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Nonstationary Feller process with time-varying coefficients

Jaume Masoliver*

Departament de Fı́sica Fonamental, Universitat de Barcelona, Diagonal, 647, E-08028 Barcelona, Spain
(Received 2 December 2015; published 13 January 2016)

We study the nonstationary Feller process with time varying coefficients. We obtain the exact probability
distribution exemplified by its characteristic function and cumulants. In some particular cases we exactly invert
the distribution and achieve the probability density function. We show that for sufficiently long times this density
approaches a � distribution with time-varying shape and scale parameters. Not far from the origin the process
obeys a power law with an exponent dependent of time, thereby concluding that accessibility to the origin is not
static but dynamic. We finally discuss some possible applications of the process.
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I. INTRODUCTION

The Feller process is a one-dimensional diffusion with
linear drift and linear diffusion coefficient vanishing at the
origin. One of its most distinctive characteristics is that it
never attains negative values. This, along with the fact that the
process amounts to a continuous representation of a number
of branching and birth-dead processes, have made the Feller
process an ideal candidate for modeling many phenomena
in physical and social sciences [1,2]. Examples span from
theoretical biology and neurobiology [3–7], population growth
[8–12], radiation physics [13], and even economics and
financial markets [14–19]. From a more formal point of view,
the process is also valuable because some one-dimensional
diffusions can be mathematically transformed into the Feller
process, as it was proved by Capocelli and Ricciardi years
ago [20].

In its original formulation [21] the parameters are time
independent and the process is stationary. This means that it is
invariant under time translations and that, as time progresses,
the probability distribution tends towards a stationary value
given by the � distribution [1]. However, as countless situa-
tions show, stationary processes are a convenient idealization
and many empirical studies indicate that real data susceptible
to be modeled by diffusion processes are not fully stationary
[22].

There are, however, very few attempts at addressing this
question for the Feller process (as well as for other diffusions).
One exception is, to our knowledge, the recent work by
Gan and Waxman [2] where the authors, using the method
of spectral decomposition, obtain an explicit solution for
the distribution function of the process with time varying
coefficients. Although they achieve the solution only in the
special and singular case when the linear drift also vanishes
at the origin. This is rather restricting because, as we will see
below, the value of the drift at the origin determines where the
process tends to in the course of time. Fixing this value to zero
limits the scope and applications of the solution (even though
it is valuable in population dynamics when one is faced with
possible extinctions [9,12]).

In this paper we address the study of the Feller process in
the most possible general form. The main result is knowing
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the exact probability distribution materialized by the Laplace
transform of the probability density function, that is, by its
characteristic function. The transformed density is inverted
in some particular but relevant cases (including that of the
original process). In addition we also get some asymptotic
expressions valid for large to moderate times showing the
emergence of the � distribution but with time-varying shape
and scale parameters.

Another significant aspect is the behavior of the process
near the origin which, in turn, determines whether or not the
origin is accessible. In the stationary case accessibility depends
on the value taken by a constant ratio between two parameters
governing the deterministic and random components of the
dynamics of the process [1,21]. We will see that for the
nonstationary process the behavior of the probability density
function near the origin is given by a power law with a
time-dependent exponent which implies that the likelihood
of attaining the origin is not fixed but changing with time.

The paper is organized as follows. In Sec. II we study
the dynamics and the general properties of the nonstationary
process. In Sec. III we obtain the exact probability distribution
through the knowledge of its characteristic function and
cumulants. Section IV is devoted to obtaining the exact form
of the probability density function for some special cases. In
Sec. V we get approximate expressions valid for moderate
to long times. Section VI focusses on the behavior of the
probability density near the origin and its attainability by the
process. A short summary of the main results with few possible
applications is in Sec. VII and more technical details are in
several Appendices.

II. DYNAMICS AND GENERAL PROPERTIES

In its most general form the Feller process can be described
by the following Langevin equation:

dX(t)

dt
= −[α(t)X(t) − β(t)] + k(t)

√
X(t)ξ (t), (1)

where ξ (t) is the derivative of the standard Wiener process.
That is, ξ (t) zero-mean Gaussian white noise

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = δ(t − t ′).

All stochastic differential equations of this paper are inter-
preted in the sense of Itô.
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Although from a mathematical point of view the parameters
of the process are given by arbitrary functions of time, from
a physical point of view it is more convenient to assume
that α(t) > 0,β(t) � 0 and k(t) > 0 are positive and smooth
functions. This will be one of our basic assumptions for the
rest of the paper.

Note that α(t) has dimensions of (time)−1 and sets a
dimensionless time scale defined by

τ =
∫ t

t0

α(t ′)dt ′, (2)

where t0 is any initial time. Observe that t = t0 corresponds
to τ = 0 and also that τ = τ (t) is an increasing function of
the original time scale because dτ/dt = α(t) > 0 (t � t0). In
other words, “future maps into future” (and past into past).

For the rest of the paper we also assume that α(t) is such
that

lim
t→∞

∫ t

t0

α(t ′)dt ′ = ∞.

That is to say, t → ∞ implies τ → ∞ and vice versa. This is
our second and last restriction on the parameters of the process.

In terms of this new time scale we write the stochastic
equation (1) as

dX(τ )

dτ
= −

[
X(τ ) − β(t(τ ))

α(t(τ ))

]
+ k(t(τ ))

α(t(τ ))

√
X(τ )ξ (t(τ )),

where t = t(τ ) is the inverse function implicitly defined in
Eq. (2). Defining the rescaled parameters

m(τ ) ≡ β(t(τ ))
α(t(τ ))

, D(τ ) ≡ k2(t(τ ))
2α(t(τ ))

, (3)

and the rescaled noise

η(τ ) ≡ 1√
α(t(τ ))

ξ (t(τ )), (4)

the Langevin equation for X(τ ) reads

dX(τ )

dτ
= −[X(τ ) − m(τ )] +

√
2D(τ )X(τ )η(τ ). (5)

The rescaled noise η(τ ) is zero-mean Gaussian white noise:

〈η(τ )〉 = 0, 〈η(τ1)η(τ2)〉 = δ(τ1 − τ2). (6)

Indeed, that η(τ ) is Gaussian noise with zero mean is evident
from Eq. (4). We next show that η(τ ) is δ correlated. From
definition (4), we have

〈η(τ1)η(τ2)〉 = 1√
α(τ (t1))α(τ (t2))

δ[t(τ1) − t(τ2)].

Let us recall the standard property of the δ function, δ[g(x)] =
δ(x − x0)/|g′(x0)|, where g(x) is any differentiable function
and x0 is the solution to g(x0) = 0. Then, since t(τ1) = t(τ2)
is equivalent to τ1 = τ2 [we assume that t(τ ) is an univariate
function], we write

δ[t(τ1) − t(τ2)] = 1

|t ′(τ2)|δ(τ1 − τ2) = |τ (t2)|δ(τ1 − τ2)

= α(τ (t2))δ(τ1 − τ2),

where the prime refers to the derivative and t(τ ) and τ (t)
are inverse functions for which t ′ = 1/τ = 1/α [cf. Eq. (2)].
Hence

〈η(τ1)η(τ2)〉 = α(t(τ2))√
α(τ (t1))α(τ (t2))

δ(τ1 − τ2) = δ(τ1 − τ2),

which proves Eq. (6).
In the representation given by Eq. (5) the process has a

state and time-dependent diffusion D(X,τ ) = 2D(τ )X, which
for large values of X enhances the effects of noise (with an
intensity depending of time) while as X approaches zero the
effect of noise diminishes. Hence, when the process reaches
the origin, the drift drags it toward the asymptotic value:

m∞ = lim
τ→∞ m(τ ). (7)

Indeed, near the origin the process (5) approximates to
the deterministic process dx/dτ = −[x − m(τ )] and from
its solution we readily see that x(τ ) → m∞ as τ → ∞.
Consequently, if m(τ ) � 0 the process, starting at some
positive value, cannot reach the negative region and the Feller
process is non-negative [otherwise the noise term in Eq. (5)
would become imaginary].

Moreover, the asymptotic value m∞ coincides with the
stationary average of the process,

m∞ = lim
τ→∞〈X(τ )〉. (8)

In effect, the formal solution of Eq. (5) such that X(0) = x0 is

X(τ ) = e−τ

[
x0 +

∫ τ

0
eτ ′

m(τ ′)dτ ′

+
∫ τ

0
eτ ′√

2D(τ ′)X(τ ′)η(τ ′)dτ ′
]
.

As is well known, in the Itô interpretation the output process
X(τ ) and the input white noise η(τ ) are uncorrelated. Hence

〈
√

X(τ )η(τ )〉 = 〈
√

X(τ )〉〈η(τ )〉 = 0,

therefore

〈X(τ )〉 = e−τ

[
x0 +

∫ τ

0
eτ ′

m(τ ′)dτ ′
]
,

which can be written as

〈X(τ )〉 = x0e
−τ +

∫ τ

0
e−sm(τ − s)ds,

and the limit τ → ∞ proves Eq. (8). Let us observe that when
m(τ ) = m is constant, m∞ = m, and the process tends to m.
This is the reason why in many settings (such as, for example,
economics [14–19]) m is called the “normal level” of the
process.

We, therefore, see that for the nonstationary Feller process,
and under rather general circumstances [i.e. m(τ ) � 0], the
origin is a singular boundary that the process cannot cross.
A closely related problem is whether or not the origin is
attainable, in other words, whether the value X = 0 can or
cannot be reached. This is a key issue in many practical sit-
uations (for instance, in population dynamics where attaining
the origin signifies annihilation). We will prove later on that
the answer to this question is time dependent and determined
by a varying parameter balancing deterministic motion and

012122-2



NONSTATIONARY FELLER PROCESS WITH TIME- . . . PHYSICAL REVIEW E 93, 012122 (2016)

fluctuations. The problem of classifying the different types of
boundaries appearing in diffusion processes was thoroughly
studied by Feller himself in the early 1950s and we refer the
reader to the literature for a more complete account on this
topic [23–25].

III. PROBABILITY DISTRIBUTION AND CUMULANTS

Our main objective is knowing the probability distribution
of the nonstationary Feller process (1). In this section we
will determine the distribution of probability through the
characteristic function (CF) as well as the cumulants.

In the time scale defined by Eq. (2), the probability density
function (PDF) of the process X(τ ),

p(x,τ |x0)dx = Prob{x < X(τ ) < x + dx|X(0) = x0},
obeys the Fokker-Planck equation (FPE) [25]

∂p

∂τ
= ∂

∂x
([x − m(τ )]p) + D(τ )

∂2

∂x2
(xp) (9)

with initial condition

p(x,0|x0) = δ(x − x0). (10)

Recall that x = 0 is a singular boundary that the process
cannot cross. A sufficient condition for this to happen is that
the probability flux through x = 0 is zero. We thus look for
solutions of the initial-value problem (9) and (10) that meet
this condition:

lim
x→0

J (x,τ |x0) = 0, (11)

where

J (x,τ |x0) =
[
x − m(τ ) + D(τ )

∂

∂x
x

]
p(x,τ |x0) (12)

is the flux of probability through x at time τ . Note that in terms
of the flux the FPE (9) can be written as

∂p

∂τ
= ∂

∂x
J (x,τ |x0). (13)

We will now proceed to obtain the exact probability
distribution via the characteristic function of the process, the
latter defined as the Laplace transform of the PDF with respect
to x (bear in mind that x � 0):

p̂(σ,τ |x0) =
∫ ∞

0
e−σxp(x,τ |x0)dx. (14)

The Laplace transform of Eq. (13) under condition (11) reads

∂p̂

∂τ
= σ

∫ ∞

0
e−σxJ (x,τ |x0),

and substituting for Eq. (12) we have

∂p̂

∂τ
= σ

{ ∫ ∞

0
xe−σxp(x,τ |x0)dx − m(τ )p̂(σ,τ |x0)

+D(τ )
∫ ∞

0
e−σx ∂

∂x
[xp(x,τ |x0)]dx

}
,

but ∫ ∞

0
xe−σxp(x,τ |x0)dx = − ∂

∂σ
p̂(σ,τ |x0),

and ∫ ∞

0
e−σx ∂

∂x
[xp(x,τ |x0)]dx = −σ

∂

∂σ
p̂(σ,τ |x0).

Hence

∂p̂

∂τ
= −σ

[
∂p̂

∂σ
+ m(τ )p̂ + σD(τ )

∂p̂

∂σ

]
.

We, therefore, obtain the following partial differential
equation of first order:

∂p̂

∂τ
+ σ [1 + D(τ )σ ]

∂p̂

∂σ
= −σm(τ )p̂ (15)

with initial condition [cf. Eq. (10)]

p̂(σ,0|x0) = e−σx0 . (16)

The exact solution to this initial-value problem can be
obtained by the method of characteristics [26]. This is detailed
in Appendix A with the result

p̂(σ,τ |x0) = exp

{
− σx0e

−τ

1 + σφ(τ )
− σ

∫ φ(τ )

0

θτ (ξ )dξ

1 + σξ

}
,

(17)
where

θτ (ξ ) ≡ m[τ − τ̄ (ξ )]

D[τ − τ̄ (ξ )]
, (18)

τ̄ (ξ ) is implicitly defined by

ξ =
∫ τ̄ (ξ )

0
e−sD(τ − s)ds, (19)

and the function φ(τ ) by

φ(τ ) ≡
∫ τ

0
e−sD(τ − s)ds. (20)

We next write the probability distribution in terms of the
original time scale t . Note that obtaining the CF p̂(σ,t |x0,t0)
certainly amounts to substituting in Eq. (17) the dimensionless
time scale τ by the function τ (t) given in Eq. (2). However, we
also have to write θτ (ξ ) [cf. Eq. (18)] as a function of t which
is rather involved. In Appendix B we show that

p̂(σ,t |x0,t0) = exp

{
−σx0e

− ∫ t

t0
α(s)ds

1 + σφ(t,t0)
−σ

∫ φ(t,t0)

0

θt (ξ )

1+σξ
dξ

}
,

(21)
where

φ(t,t0) ≡ 1

2

∫ t

t0

k2(t ′) exp

{
−

∫ t

t ′
α(s)ds

}
dt ′, (22)

θt (ξ ) ≡ 2β[t(ξ )]

k2[t(ξ )]
, (23)

and t(ξ ) is defined by φ[t |t(ξ )] = ξ . That is,

1

2

∫ t

t(ξ )
k2(t ′) exp

{
−

∫ t

t ′
α(s)ds

}
dt ′ = ξ. (24)

Equation (21) is our main result and completely determines,
through the characteristic function, the probability distribution
of the non-stationary Feller process. However, the exact
analytical inversion of this equation, thus obtaining the PDF,
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seems to be beyond reach except for few special cases to be
detailed in the next section. It is, nonetheless, possible to get
various approximate forms (see Secs. V and VI) as well as
obtaining exact expression for the cumulants of any order.

In effect, in terms of the CF, cumulants κn(t |t0) are defined
by

κn(t |t0) = (−1)n
∂n

∂σ n
ln p̂(σ,t |x0,t0)

∣∣∣∣
σ=0

, (25)

(n = 1,2,3, . . . ). Substituting for Eq. (21), we write

κn(t |t0) = (−1)n+1 ∂nf̂ (σ,t |t0)

∂σn

∣∣∣∣∣
σ=0

,

where

f̂ (σ,t |t0) = σx0e
− ∫ t

t0
α(s)ds

1 + σφ(t,t0)
+ σ

∫ φ(t,t0)

0

θt (ξ )

1 + σξ
dξ.

The expansion in powers of σ yields

f̂ (σ,t |t0) =
∞∑

n=0

(−1)n
[
x0φ

n(t,t0)e− ∫ t

t :0
α(s)ds

+
∫ φ(t,t0)

0
ξnθt (ξ )dξ

]
σn+1,

and we finally have

κn(t |t0) = n!

[
x0φ

n−1(t,t0)e− ∫ t

t0
α(s)ds

+
∫ φ(t,t0)

0
ξn−1θt (ξ )dξ

]
, (26)

(n = 1,2,3, . . . ), as the exact expression for cumulants of any
order.

IV. SOME SPECIAL CASES

We will now obtain exact expressions of the probability
density function (PDF) in three particular instances.

(i) Suppose first that the drift of the processes also vanishes
at the origin. In other words, β(t) = 0 which is equivalent
to m(τ ) = 0 [cf. Eq. (3)]. This is a rather peculiar situation
because the normal level coincides with the singular boundary
meaning that the process tends to that singularity as time
progresses (see discussion in Sec. II). This is the case treated
in Ref. [2].

Now the parameter θτ (ξ ) defined in Eq. (23) also vanishes
and the CF (21) reads

p̂(σ,t |x0,t0) = exp

{
− σx0e

−τ (t)

1 + σφ(t,t0)

}
, (27)

where φ(t,t0) is given by Eq. (22) and

τ (t) =
∫ t

t0

α(s)ds. (28)

In Appendix C we show that the Laplace inversion of
Eq. (27) is

p(x,t |x0,t0) = e−x0e
−τ (t)/φ(t,t0)δ(x) + e−τ (t)/2

φ(t,t0)

(x0

x

)1/2

× exp

{
−x + x0e

−τ (t)

φ(t,t0)

}
I1

[
2

√
xx0e−τ (t)

φ(t,t0)

]
,

(29)

where I1(z) is a modified Bessel function.
Equation (29) agrees with the PDF obtained by Gan and

Waxman who have stressed the singular character of the
origin [2] something absent in Feller’s original formulation
[21]. Indeed, the term involving the Dirac function reflects the
singularity of the origin. For, as we readily see from Eq. (29),

p(x,t |0,t0) = δ(x),

which implies that if the process starts at x0 = 0 remains there
forever.

Cumulants are given by Eq. (26) which, since θt (ξ ) = 0,
read

κn(t |t0) = n!x0φ
n−1(t,t0)e−τ (t), (30)

(n = 1,2,3, . . . ).
(ii) Suppose now that β(t) and k2(t), are proportional to

each other for all t � t0. In this case the ratio θt (ξ ) defined in
Eq. (23) is constant:

2β(t)

k2(t)
= θ, (31)

where θ > 0 is a positive constant. Note incidentally that in
the dimensionless time scale τ this case corresponds to having
the normal level m(τ ) proportional to the diffusion coefficient
D(τ ) for all τ � 0.

The characteristic function, Eq. (21), now reads

p̂(σ,t |x0,t0) = exp

{
− σx0e

−τ (t)

1 + σφ(t,t0)
− θσ

∫ φ(t,t0)

0

dξ

1 + σξ

}
.

The integral in the exponential is easily evaluated and we have

p̂(σ,t |x0,t0) = 1

[1 + σφ(t,t0)]θ
exp

{
− σx0e

−τ (t)

1 + σφ(t,t0)

}
. (32)

The Laplace inversion of this expression is sketched in the
Appendix D and the exact PDF is

p(x,t |t0,x0) = 1

φ(t,t0)

(
x

x0e−τ (t)

)(θ−1)/2

exp

{
−x+x0e

−τ (t)

φ(t,t0)

}

× Iθ−1

[
2

√
xx0e−τ (t)

φ(t,t0)

]
, (33)

where Iθ−1(z) is a modified Bessel function of order θ − 1.
Cumulants are

κn(t |t0) = n!

[
x0φ

n−1(t,t0)e−τ (t) + 1

n
θφn(t,t0)

]
, (34)

(n = 1,2,3, . . . ).
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(iii) Our last special case for which the PDF can be obtained
exactly is when all parameters are time independent:

α(t) = α, β(t) = β, k(t) = k,

which corresponds to the original Feller process [21]. Now

τ = α(t − t0), θ = 2β

k2
, D = k2

2α
, (35)

and since θ is constant this case is a particular case of (ii)
above. Therefore, the PDF of the stationary process will be
given by Eq. (33) with [cf. Eq. (20)]

φ(t,t0) = D[1 − e−(t−t0)].

Note that since the process is now stationary we can set t0 = 0
without loss of generality.

V. LONG-TIME ASYMPTOTICS

In this section we get some interesting approximations to
the PDF which are effective for sufficiently long times.

Let us first remember that one of our basic assumptions,
as expressed in Sec. II, is that the time-dependent parameter
α(t) > 0 is such that if t is long so is the new time scale τ

defined in Eq. (2). In other words, t → ∞ implies τ → ∞.
We thus start off with the CF in the form given by Eq. (17):

p̂(σ,τ |x0) = exp

{
− σx0e

−τ

1 + σφ(τ )
− σ

∫ φ(τ )

0

θτ (ξ )dξ

1 + σξ

}
.

Since τ is large, the definition of θτ (ξ ) given in Eq. (18) allows
for the following approximation:

θτ (ξ ) ≡ m[τ − τ (ξ )]

D[τ − τ (ξ )]
	 m(τ )

D(τ )
, (36)

(τ 
 1), which enables us to estimate the integral appearing
in the CF as

σ

∫ φ(τ )

0

θτ (ξ )dξ

1 + σξ
	 θ (τ ) ln[1 + σφ(τ )],

where

θ (τ ) ≡ m(τ )

D(τ )
. (37)

Hence, the CF is approximated by

p̂(σ,τ |x0) 	 1

[1 + σφ(τ )]θ(τ )
exp

{
− σx0e

−τ

1 + σφ(τ )

}
, (38)

(τ 
 1). Note that this approximate CF has de same form
than that of Eq. (32). Therefore, the approximate PDF would
be given by Eq. (33) with the constant parameter θ replaced
by the time-varying θ (τ ).

We also observe that, within the same degree of approxi-
mation for which Eq. (36) holds, we may write [cf. Eq. (20)]

φ(τ ) ≡
∫ τ

0
e−sD(τ − s)ds

	 D(τ )
∫ τ

0
e−sds = D(τ )(1 − e−τ ),

which, after neglecting the exponentially small term e−τ ,
yields

φ(τ ) 	 D(τ ), (τ 
 1). (39)

If, as we did in obtaining Eq. (39), we also neglect
exponentially small terms in Eq. (38), we get

p̂(σ,τ ) 	 1

[1 + σD(τ )]θ(τ )
, (40)

(τ 
 1), where, since time is large, the dependence on the
initial value x0 has vanished.

On the other hand,

1

[1 + σD(τ )]θ(τ )
= 1/[D(τ )]θ(τ )

[σ + 1/D(τ )]θ(τ )
,

and using the Laplace inversion formula [27]

L−1

{
1

(σ + a)γ

}
= 1

�(γ )
xγ−1e−ax,

(γ > 0) we obtain for τ 
 1 the following approximation:

p(x,τ ) 	 1

�[θ (τ )]

xθ(τ )−1

[D(τ )]θ(τ )
e−x/D(τ ). (41)

The PDF in real time, p(x,t), will be given by Eq. (41) after
replacing τ by the function τ (t) given in Eq. (28). Moreover,
from Eqs. (3) and (37) we obtain

θ [τ (t)] = m[τ (t)]

D[τ (t)]
= 2β(t)

k2(t)
≡ θ (t) (42)

and

D[τ (t)] = k2(t)

2α(t)
≡ D(t). (43)

Therefore

p(x,t) 	 1

�[θ (t)]

xθ(t)−1

[D(t)]θ(t)
e−x/D(t), (44)

(t 
 t0). We thus see that for long times the PDF is approx-
imated by a � distribution with shape and scale parameters,
θ (t) and D(t), respectively, dependent of time.

Let us remark that the asymptotic approximation given
either by Eq. (41) or Eq. (44) does not apply to the singular
case β(t) = 0 [which implies θ (t) = 0]. Indeed, in such a case
Eq. (40) reads p̂(σ,t) 	 1 which after Laplace inversion yields

p(x,t) 	 δ(x), (t → ∞).

Reflecting the fact that the homogeneous drift, −α(t)x, drags
the process towards the origin as t → ∞. Let us incidentally
note that the same result is indeed achieved from the exact
solution (29) in the limit t → ∞.

We end this section by getting the asymptotic expression of
cumulants and moments. At first sight the most direct way of
obtaining the long-time form of cumulants is starting from the
general expression given in Eq. (26) and taking there the limit
t → ∞. However, it turns out to be much simpler to start off
from the asymptotic expression of the CF given by Eq. (40)
and apply the definition (25). The asymptotic cumulants thus
read

κn(t) 	 (n − 1)!θ (t)Dn(t), (t → ∞), (45)
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(n = 1,2,3, . . . ). The connection between cumulants and
moments becomes very involved as n increases [25]. It is
again simpler than the direct calculation of moments based on
Eq. (40). Indeed, since

〈Xn(t)〉 = (−1)n
∂np̂

∂σ n

∣∣∣∣
σ=0

,

(n = 1,2,3, . . .), we obtain

〈Xn(t)〉 	 Dn(t)θ (t)[θ (t) + 1] · · · [θ (t) + n − 1], (46)

(t → ∞). Let us first suppose that θ (t) 
 1 as t → ∞, then
〈Xn(t)〉 	 [D(t)θ (t)]n = [β(t)/α(t)]n, that is [cf. Eq. (3)],

〈Xn(t)〉 	 mn(t), (47)

and long-time moments are only determined by the normal
level of the process. In the opposite case when θ (t) � 1, long-
time moments are determined by the diffusion coefficient:

〈Xn(t)〉 	 Dn(t)θ (t). (48)

Note that when θ (t) → θ tends to a finite constant [note that
case (ii) of the previous section is a particular instance] also
leads to moments dominated by the diffusion coefficient:

〈Xn(t)〉 	 �(n + θ )

�(θ )
Dn(t). (49)

VI. NEAR THE ORIGIN

Another situation where it is possible to know an approxi-
mate PDF is when the process is near the origin. The behavior
of the process for small values of x is rather significant in
many fields such as, for instance, the firing of neurons [5] and
also in population dynamics where, as we mentioned before,
attaining x = 0 means extinction [8,9,12].

The problem is closely related to the question of whether
or not the nonstationary Feller process can access the singular
boundary x = 0. For the stationary process this problem was
addressed by Feller himself who, after analyzing the PDF near
x = 0, concluded that if the constant ratio θ = 2β/k2 � 1 the
origin is an accessible boundary, while if θ > 1 it is not [21]
(see also Ref. [1]). In the stationary process the accessible
character of x = 0 is time independent and fixed forever once
we know the parameters of the model. We will now show that
for the nonstationary process attaining the origin is not static
but time dependent.

Let us incidentally note that the question of reaching the
origin would be more elegantly addressed by evaluating,
instead of the PDF, the hitting probability of first reaching
x = 0, as we recently did for the stationary process [1].
However, obtaining hitting probabilities needs the knowledge
of first-passage time densities, something rather involved
for nonstationary processes. We will, therefore, analyze the
behavior of the PDF near the origin as was done by Feller
[21].

The starting point of our asymptotic analysis is the
characteristic function in the form given by Eq. (21) and we
will use this exact expression for knowing the behavior of the
PDF near the origin. The later inference is achieved after using
Tauberian theorems which show that the small x behavior
of p(x,t |x0,t0) is determined by the large σ behavior of its
Laplace transform [28].

Following this procedure we prove in Appendix E that for
large values of σ we have

p̂(σ,t |x0,t0) = A(t |x0,t0)

σ θ(t)

[
1 + O

(
1

σ
ln σ

)]
, (50)

where A(t |x0,t0) is defined in Eq. (E7) of Appendix E and θ (t)
in Eq. (42). The CF is thus approximated by

p̂(σ,t |x0,t0) 	 A(t |x0,t0)

σ θ(t)

as σ → ∞. Using Tauberian theorems [28] we see that the
behavior of the PDF near the origin will be given by the Laplace
inversion of this expression:

p(x,t |x0,t0) 	 K(t |x0,t0)xθ(t)−1, (51)

(x → 0 and θ (t) > 0), where

K(t |x0,t0) = A(t |x0,t0)

�[θ (t)]
.

We, therefore, see that that the PDF near the origin follows
a power law with a time-varying exponent and that at x = 0
the PDF is different from zero only if θ (t) � 1:

p(0,t |x0) =

⎧⎪⎨
⎪⎩

∞ θ (t) < 1

K(τ |x0) θ (t) = 1

0 θ (t) > 1.

(52)

Following Feller [21] (see also [1]) we conclude that if θ (t) �
1 the origin is an accessible boundary while if θ (t) > 1 it is
not. Therefore, attaining the origin is not fixed but varies with
time.

VII. CONCLUDING REMARKS

We briefly summarize the main findings of the paper. In this
work we have concentrated on the study of the nonstationary
Feller process with time-varying coefficients:

dX(t) = −[α(t)X(t) − β(t)]dt + k(t)dW (t),

where W (t) is the standard Wiener process. We have assumed:
(i) α(t) > 0,β(t) � 0, and k(t) > 0 are positive and smooth
functions of t � t0 where t0 is an arbitrary initial time, and (ii)
α(t) is such that

lim
t→∞

∫ t

t0

α(t ′)dt ′ = ∞.

Under these rather general conditions on the coefficients,
which ensure a broad applicability of the process, we have been
able to obtain the exact probability distribution exemplified by
the characteristic function of the process, as well as cumulants
of any order [cf. Eqs. (21) and (26)].

We have been able to exactly invert the CF to get the PDF in
a few special cases and obtain some relevant approximations
as well. Thus, for sufficiently long times the PDF approaches
the � distribution,

p(x,t) 	 1

�[θ (t)]

xθ(t)−1

[D(t)]θ(t)
e−x/D(t), (t 
 t0)
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with the shape of the distribution determined by

θ (t) = 2β(t)

k2(t)
> 0,

and the scale by

D(t) = k2(t)

2α(t)
,

both parameters depending on time.
Another situation where it has been possible to get an

approximate PDF is when the process is not far from the origin.
Thus, for small values of the state variable x, the PDF obeys a
power law with a time-varying exponent,

p(x,t |x0,t0) ∼ xθ(t)−1, (x → 0),

where θ (t) > 0 is the ratio between the time-varying deter-
ministic normal level β(t) and the strength of fluctuations
k2(t)/2. Finally, the behavior near x = 0 also determines the
question, rather significant in some settings, of whether the
origin is accessible or not. We have proved that for strong
fluctuations such that k2(t)/2 � β(t) the origin is accessible
while for milder fluctuations [i.e., k2(t)/2 < β(t)] it is not.
The special character of the origin is now dynamical rather
than static (as was the situation of the stationary case).

We finish this work by mentioning a few possible physical
applications of the nonstationary process. One field is econo-
physics where the Feller process is one of the most popular
models for the volatility [16,17]. As a first approximation
the normal level of the volatility, i.e., the parameter m(t) ≡
β(t)/α(t) [cf. Eq. (3)], is assumed to be constant. However,
there are evidences of seasonality in the behavior of volatility
[29,30] which could be modeled assuming a periodic function
of time as normal level. A similar situation appears in the price
of commodities [31,32].

We can find other potential applications in anomalous
diffusion problems. In the broad and complex field of fractional
dynamics [33,34], the nonstationary Feller process may repre-
sent a complementary and rather simple approximation to the
problem that is not based on the fractional Brownian motion as
driving noise. Thus, for instance, we have shown in Sec. V that
when θ (t) 
 1 (t → ∞) the asymptotic mean-square value of
the process is 〈X2(t)〉 	 m2(t) [cf. Eq. (47)]. If we further
assume that as t → ∞ the normal level follows a power law
m(t) ∼ tγ /2 (γ > 0) then the process shows the anomalous
diffusion behavior:

〈X2(t)〉 ∼ tγ .

It is quite interesting that, under the assumption θ (t) 
 1,
the anomalous behavior depends only on the normal level
m(t) = β(t)/α(t) and it is independent of the noise intensity
k2(t). Other different situations may indeed appear depending
on the long time behavior of the parameters α(t),β(t), and
k(t) as we can see from the discussion at the end of Sec. V
[cf. Eqs. (48) and (49)].

In future works we will try to explore some of these possible
applications.
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APPENDIX A: THE METHOD OF CHARACTERISTICS

In this Appendix we solve the initial-value problem (15)–
(16) by the method of characteristics [26].

We look for solutions of Eq. (15) in the form

p̂(σ,τ |x0) = e−q̂(σ,τ |x0). (A1)

If, in addition, we define the new variable

η = 1

σ
, (A2)

problems (15)–(16) take the simpler form:

∂q̂

∂τ
− [η + D(τ )]

∂q̂

∂η
= m(τ )

η
, (A3)

q̂(σ,0|x0) = x0

η
. (A4)

The equations of the characteristics associated to Eq. (A3)
are [26]

dτ = − dη

η + D(τ )
= dq̂

m(τ )/η
, (A5)

from which we have

dη

dτ
= η − D(τ ).

Hence

η(τ ) = e−τ [C1 − ψ(τ )], (A6)

where C1 is an arbitrary constant and

ψ(τ ) ≡
∫ τ

0
eτ ′

D(τ ′)dτ ′. (A7)

On the other hand, from Eq. (A5) we also have dq̂/dτ =
m(τ )/η which, after using the expression for η given in Eq.
(A6), yields

dq̂

dτ
= eτm(τ )

C1 − ψ(τ )
.

Therefore,

q̂ = C2 +
∫ τ

0

eτ̄m(τ̄ )

C1 − ψ(τ̄ )
dτ̄ , (A8)

where C2 is another arbitrary constant.
Following the method of characteristics, the general solu-

tion of Eq. (A3) is given by

C2 = F (C1),

where F is an arbitrary function [26]. Thus, since [cf. Eqs.
(A6) and (A8)]

C1 = eτ η + ψ(τ ), C2 = q̂ −
∫ τ

0

eτ̄m(τ̄ )

C1 − ψ(τ̄ )
dτ̄ , (A9)
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we have

q̂(τ ) =
∫ τ

0

eτ̄m(τ̄ )

C1 − ψ(τ̄ )
dτ̄ + F [eτη + ψ(τ )]. (A10)

From the initial condition (A4) and taking into account that
ψ(0) = 0, the unknown function F reads

F (η) = x0

η
,

which substituting back into Eq. (A10) yields

q̂(η,τ |x0) =
∫ τ

0

eτ̄m(τ̄ )

C1 − ψ(τ̄ )
dτ̄ + x0

eτ η + ψ(τ )
. (A11)

Recall that C1 = eτ η + ψ(τ ) [cf. Eq. (A9)], hence

q̂(η,τ |x0) =
∫ τ

0

eτ̄m(τ̄ )

eτ η + ψ(τ ) − ψ(τ̄ )
dτ̄ + x0

eτ η + ψ(τ )
,

but [cf. Eq. (A7)]

ψ(τ ) − ψ(τ̄ ) =
∫ τ

τ̄

eτ ′
D(τ ′)dτ ′ ≡ ψ(τ,τ̄ ), (A12)

and we write Eq. (A11) in the form

q̂(η,τ |x0) = e−τ x0

η + e−τψ(τ )
+

∫ τ

0

e−(τ−τ̄ )m(τ̄ )

η + e−τψ(τ,τ̄ )
dτ̄

= e−τ x0

η + e−τψ(τ )
+

∫ τ

0

e−τ̄m(τ − τ̄ )

η + e−τψ(τ,τ − τ̄ )
dτ̄ .

However [cf. Eq. (A12)]

e−τψ(τ,τ − τ̄ ) =
∫ τ

τ−τ̄

e−(τ−τ ′)D(τ ′)dτ ′

=
∫ τ̄

0
e−sD(τ − s)ds.

Likewise [cf. Eq. (A7)]

e−τψ(τ ) =
∫ τ

0
e−sD(τ − s)ds.

Hence,

q̂(η,τ |x0) = e−τ x0

η + φ(τ )
+

∫ τ

0

e−τ̄m(τ − τ̄ )

η + φτ (τ̄ )
dτ̄ , (A13)

where

φτ (τ̄ ) ≡
∫ τ̄

0
e−sD(τ − s)ds, (A14)

and

φ(τ ) ≡ φτ (τ ) =
∫ τ̄

0
e−sD(τ − s)ds, (A15)

Back to the original variable σ = 1/η [cf. Eq. (A2)], the
characteristic function reads [cf. Eqs. (A1) and (A13)]

p̂(σ,τ |x0) = exp

{
− σx0e

−τ

1 + σφ(τ )
− σ

∫ τ

0

e−τ̄m(τ − τ̄ )

1 + σφτ (τ̄ )
dτ̄

}
.

(A16)
Another convenient representation of the solution is ob-

tained as follows. In the integral appearing in the right hand
side of Eq. (A16) we define a new integration variable

ξ = φτ (τ̄ ),

so that [cf. Eq. (A14)]

dξ = e−τ̄D(τ − τ̄ )dτ̄ . (A17)

Moreover, τ̄ = 0 implies ξ = 0, while τ̄ = τ implies ξ =
φ(τ ). Hence,∫ τ

0

e−τ̄m(τ − τ̄ )

1 + σφτ (τ̄ )
dτ̄ =

∫ φ(τ )

0

m[τ − τ̄ (ξ )]

D[τ − τ̄ (ξ )]

dξ

1 + σξ
,

where τ̄ (ξ ) is implicitly defined defined by ξ = φτ [τ̄ (ξ )], that
is, ∫ τ̄ (ξ )

0
e−sD(τ − s)ds = ξ. (A18)

Therefore, defining

θτ (ξ ) ≡ m[τ − τ̄ (ξ )]

D[τ − τ̄ (ξ )]
, (A19)

we prove Eq. (17):

p̂(σ,τ |x0) = exp

{
− σx0e

−τ

1 + σφ(τ )
− σ

∫ φ(τ )

0

θτ (ξ )dξ

1 + σξ

}
.

(A20)

APPENDIX B: DISTRIBUTIONS OF PROBABILITY
IN THE ORIGINAL TIME SCALE

We start off with Eq. (A16) of Appendix A which after a
simple change of variables in the integral reads

p̂(σ,τ |x0) = exp

{
− σx0e

−τ

1 + σφ(τ )

− σ

∫ τ

0

m(τ ′)e−(τ−τ ′)

1 + σφτ (τ − τ ′)
dτ ′

}
, (B1)

where φτ (τ − τ ′) and φ(τ ) are given by Eqs. (A14) and (A15)
which we write in the form

φτ (τ − τ ′) =
∫ τ

τ ′
e−(τ−τ ′′)D(τ ′′)dτ ′′, (B2)

and φ(τ ) ≡ φτ (τ ).
Denote by I (τ ) the integral appearing in Eq. (B1):

I (τ ) ≡
∫ τ

0

m(τ ′)e−(τ−τ ′)

1 + σφτ (τ − τ ′)
dτ ′.

Bearing in mind Eq. (2) we define a new integration variable
t ′ by

τ ′ = τ (t ′) =
∫ t ′

t0

α(t ′′)dt ′′. (B3)

Thus dτ ′ = α(t ′)dt ′ and τ ′ = 0 implies t ′ = t0 whereas τ ′ =
τ , i.e., τ (t ′) = τ (t), implies t ′ = t . Hence

I (t) ≡ I [τ (t)] =
∫ t

t0

m[τ (t ′)]α(t ′)e−[τ (t)−τ (t ′)]

1 + σφτ (t)[τ (t) − τ (t ′)]
dt ′. (B4)

However, from the definition of m(τ ) given in Eq. (3) we see
that m[τ (t ′)] = β(t ′)/α(t ′) and

m[τ (t ′)]α(t ′) = β(t ′). (B5)
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On the other hand, from Eq. (A14) we have

φτ (t)[τ (t) − τ (t ′)] = e−τ (t)
∫ τ (t)

τ (t ′)
eτ ′′

D(τ ′′)dτ ′′,

thus performing again the change of variable τ ′′ = τ (t ′′), we
get [cf. Eqs. (2) and (3)]

φτ (t)[τ (t) − τ (t ′)]

= e−τ (t)
∫ t

t ′
eτ (t ′′)D[τ (t ′′)]α(t ′′)dt ′′

= 1

2

∫ t

t ′
k2(t ′′) exp

{
−

∫ t

t ′′
α(s)ds

}
dt ′′

≡ φ(t |t ′), (B6)

where we used Eq. (3) to write

D[τ (t ′′)]α(t ′′) = 1

2
k2(t ′′). (B7)

Note also that in the original time scale, φ(τ ) ≡ φτ (τ ) will be
given by φ[τ (t)] = φ(t,t0), where [cf. Eq. (B6)]

φ(t,t0) = 1

2

∫ t

t0

k2(t ′) exp

{
−

∫ t

t ′
α(s)ds

}
dt ′. (B8)

Substituting Eqs. (B5) and (B6) into Eq. (B4) yields

I (t) =
∫ t

t0

β(t ′)e−[τ (t)−τ (t ′)]

1 + σφ(t |t ′) dt ′.

The last step consists in performing the change of integra-
tion variable ξ = φ(t |t ′), that is,

ξ = 1

2

∫ t

t ′
e−[τ (t)−τ (t ′′)]k2(t ′′)dt ′′,

hence

dt ′ = − 2

k2(t ′)
e[τ (t)−τ (t ′)]dξ.

Moreover, t ′ = t implies ξ = 0 whereas t ′ = t0 implies ξ =
φ(t,t0). Therefore,

I (t) =
∫ φ(t,t0)

0

2β(t ′)
k2(t ′)

dξ

1 + σξ
,

where t ′ = t(ξ ) is implicitly defined by [see Eqs. (2) and (B3)]

ξ = 1

2

∫ t

t(ξ )
k2(t ′′) exp

{
−

∫ t

t ′′
α(s)ds

}
dt ′′. (B9)

Finally, defining

θt (ξ ) ≡ 2β[t(ξ )]

k2[t(ξ )]
, (B10)

we write

I (t) =
∫ φ(t,t0)

0

θt (ξ )

1 + σξ
dξ, (B11)

and collecting results we get

p̂(σ,t |x0,t0) = exp

{
−σx0e

− ∫ t

t0
α(s)ds

1 + σφ(t,t0)
− σ

∫ φ(t,t0)

0

θt (ξ )

1 + σξ
dξ

}
,

(B12)

which is Eq. (21).

APPENDIX C: PROOF OF EQ. (29)

We start off with Eq. (27):

p̂(σ,t |x0,t0) = exp

{
−σx0e

−τ

1 + σφ

}
, (C1)

where r = r(t) and φ = φ(t,t0) are defined in Eqs. (28) and
(22), respectively. Since

σx0e
−τ

1 + σφ
= x0e

−τ

φ
− x0e

−τ /φ2

σ + 1/φ
,

the CF can be written as

p̂(σ,t |x0,t0) = e−x0e
−τ /φ exp

{
x0e

−τ /φ2

σ + 1/φ

}
,

which after a power-law expansion yields

p̂(σ,t |x0,t0) = e−x0e
−τ /φ

[
1 +

∞∑
n=1

(x0e
−τ /φ2)n

n!(σ + 1/φ)n

]
. (C2)

We denote by L−1{·} the inverse Laplace transform. Then,
since [27]

L−1{1} = δ(x),

and

L−1

{
1

[σ + 1/φ(t,t0)]n

}
= 1

�(n)
xn−1e−x/φ(t,t0),

the inversion of Eq. (C2) reads

p(x,t |x0,t0)

= e−x0e
−τ /φ

[
δ(x) + e−x/φ

∞∑
n=1

(x0e
−τ /φ2)n

n!�(n)
xn−1

]
. (C3)

But (recall x and x0 are non-negative)

(
x0e

−τ

φ2

)n

xn−1 = 1

φ

√
x0e−τ

x

(√
xx0e−τ

φ

)2n−1

,

and

∞∑
n=1

(x0e
−τ /φ2)n

n!�(n)
xn−1

= 1

φ

√
x0e−τ

x

∞∑
k=0

[
√

xx0e−τ /φ]2k+1

(k + 1)!�(k + 1)

= 1

φ

√
x0e−τ

x
I1

(
2

√
xx0e−τ

φ

)
,

where

I1(z) =
∞∑

n=0

(z/2)2n+1

(n + 1)!�(n + 1)
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is the modified Bessel function of first order [35]. Collecting
results into Eq. (C3) we get

p̂(σ,t |x0,t0) = e−x0e
−τ /φδ(x) + e−τ/2

φ

(x0

x

)1/2

× exp

{
−x + x0e

−τ

φ

}
I1

(
2

√
xx0e−τ

φ

)
,

(C4)

which is Eq. (29) of the main text.

APPENDIX D: PROOF OF EQ. (33)

When θ is constant the CF is given by Eq. (32):

p̂(σ,t |x0,t0) = 1

(1 + σφ)θ
exp

{
−σx0e

−τ

1 + σφ

}
, (D1)

where τ = τ (t) and φ = φ(t,t0). Note that the exponential
term equals the CF of the case discussed in Appendix C [cf.
Eq. (C1)]. We may, therefore, use Eq. (C2) of Appendix C into
Eq. (D1) and write

p̂(σ,t |x0,t0) = e−x0e
−τ /φ

(1 + σφ)θ

[
1 +

∞∑
n=1

(x0e
−τ /φ2)n

n!(σ + 1/φ)n

]
.

That is,

p̂(σ,t |x0,t0) = e−x0e
−τ /φ

∞∑
n=0

(x0e
−τ /φ2)n

n!(σ + 1/φ)n+θ
. (D2)

Using [27]

L−1

{
1

(σ + 1/φ)n+θ

}
= 1

�(θ + n)
xn+θ−1e−x/φ,

(θ > 0,n = 0,1,2, . . . ), the Laplace inversion of Eq. (D2)
reads

p(x,τ |x0) = e−(x+x0e
−τ )/φ

∞∑
n=0

(x0e
−τ /φ2)n

n!�(θ + n)
xn+θ−1.

But (recall x and x0 are non-negative)(
x0e

−τ

φ2

)n

xn+θ−1

= φθ−1

(√
x

x0e−τ

)θ−1(√
xx0e−τ

φ

)2n+θ−1

,

hence

p(x,t |x0,t0) = e−(x+x0e
−τ )/φ

φ

(
x

x0e−τ

)(θ−1)/2

×
∞∑

n=0

(
√

xx0e−τ /φ)2n+θ−1

n!�(θ + n)
.

We recognize the series appearing in this equation as the
expression of a modified Bessel function. Indeed

Iν(z) =
∞∑

n=0

(z/2)2n+ν

n!�(n + ν + 1)

is the modified Bessel function of order ν [35]. Therefore,

p(x,t |x0,t0) = 1

φ

(
x

x0e−τ

)(θ−1)/2

× exp

{
−x + x0e

−τ

φ

}
Iθ−1

(
2

√
xx0e−τ

φ

)
,

which is Eq. (33) of the main text.

APPENDIX E: PROOF OF EQ. (50)

We start off with Eq. (21) for the CF:

p̂(σ,t |x0,t0) = exp

{
− σx0e

−τ (t)

1 + σφ(t,t0)
− σ

∫ φ(t,t0)

0

θt (ξ )dξ

1 + σξ

}
,

(E1)
where φ(t,t0) is defined in Eq. (22), and

θt (ξ ) ≡ 2β[t(ξ )]

k2[t(ξ )]
. (E2)

Denote by I (σ,t) the integral term of Eq. (E1), the change of
integration variable ξ = z/σ yields

I (σ,t) ≡ σ

∫ φ(t,t0)

0

θt (ξ )

1 + σξ
dξ =

∫ σφ(t,t0)

0

θt (z/σ )

1 + z
dz.

Assuming σ → ∞ we expand θt (z/σ ) in powers of 1/σ :

θt (z/σ ) = θt (0) + 1

σ
zθ ′

t (0) + O(1/σ 2).

Substituting this expansion into I (σ,t) and integrating we have

I (σ,t) = θt (0) ln[1 + σφ(t,t0)]

+ 1

σ
θ ′
t (0)[σφ(t,t0) − ln[1 + σφ(t,t0)]] + O(1/σ 2).

(E3)

Before proceeding further let us note from Eq. (E2) that

θt (0) = 2β[t(0)]

k2[t(0)]
,

but ξ = 0 implies t(0) = t [cf. Eq. (24)]. Hence

θt (0) = 2β(t)

k2(t)
≡ θ (t), (E4)

[cf. Eq. (42)]. Also from Eq. (E2) we have

θ ′
t (ξ ) ≡ d

dξ
θt (ξ ) = 2

d

dξ

(
β[t(ξ )]

k2[t(ξ )]

)

= 2
dt(ξ )

dξ

β̇[t(ξ )]k2[t(ξ )] − 2k[t(ξ )]k̇[t(ξ )]β[t(ξ )]

k4[t(ξ )]
,

where β̇ and k̇ denote derivatives. Differentiating both sides
of Eq. (24) we get

dt(ξ )

dξ
= − 2

k2[t(ξ )]
exp

{
−

∫ t

t(ξ )
α(s)ds

}
,

and, since t(0) = t , we obtain

dt(ξ )

dξ

∣∣∣∣
ξ=0

= − 2

k2(t)
.
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Therefore,

θ ′
t (0) = 4

k5(t)
[2k̇(t)β(t) − β̇(t)k(t)]. (E5)

Let us resume the proof of Eq. (50). Since ln σ/σ → 0
as σ → ∞, the most important contributions to the value of
I (σ,t) in Eq. (E3) are

I (σ,t) = θ (t) ln[1 + σφ(t,t0)] + θ ′
t (0)φ(t,t0) + O(ln σ/σ ).

Plugging this into Eq. (E1) we write

p̂(σ,t |x0,t0) = e−θ ′
t (0)φ(t,t0)

[1 + σφ(t,t0)]θ(t)

× exp

{
− σx0e

−τ (t)

1 + σφ(t,t0)

}[
1 + O

(
ln σ

σ

)]
.

However

1

[1 + σφ(t,t0)]θ(t)
= 1

σ θ(t)[φ(t,t0)]θ(t)

[
1 + O

(
1

σ

)]

and

exp

{
− σx0e

−τ (t)

1 + σφ(t,t0)

}
= e−x0e

−τ (t)/φ(t,t0)

[
1 + O

(
1

σ

)]
.

Collecting results and bearing in mind that 1/σ → 0 faster
than ln σ/σ as σ → ∞, we finally obtain Eq. (50):

p̂(σ,t |x0,t0) = A(t |x0,t0)

σ θ(t)

[
1 + O

(
1

σ
ln σ

)]
, (E6)

where

A(t |x0,t0) = 1

[φ(t,t0)]θ(t)

× exp

{
−θ ′

t (0)φ(t,t0) − x0e
−τ (t)

φ(t,t0)

}
(E7)

and θ ′
t (0) given in Eq. (E5).
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