = \varepsilon_{n+1}.$

Next, take a sequence $\{w_n\} \subset A$ such that $\text{dist}(w_n, I_n \cap \overline{A}) \leq \varepsilon_n$ and let p_n be the integer part of $\varepsilon_n/(1 - |w_n|).$ Let Z be the sequence of points in A that consists of p_n repetitions of each point $w_n.$ Observe that Z is a Blaschke sequence,

$$\sum_{z \in Z} (1 - |z|) = \sum_n p_n (1 - |w_n|) \leq \sum_n \varepsilon_n < \infty,$$
so that \(Z \) must be a sequence of zeros of \(D \). We also have
\[
\int_T \log \left(\sum_{z \in Z} \frac{1 - |z|^2}{|e^{it} - z|^2} \right) \, dt = \int_T \log \left(\sum_n p_n \frac{1 - |w_n|^2}{|e^{it} - w_n|^2} \right) \, dt
\]
\[
\geq \sum_k \int_{I_k} \log \left(\frac{1 - |w_k|^2}{4\pi^2} \right) \, dt
\]
\[
\geq \sum_k |I_k| \log \left(\frac{1}{8\varepsilon_k} \right) = \infty,
\]
which gives a contradiction with condition (1.5). Therefore, \(\overline{A} \cap T \) has zero Lebesgue measure.

Next, let \(\{T_n\} \) be an \(A \)-belt. Then for each \(n \) there is \(w_n \in \overline{A} \cap \partial T_n \). We may assume that \(w_n \) belongs to \(A \). Indeed, if \(w_n \) is an endpoint of the arc \(I_n \), there is a point \(\alpha_n \in A \) which is in the Stolz angle with vertex \(w_n \) and aperture \(\varepsilon/2 \). Consequently, if \(\tilde{\alpha}_n \) is the closest point in \(\partial T_n \) with the same modulus as \(\alpha_n \), then \(g(\alpha_n, \tilde{\alpha}_n) \leq C < 1 \), where \(C \) is independent of \(n \), and now we can use the remark after Lemma 5.

Let \(v_n \) be the vertex of the tent \(T_n \). Since \(\{I_n\} \) is a sequence of disjoint arcs, \(\{v_n\} \) is a Blaschke sequence. We denote by \(q_n \) the integer part of \((1 - |v_n|)/(1 - |w_n|) \) and we consider \(Z \) to be the sequence of points in \(A \) that consists of \(q_n \) repetitions of each point \(w_n \). Arguing as before, it follows that \(Z \) is a Blaschke sequence, and moreover there is \(C > 0 \) such that
\[
|w_n - e^{it}|^2 \leq C|v_n - e^{it}|^2, \quad \text{for each } n \text{ and } e^{it} \in T.
\]
So, bearing in mind that \(A \) is a Blaschke set for \(D \), (1.5) and (5.2), we have that
\[
\infty > \int_T \log \left(\sum_{z \in Z} \frac{1 - |z|^2}{|e^{it} - z|^2} \right) \, dt = \int_T \log \left(\sum_n q_n \frac{1 - |w_n|^2}{|e^{it} - w_n|^2} \right) \, dt
\]
\[
\geq \int_T \log \left(C \sum_n q_n \frac{1 - |w_n|^2}{1 - |v_n|^2} \frac{1 - |v_n|^2}{|e^{it} - v_n|^2} \right) \, dt
\]
\[
\geq \int_T \log \left(\sum_n C \frac{1 - |v_n|^2}{|e^{it} - v_n|^2} \right) dt
\]
\[
\geq \sum_k \int_{I_k} \log \left(\frac{C}{|I_k|} \right) \, dt
\]
This finishes the proof. \(\square \)

6. Other results

6.1. Other necessary angular conditions on \(D_\alpha \)-zero sets. First we shall prove the following result of its own interest.
Lemma 6. Suppose that $0 < s < 1$, B is a Blaschke product with ordered sequence of zeros $\{z_k\}_{k=1}^\infty$ and $f \in \mathcal{D}_s$. Then

$$\|fB\|_{\mathcal{D}_s}^2 \asymp \|f\|_{\mathcal{D}_s}^2 + \sum_{k=1}^\infty (1 - |z_k|^2) \int_{\mathbb{D}} \frac{|f(z)|^2 |B_k(z)|^2}{|1 - z_k z|^2} \frac{dA(z)}{(1 - |z|^2)^{1-s}},$$

where $B_k(z)$ is the Blaschke product of the first $k - 1$ zeros.

Proof. Bearing in mind (2.2), the result follows from the identity (see [3, p. 191])

$$\frac{1 - |B(z)|^2}{1 - |z|^2} = \sum_k |B_k(z)|^2 \frac{1 - |z_k|^2}{|1 - z_k z|^2}, \quad z \in \mathbb{D}.$$

We also obtain different conditions from (1.4) (which can work for any Blaschke sequence) on the angular distribution of a Blaschke sequence $\{z_k\}$ to be a \mathcal{D}_s-zero set, $0 < s < 1$.

Proposition 1. Suppose that $0 < s < 1$ and $\{z_k\} \subset \mathbb{D}$. If there exists $r_0 \in (0, 1)$ such that

$$(6.1) \quad M(\{z_k\}) \overset{\text{def}}{=} \inf_{r_0 \leq |z| < 1} \sum_k (1 - |z_k|^2)(1 - |z|^2)^s \frac{(1 - |z|^2)}{|1 - z_k z|^2} > 0,$$

then $\{z_k\}$ is not a \mathcal{D}_s-zero set.

Proof. Suppose that $\{z_k\}$ is a \mathcal{D}_s-zero set and satisfies (6.1). Then, there exists $F \in \mathcal{D}_s$ which vanishes uniquely on $\{z_k\}$, so $F = f \cdot B$, where $f \in \mathcal{D}_s$ and B is the Blaschke product with zeros $\{z_k\}$. Thus, Lemma 6 and (6.1) imply that

$$\lim_{k \to \infty} \sum_k (1 - |z_k|^2) \int_{\mathbb{D}} \frac{|f(z)|^2 |B_k(z)|^2}{|1 - z_k z|^2} \frac{dA(z)}{(1 - |z|^2)^{1-s}} \geq \int_{\mathbb{D}} |f(z)|^2 |B(z)|^2 \left(\sum_k \frac{(1 - |z_k|^2)(1 - |z|^2)^s}{|1 - z_k z|^2} \right) \frac{dA(z)}{(1 - |z|^2)}$$

$$\geq M(\{z_k\}) \int_{\mathbb{D}} |F(z)|^2 \frac{dA(z)}{(1 - |z|^2)};$$

consequently $F \equiv 0$. This finishes the proof.

This result allows us to make constructions of Blaschke sequences which are not \mathcal{D}_s-zero sets.

Corollary 2. For $0 < s < 1$, set

$$z_{k,j}^{(s)} \overset{\text{def}}{=} \left(1 - 2^{-\frac{s}{1+s}}\right) \exp\left(\frac{2\pi j}{2^k - 1}\right), \quad k = 0, 1, 2, \ldots,$$

$$j = 0, 1, \ldots, 2^k - 1.$$

The sequence $\{z_{k,j}^{(s)}\}$ is not a \mathcal{D}_s-zero set.

Proof. There is $\beta = \beta(s) > 0$ such that for each $z \in \mathbb{D}$ we can find a pair $(k(z), j(z))$ with $1 - |z| \asymp 1 - |z_{k(z), j(z)}^{(s)}|$, and

$$|1 - \overline{z_{k(z), j(z)}^{(s)}}z|^2 \leq \beta(1 - |z|^2)^{1+s}.$$
Therefore
\[
\sum_{k=0}^{\infty} \sum_{j=0}^{2^k-1} \frac{(1 - |z_{k,j}|^2)(1 - |z|^2)^s}{|1 - \overline{z_{k,j}}z|^2} \geq \frac{(1 - |z(\tau)|^2)(1 - |z|^2)^s}{|1 - \overline{z(\tau)}z|^2} \geq C\beta^{-1},
\]
so, by Proposition 2 \(\{z_{k,j}\}\) is not a \(D_s\)-zero set.

6.2. Möbius invariant spaces generated by \(D_s\). The space \(Q_s\), \(0 \leq s < \infty\), is the Möbius invariant space generated by \(D_s\), that is, \(f \in Q_s\) if
\[
\sup_{a \in \mathbb{D}} \|f \circ \varphi_a - f(a)\|_{D_s}^2 < \infty.
\]

It is known that \(Q_1\) coincides with \(BMOA\). However, if \(0 < s < 1\), \(Q_s\) is a proper subspace of \(BMOA\) and has many interesting properties (see the detailed monograph \[42\]).

As usual, for a space of analytic functions \(X\), we shall write \(M(X)\) for the algebra of (pointwise) multipliers of \(X\), that is,
\[
M(X) \overset{\text{def}}{=} \{g \in H(\mathbb{D}) : gf \in X \text{ for all } f \in X\}.
\]

Theorem 7. Suppose that \(0 < s \leq 1\). Then \(D_s\), \(Q_s\), \(Q_s \cap H^\infty\) and \(M(D_s)\) have the same zero sets.

Proof. If \(s = 1\), the result is well known because \(D_1 = H^2\), \(M(H^2) = H^\infty\) and \(Q_1 = BMOA\). If \(0 < s < 1\), by \[26\] Corollary 13 the zeros sets of \(D_s\) and \(M(D)\) coincide, so the result follows from the chain of embeddings (see \[4\] Lemma 5.1)
\[
M(D_s) \subset Q_s \cap H^\infty \subset Q_s \subset D_s.
\]

This finishes the proof. \(\square\)

Since from different values of \(s \in (0, 1)\), the \(D_s\)-zero sets are not the same, we obtain directly the following result.

Corollary 3. Suppose that \(0 \leq s < p < 1\). Then there exists \(Z \subset \mathbb{D}\), which is a \(Q_p\)-zero but not a \(Q_s\)-zero set.

A stronger result, in the following sense, can be proved. A sequence \(\{z_n\}\) is interpolating for \(Q_p \cap H^\infty\), \(0 < p < 1\), if for each bounded sequence \(\{w_k\}\) of complex numbers, there exists \(f \in Q_p \cap H^\infty\) such that \(f(z_k) = w_k\) for all \(k\). A characterization of these sequences in terms of \(p\)-Carleson measures is given in \[30\]. It is clear that each interpolating sequence for \(Q_p \cap H^\infty\) is a \(D_p\)-zero set.

Theorem 8. Suppose that \(0 < s < p < 1\). Then, there exists \(Z = \{z_n\}_{n=0}^\infty \subset \mathbb{D}\) which is an interpolating sequence for \(Q_p \cap H^\infty\) and such that it is not a \(D_s\)-zero set.

Proof. Set
\[
z_n = \left(1 - \frac{1}{n^{1/s}}\right) e^{i\theta_n}, \quad n = 2, 3, \ldots,
\]
where
\[
\theta_n = \sum_{k=1}^{n-1} \frac{1}{k + \frac{1}{2n}}, \quad n = 2, 3, \ldots.
\]

The proof of \[29\] Theorem 5.10 \[\|\] gives that \(\{z_n\}\) is not a \(D_s\)-zero set. Moreover, borrowing the argument of the proof of \[32\] Theorem 2, we have that \(\{z_n\}\) is
Suppose that measures. Using Corollary 3 as a main tool we shall prove the following result.

Finally, we note that in a recent paper [31], the algebra of (pointwise) multipliers of Q_s, $0 < s < 1$, has been characterized in terms of α-logarithmic s-Carleson measures. Using Corollary 3 as a main tool we shall prove the following result.

Corollary 4. Suppose that $0 < s < p < 1$. Then

$$M(Q_p, Q_s) \equiv \{ g \in H(D) : gf \in Q_s \text{ for all } f \in Q_p \} = \{ 0 \}.$$

Proof. Suppose that $M(Q_p, Q_s) \neq \{ 0 \}$. Let $g \in M(Q_p, Q_s)$, $g \neq 0$ and denote by W its zero set. By Corollary 3 there exists $f \in Q_p$, $f \neq 0$, whose sequence of zeros Z is not a Q_s-zero set. It is clear that $Z \cup W$ is the zero set of $fg \in Q_s$, and since $g \in Q_s$, W satisfies the Blaschke condition. Now, taking B to be the Blaschke product with zeros W and bearing in mind that Q_s has the f-property (see Corollary 1 of [14] or Corollary 5.4.1 of [42]), we obtain that $\frac{f}{g} \in Q_s$, whose zero set is Z. This finishes the proof. □

7. FURTHER REMARKS

We would like to emphasize that conditions (ii) and (iii) of Theorem 1 are equivalent when $\{z_n\}$ is a finite union of separated Blaschke sequences. So, it seems natural to ask whether or not for finite unions of separated Blaschke sequences, condition (ii) implies that $\{z_n\}$ is a D_s-zero set. Although we are not able to answer this question, if the function g has some additional regularity properties, one can prove that condition (ii) implies that $\{z_n\}$ is a D_s-zero set, as the following result shows.

Proposition 2. Let $\{z_n\} \subset D$ be a Blaschke sequence, $0 < s < 1$ and $\alpha > \frac{1-s}{2}$. If there exists a function $g \in \Lambda_\alpha$ such that

$$\sum_n |g(z_n)|^2 (1 - |z_n|^2)^s < \infty,$$

then $\{z_n\}$ is a D_s-zero set.

Proof: Let B be the Blaschke product with zeros $\{z_n\}$. We shall prove that $gB \in D_s$. Using the fact that $g \in \Lambda_\alpha$, and [43] Lemma 4.2.2, one has

$$\sum_n (1 - |z_n|^2) \int_D |g(z) - g(z_n)|^2 \frac{(1 - |z|^2)^{s-1}}{|1 - \bar{z}_n z|^2} dA(z)$$

$$\leq C \sum_n (1 - |z_n|^2) \int_D (1 - |z|^2)^{s-1} \frac{1}{|1 - \bar{z}_n z|^2} dA(z)$$

$$\leq C \sum_n (1 - |z_n|^2) < \infty.$$

(7.1)

Also, by our assumption and [43] Lemma 4.2.2,

$$\sum_n (1 - |z_n|^2) |g(z_n)|^2 \int_D \frac{(1 - |z|^2)^{s-1}}{|1 - \bar{z}_n z|^2} dA(z)$$

$$\leq C \sum_n |g(z_n)|^2 (1 - |z_n|^2)^s < \infty.$$

(7.2)
Now, since $\Lambda_{\alpha} \subset D_s$ for $\alpha > \frac{1-s}{2}$, it follows easily from (7.1) and (7.2) that
\[
\|gB\|^2_{D_s} \leq C\|g\|^2_{D_s} + C \int_D |(gB')(z)|^2 (1-|z|^2)^s \, dA(z) < \infty.
\]
□

In view of all this, we state the following related problem.

Problem. For $0 < s < 1$, describe those separated Blaschke sequences $\{z_n\} \subset \mathbb{D}$ such that there is $g \in D_s$, $g \neq 0$, with
\[
\sum_n |g(z_n)|^2 (1-|z_n|^2)^s < \infty.
\]

Another interesting problem is to find sufficient conditions in order for a sequence $\{z_n\}$ to be a zero set for the analytic Besov space B_p, $1 < p < \infty$ (see [33, Chapter 5]). Since the point evaluations are bounded linear functionals in B_p, there are reproducing kernels $k_z \in B_p'$, where p' is the conjugate exponent of p. Also, it is well known that
\[
\|k_z\|^{-p}_{B_p'} \simeq \left(\log \frac{1}{1-|z|} \right)^{-(p-1)}.
\]
So, bearing in mind (1.1), it seems natural to ask the following.

Question. Let $1 < p < \infty$, and let $\{z_n\} \subset \mathbb{D}$ such that
\[
\sum_n \left(\log \frac{1}{1-|z_n|^2} \right)^{-(p-1)} < \infty.
\]
Is the sequence $\{z_n\}$ a B_p-zero set?

In order to answer that question, it seems that a more constructive proof of the case $p = 2$ (the Shapiro-Shields result [39]) must be given, not relying so heavily on Hilbert space techniques.

References

[34] J.A. Peláez, Sharp results on the integrability of the derivative of an interpolating Blaschke product, Forum Math., 20 n. 6 (2008), 1039–1054. MR2479288

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, 08007 Barcelona, Spain

E-mail address: jordi.pau@ub.edu

Departament de Anàlisis Matemàtic, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain

E-mail address: japelaez@uma.es