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The physics of diffusion phenomena in nano- and microchannels has attracted a lot of attention in
recent years, due to its close connection with many technological, medical, and industrial appli-
cations. In the present paper, we employ a kinetic approach to investigate how the confinement
in nanostructured geometries affects the diffusive properties of fluid mixtures and leads to the
appearance of properties different from those of bulk systems. In particular, we derive an expression
for the friction tensor in the case of a bulk fluid mixture confined to a narrow slit having undulated
walls. The boundary roughness leads to a new mechanism for transverse diffusion and can even lead
to an effective diffusion along the channel larger than the one corresponding to a planar channel of
equivalent section. Finally, we discuss a reduction of the previous equation to a one dimensional
effective diffusion equation in which an entropic term encapsulates the geometrical information on
the channel shape. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934994]

I. INTRODUCTION

The recent interest for the transport phenomena of gases
or liquids confined in spaces whose span is comparable to the
molecular size is motivated by the important technological,
medical, and industrial applications of nanofluidics so diverse
as DNA sequencing, element separation, or energy harvesting.
It is well known that confinement can have a strong impact
on both the static and dynamic properties of fluids.1,2 The
systematic theoretical study that confinement has on the
behavior of fluids has concentrated on straight channels, hence
overlooking the potential impact that the shape of the bounding
walls may have on the collective properties of confined fluids.
Recent studies have shown that the coupling between the
system and the geometrical constraints overimposed by the
environment can be relevant in situations such as molecular
transport in zeolites,3 ionic channels,4 or in microfluidic
devices.5,6 Moreover, geometrical constraints can induce novel
dynamical scenarios, such as particle separation,7 cooperative
rectification,8,9 and negative mobility10,11 that are absent in the
behavior of the corresponding systems in bulk.

In the present paper, we will analyze the impact that the
corrugation of the confining walls has in the diffusion of model
non-ideal fluids. Specifically, we will concentrate on a hard
sphere binary fluid mixture composed by two components, say
A and B, with different sizes, and will consider the tracer limit
of larger component, B. We shall show that to take into account
the wall roughness, one has to modify the Fick equation for
the concentration of B particles, c(r, t),

a)umberto.marinibettolo@unicam.it
b)malgaretti@is.mpg.de
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∂

∂t
c(r, t) = D0∇2c(r, t), (1)

where D0 is the bulk diffusion coefficient.
Our treatment considers a binary hard sphere mixture

between hard walls, perhaps the most basic model of confine-
ment of non-ideal gases, which has the ability to capture the
essential physics of inhomogeneous fluids, such as variations
of the density near the walls, layering, and solid-fluid
transition. We associate the majority component with the
solvent and the minority component with the solute, whose
concentration is negligible, the so called tracer limit and base
the description of the diffusion process on the equations for the
partial densities and the momentum density, which have been
previously obtained using a Boltzmann-Enskog approach,12

which accounts for the excluded volume effect, due to the finite
size of the molecules. In the tracer limit, since the majority
species is virtually unaffected by the motion of the dilute
species, we are able to derive a simplified equation for the
tracer concentration.

In the second part of the paper following a seminal idea of
Jacobs,13 we further reduce the complexity of the problem, by
contracting the description from a three dimensional problem,
to a one dimensional effective problem, which is mapped onto
a diffusion process along the pore axis in the presence of a
so called entropic potential. Such a reduction was introduced
heuristically by Jacobs many years ago and revisited by
Zwanzig, Kalinay-Percus, Reguera-Rubi, Dagdug-Bezrukov-
Berezhkovskii, and coworkers among others who gave a
statistical mechanical foundation to it.14–23

Finally, the magnitude of the coupling between the
microscopic interactions of the medium and the mesoscopic
modulation of the confinement is discussed.

0021-9606/2015/143(18)/184501/12/$30.00 143, 184501-1 © 2015 AIP Publishing LLC
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II. THE KINETIC APPROACH

In a recent series of papers, one of the authors has
developed a Boltzmann-Enskog self-consistent theory for
fluid mixtures in inhomogeneous environment12,24 and has
provided a microscopic derivation of the equations governing
the evolution of concentration fluctuations in an M-component
mixture of hard-spheres of diameters σαα and masses mα,

where α = 1,M . The analysis of the kinetic equations for the
individual species leads to the conservation law of the local
number density of species, nα(r, t),

∂

∂t
nα(r, t) + ∇ · (nα(r, t)uα(r, t)) = 0 (2)

and to the balance equation for the associated momentum
density,

∂

∂t
[nα(r, t)uα

j (r, t)] + ∇i
(
nα(r, t)uα

i (r, t)uα
j (r, t) − nα(r, t)wα

i (r, t)wα
j (r, t)

)
= − 1

mα
∇iπα

i j −
∇ jVα(r)

mα
nα(r, t) + nα(r, t)

mα

(
Fα,mf (r, t) + Fα,drag(r, t) + Fα,viscous(r, t)) , (3)

where uα is the average velocity of component α, wα

= (uα − u) is the relative average velocity of species α with
respect to the center of mass velocity, u, of the mixture.

The tensor πα
i j(r, t), in analogy with pure fluids, represents

the kinetic contribution to the partial stress tensor

πα
i j(r, t) = kBTδi jnα(r, t). (4)

Eq. (3), besides the external body force −∇ jVα, contains three
kinds of forces of different nature, resulting from the analysis
of the microscopic Enskog collision operator:25,26 a mean
force, a drag force, and a viscous force. Specifically, Fα,mf

is the reversible force acting on α particles at r due to the
influence of all remaining particles,

Fα,mf (r, t) = −kBT

β

σ2
αβ

×


dŝŝgαβ(r,r + σαβŝ, t)nβ(r + σαβŝ, t), (5)

where ŝ is a unit vector of components
(sin θ cos φ,sin θ sin φ,cos θ),  dŝ ≡

 2π
0 dφ

 π

0 dθ sin θ indi-
cates integration over the unit sphere, gαβ is the inhomoge-
neous hard sphere pair correlation function at contact, and
σαβ = (σαα + σββ)/2. Such a force is the gradient of the
so-called potential of mean force and can be identified with
the gradient of the excess chemical potential of species α over
the ideal gas value, µαint(r) according to

Fα,mf (r, t) = −∇µαint(r, t) (6)

whereas the corresponding total chemical potential is given
by µα(r) = kBT ln nα(r) + µαint(r). The drag force is purely
dissipative, local and is proportional to the difference of
velocities of unlike species,

Fα,drag
i (r, t) = −


β

γ
αβ
i j (r, t)(uα

j (r, t) − uβ
j (r, t)) (7)

via the inhomogeneous friction tensor γαβ
i j which is associated

to the interactions and relative motion between the different
species. Finally, the dissipative force Fα,viscous represents the
viscous force acting on species α due to velocity gradients
and in the present treatment, it will be neglected under the
assumption that the velocity varies slowly.27

The details of the procedure which allows to reduce
the coupled differential equations for the densities and for
the momenta of the species to a diffusion equation for
the concentration are described in Refs. 12 and 24. The
assumptions are (a) that since the typical fluid velocities in
micro and nanofluidic systems are low, we can neglect the
non-linear terms, (b) the velocity gradients are negligible so
that we can discard viscous forces and retain only the diffusive
terms, and (c) the acceleration of the species with respect to
the center of mass is negligible.

For hard sphere mixtures, the friction tensor in the Enskog
model can be computed explicitly and reads

γ
αβ
i j (r, t) = 2σ2

αβ


2µαβkBT

π

×


dŝsis jgαβ(r,r + σαβŝ, t)nβ(r + σαβŝ, t), (8)

where µαβ = mαmβ/(mα + mβ) is the reduced mass.
For a binary mixture of hard-spheres, it is useful to define

the local mass concentration c(r, t) = ρB(r, t)
ρ(r, t) , with ρB = mBnB

and ρ = mAna + mBnB. Using the results of Ref. 24, when the
fluid velocity is negligible and in the absence of external forces,
the balance equation for the local mass concentration reduces
to

∂

∂t
c(r, t) = 1

ρ(r, t)∇i ·
(
ρ(r, t)c(r, t)(1 − c(r, t))(γ−1

i j (r, t))

×∇ j( µ
B(r, t)
mB

− µA(r, t)
mA

)) , (9)

where we have introduced the symmetrized inhomogeneous

friction tensor, γi j =
γAB
i j

mA +
γBA
i j

mB and its inverse γ−1
i j . Neglect-

ing the variations in the density around a reference sphere, the
friction tensor reduces to γi j = γδi j. We can then derive an
approximate, explicit expression for γ from Eq. (8),

γ =
8
3
ρ


2πµABkBT

mAmB
gABσ

2
AB (10)

and rewrite the conservation equation for the local mass
concentration as a standard diffusion equation

∂

∂t
c(r, t) = DAB∇2c(r, t), (11)
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in terms of the mutual diffusion coefficient, DAB,

DAB =
kBT
γ

ρ

n
1

mAmB
, (12)

which relates the friction and the diffusion coefficients through
the Einstein fluctuation-dissipation relation.

III. DIFFUSION IN CONFINED STRUCTURES

The general framework described in Sec. II also holds
for a nanoconfined mixture. To analyze its dynamic features,
we consider the specific case where the fluid is confined to a
symmetric slit bound by two non-intersecting walls identified,
in the Monge representation, by the two height functions
z = ±h(x). Accordingly, the fluid densities will be symmetric
with respect to the midplane z = 0 and translationally invariant
along the y direction. Each species, α, composing the fluid
mixture is confined to the slit due to the wall potential they
will experience,

Vα(r) =



Vα
soft(r) z < |h(x)|
∞ else

(13)

that is the sum of a soft attractive potential, Vα
soft, of general

functional form and of a harshly repulsive confining potential.
The densities of the fluid species are no longer homogeneous
due to the presence of the confining solid walls. As a
result, the friction matrix, Eq. (8), is no longer diagonal.
The inhomogeneous nature of the pair correlation function
at contact, gAB, encodes the response of the mixture to such
inhomogeneities. Although an exact functional form of the pair
distribution function under generic inhomogeneous conditions
is not known, we resort to a two-component generalization28

of the Fisher-Methfessel prescription,29 which states that the
functional form of the inhomogeneous gAB(r,r + σABŝ) can
be obtained from the Carnahan-Starling expression for the bulk
pair correlation of mixtures at pair contact, gbulk

AB ,30,31

gbulk
AB ({ξn}) =

1
1 − ξ3

+
3
2
σAAσBB

σAB

ξ2

(1 − ξ3)2

+
1
2

(σAAσBB

σAB

)2 ξ2
2

(1 − ξ3)3 , (14)

where the ξn are linear combinations of the bulk densities
ξn =

π
6


α nασn
αα. In an inhomogeneous environment, gAB

is generalized replacing the bulk densities nA and nB by the
corresponding inhomogeneous coarse grained densities n̄A(r)
and n̄B(r). These are the averages over spheres of volume
ωα = πσ3

αα/6 centered at r,

n̄α(r) = 1
ωα


dr′nα(r + r′) θ

(
σαα

2
− |r − r′|

)
.

Accordingly, we assume that the spatial dependence of the pair
correlation function at contact enters through its dependence
on the inhomogeneous coarse grained densities. Hence, from
Eq. (14), we arrive at

gAB(r,r + σABŝ) = gbulk
AB ({ξ̄n(r +

1
2

ŝσAB)}), (15)

where the smeared functions ξ̄n are

ξ̄n(r) = π

6
n̄A(r)σ3

AA +
π

6
n̄B(r)σ3

BB.

Substituting Eq. (15) into Eq. (8), we get

*...
,

γXX(x, z)
γZZ(x, z)
γXZ(x, z)

+///
-

=
2σ2

AB

mB


2µABkBT

π

×


dŝ
*...
,

sXsX
sZsZ
sXsZ

+///
-

gbulk
AB ({ξ̄n(r +

ŝσAB

2
)})

× [nA(r + ŝσAB)
mA

+
nB(r + ŝσAB)

mB
]


(16)

which shows that the geometric confinement leads, generically,
to a tensorial friction coefficient that deviates from its bulk
behavior. As we will analyze subsequently, the geometrically
induced off-diagonal components imply that in general, under
confinement, non-ideal fluid mixtures will show transverse
diffusion These off-diagonal components vanish for planar
interfaces, hence showing that transverse diffusion develops
only as a combination of particle interaction and spatially
varying confinement. Specifically, if we consider flat walls,
Eq. (16) reduces to

*
,

γXX(x, z)
γZZ(x, z)

+
-
=

2σ2
AB

mB


2πµABkBT

×
 1

−1
dŝZ


*
,

1 − ŝ2
Z

2ŝ2
Z

+
-
gbulk
AB ({ξ̄n(z+

1
2
σAB ŝZ)})

× [nA(z + σAB ŝZ)
mB

+
nB(z + σAB ŝZ)

mA
]

.

(17)

These expressions are equivalent to those obtained by Davis
and coworkers for slit-like pores by using a method based on
the Born-Green-Yvon equation.32–35

IV. DIFFUSION EQUATION FOR nB IN THE TRACER
LIMIT

The results obtained in Sec. III hold for a general binary
mixture of hard spheres. When one of the components of the
binary mixture becomes extremely diluted (nB << nA), the
method described in Secs. I–III to derive the corresponding
diffusion equations for the mixture dynamics considerably
simplifies and one can arrive at more explicit expressions for
the diffusive fluxes. In the tracer limit, in fact, we may disregard
the B-B interactions and the friction matrix governing the
diffusion of B particles turns out to be independent from the
density profile of the B-particles and is solely a functional of
the solvent density profile, nA(r, t). In the following, we treat
the case of a system prepared in a state where the majority
component A, identified with the solvent, is at thermodynamic
equilibrium, so that u = 0 and its density satisfies the balance
condition:

∇(µA(r) + V A(r)) = 0. (18)
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Although it will not be pursued in the rest of this contribution, the method we will introduce can be easily generalized to
non-equilibrium situations where the dynamics of A particle is known and independent of the B particles.

If we specialize general Eq. (1) for the tracer species, with density nB, and use Eq. (2) to relate the velocity of the tracer
species to local forces, we arrive at

∂

∂t
nB(r, t) = ∇i ·

(
nB(r, t)γ−1

i j (r, t)
 1
mB
∇ j(µB(r) + V B(r)) − 1

mA
∇ j(µA(r) + V A(r)) ) , (19)

where in this limit, γ−1
i j reduces to the i j matrix element of the matrix inverse of γi j = 1

mB γ
BA
i j .

For the confining slit, Eq. (13), which is translational invariant along the y-direction, the relevant components of the flux of
the tracer species in response to density gradients or externally applied forces read

JB
X (x, z) = −

nB(x, z, t)
mB

(
γ−1
XX(x, z)(∇Xµ

B(x, z, t) + ∇XV B(r)) + γ−1
XZ(x, z)(∇Zµ

B(x, z, t) + ∇ZV B(r))) (20)

and

JB
Z (x, z) = −

nB(x, z, t)
mB

(
γ−1
ZX(x, z)(∇Xµ

B(x, z, t) + ∇XV B(r)) + γ−1
ZZ(x, z)(∇Zµ

B(x, z, t) + ∇ZV B(r))) . (21)

The inhomogeneous confinement keeps the tensorial structure
of the friction of the tracer species due to its interaction with
the majority species, A. The structure of the fluxes depends
only on chemical potential gradients in the tracer species and
in the direct effect of external fields on them. However, the
friction coefficients depend functionally on the equilibrium,
inhomogeneous, profiles of the majority species, nA(r), in the
slit. In particular, the knowledge of nA(r) also allows, as shown
in the following, to compute the non-uniform contact value
of the pair correlation gAB which is needed to evaluate the
friction matrix. The structure of γXZ shows that only near a
non-planar substrate, this matrix element is non-vanishing. In
order to give an estimate of this quantity, we perform a Taylor
expansion of the density and of the pair correlation in powers
of the displacement σABŝ up to second order

γXZ(x, z) ≈ 8σ4
AB

15mB


2πµABkBT

· ∂2

∂x∂z
[nA(x, z)gbulk

AB (η̄(x, z))] (22)

and observe that for the appearance of non-diagonal friction
tensor elements, it is necessary to have non-vanishing cross

derivatives
∂m+nnA(x,z)gbulk

AB
(η̄(x,z))

∂mx∂nz
, 0, with m,n odd integers.

These terms vanish as we move away from the interfaces,
where the nA profile becomes nearly constant. Moreover, to
zeroth order in the gradients of the density of the A particles,
the off-diagonal matrix element vanishes because of the parity
of the integrals.

The present treatment generalizes the method proposed
by Davis and coworkers to nonflat confining surfaces and
allows to treat also mixtures with finite concentrations of
host particles. However, in this case, the friction matrix is
time dependent since the motion of the B particles affects the
configuration of the majority species (A particles). Moreover,
also the interactions among the B particles would give a finite
contribution to the friction matrix.24

The off-diagonal component of the friction matrix due
to the inhomogeneous confinement affects the overall longitu-
dinal diffusion of the tracers along the channel. From Eqs. (20)

and (21), in the absence of a net transverse flux, JZ = 0, the
response to an applied force along the channel (or equivalently
the relaxation of an equilibrium fluctuation) is characterized
by the effective longitudinal diffusion coefficient,

DXX(x, z) = kBT
mB

γ−1
XX(x, z) (23)

which has the explicit form,

DXX(x, z) = γZZ(x, z)
γXX(x, z)γZZ(x, z) − γXZ(x, z)2

=
1

γXX(x, z)

1 − γXZ(x, z)2

γXX(x, z)γZZ(x, z)
−1

. (24)

Eq. (24) shows that, due the positivity of the matrix γi j,
the net effect of the off-diagonal terms is to enhance the
diffusivity along the longitudinal direction. The magnitude
of such an enhancement depends on that of the off-diagonal
term in Eq. (16). In order to characterize the magnitude of such
contributions, we use Eq. (22) into (24) getting

γ2
XZ(x, y)

γXX(x, y)γZZ(x, y) ≃
*
,

σ2
AB

Lh
nAmA

ρ
+
-

2

. (25)

The last expression shows that if the particle-particle distance
at contact, σAB, is smaller than the channel width 2h and
the channel varies smoothly, h ≪ L (so that

γ2
XZ

(x, y)
γXX(x, y)γZZ(x, y)

≪ 1), we can expand Eq. (24) obtaining

DXX(x, z) ≃ 1
γXX(x, z)


1 +

γXZ(x, z)2
γXX(x, z)γZZ(x, z)



≃ 1
γXX(x, z)


1 + *

,

σ2
AB

Lh
nAmA

ρ
+
-

2
(26)

that captures the translational diffusivity enhancement along
the longitudinal direction. The second relation in Eq. (26)
provides an order of magnitude estimate of the impact that
channel corrugation has on the enhancement of longitudinal
diffusion. Hence, the time evolution of distribution of particles
in an inhomogeneous environment will experience a faster
broadening as compared to the case of the same distribution
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in a homogeneous environment. It is interesting to note that
such a result can be extended to other scenarios where the off-
diagonal terms in γi j have a different physical origin, e.g.,when
they are induced by spatial variations of an imposed potential.

V. EFFECTIVE ONE DIMENSIONAL DIFFUSION
EQUATION à la FICK-JACOBS

The diffusion equation for the tracer species in the corru-
gated channel, Eq. (19), requires solving a two dimensional
elliptic partial differential equation which can be numerically
involved. In fact, even the determination of the steady current,
JB(x, z), generated by an externally imposed gradient of
concentration or by a force field can become numerically
intensive. When the corrugation of the walls is slowly varying,
one can further approximate the diffusion process and obtain
a mathematically simpler description following the arguments

originally proposed by Jacobs.13 Here, we shall use a method
closely related to the one introduced by Zwanzig14 which
eliminates the transverse degrees of freedom assuming a fast
equilibration of the density profile in the transverse direction,
z.36 The validity of the resulting effective one dimensional
equation, referred to as Fick-Jacobs equation, has recently been
confirmed,17,37–40 who also considered the functional forms
of higher order correction to the effective one dimensional
dynamics.

If the channel width varies slowly, ∇xh << 1, one can
assume that the tracer distribution equilibrates on a time scale
faster than the one needed to reach equilibrium along the
direction of the variation of the channel section. Accordingly,
the transverse equilibrium condition for the B-particles reads

∇Z(µB(x, z) + V B(x, z)) = 0 (27)

and the continuity Eq. (19) can be reduced to

∂nB(x, z, t)
∂t

=
1

kBT


∇Xγ

−1
XX(x, z) + ∇Zγ

−1
ZX(x, z)


·
(
nB(x, z, t)∇Xµ

B(x, z, t) + nB(x, z, t)∇XV B(r))) . (28)

To use the information contained in (27), we separate the local
chemical potential µB into its ideal gas contribution and the
interacting part,

µB(x, z, t) = kBT ln nB(x, z, t) + µB
int(x, z, t), (29)

assuming that the tracer density can be decomposed in its
concentration along the channel, c(x, t), and the conditional
density across the channel section, P,

nB(x, z, t) = c(x, t)P(z |x) (30)

and substitute this expression in Eq. (27). The conditional
density profile, P(z |x), is obtained from the equilibrium
condition in the transverse direction, for any choice, of c(x, t),

P(z |x) = e−β(µ
B
int(x,z)+VB(x,z)) ∞

−∞ dze−β(µ
B
int(x,z)+VB(x,z)) . (31)

Zwanzig showed that with this factorization, one can deduce
the Fick-Jacobs equation for a two-dimensional potential
for non-interacting diffusing particles.14 Deviations from this
conditional local equilibrium can be included still in an
effective, generalized Fick-Jacobs equation where the diffusion
coefficient depends on the channel shape.14,21,40 For interacting
systems, and following Zwanzig, one interprets P(z |x) as the
local equilibrium distribution of z conditional on a given x. For
simplicity, we will always assume that the local equilibrium
factorization, Eq. (30), holds. Accordingly, the results we will
derive will generalize the original Fick-Jacobs equation for
interacting systems. It is worth stressing that in the tracer
limit, µB

int(x, z) only depends on nA, but not on nB so that it is
a quenched variable.

The factorization assumption, Eq. (30), allows us to arrive
at a simplified expression for the diffusive fluxes of tracer
particles, whose component along the channel reads

JB
X (x, z) = −

c(x, t)
kBT

P(z |x)γ−1
XX(x, z)

( kBT
c(x, t)∇Xc(x, t) + kBT

P(z |x)∇XP(z |x) + ∇Xµ
B
int(x, z) + ∇XV B(x, z)) (32)

while its normal component can be expressed as

JB
Z (x, z) = −

c(x, t)
kBT

P(z |x)γ−1
ZX(x, z)

( kBT
c(x, t)∇Xc(x, t) + kBT

P(z |x)∇XP(z |x) + ∇Xµ
B
int(x, z) + ∇XV B(x, z)) . (33)

The homogenization approximation implies that both flux
components depend only on the concentration gradients
along the channel. The inhomogeneous nature of the chan-
nel is encoded in the effective friction matrices and the

expressions for the density profits and excess chemical
potentials.

The net particle flow along the channel, Ix, can be obtained
averaging the longitudinal component over the local channel
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section for no-flux boundary conditions across the channel
walls (see Appendix A),

IX(x) =


dzJB
X (x, z)

= −DXX(x)
(
∇Xc(x, t) + c(x, t)β∇XA(x)) , (34)

where

βA(x) = − ln
( 1

L

 ∞

−∞
dze−β(µ

B
int(x,z)+VB(x,z))) (35)

is the effective potential accounting for both the confinement
and the interactions with the A particles encoded in µint.
Interestingly, A can be regarded as a free energy, being the
logarithm of the integral of the Boltzmann factor. Although we
have introduced the prefactor 1

L
in Eq. (35) for dimensional

reasons, its magnitude is irrelevant in the subsequent analysis
since only derivatives of A affect particle dynamics. In
Eq. (34), we have introduced the pore averaged diffusion,
DXX, one component of the pore averaged diffusion matrix

Di j(x) =
 ∞

−∞
dzP(z |x)|Di j(x, z)|, (36)

which is very similar to the pore averaged diffusivity proposed
by Davis and coworkers.33 Eq. (34) generalizes the Fick-
Jacobs equation to systems of interacting particles in the
tracer limit and, for non-interacting particles, µint → 0, takes
the form of the standard entropic potential contribution to
particle transport along a corrugated channel, where the
diffusion matrix is diagonal and with components that become
constant. It is worth pointing out that non-ideality leads
to an effective position-dependent local diffusion coefficient
from the homogenization process assuming that the density
profiles can be factorized assuming local equilibrium, Eq. (30).
For ideal systems, a position-dependent diffusion coefficient
arises from deviations in the density profile from Eq. (30).
These changes have been obtained performing higher-order
perturbation theories from the original Fick-Jacobs equa-
tion.14,21,40 This difference shows that the origin of the
inhomogeneous effective diffusion after homogenization for
interacting systems is qualitatively different from the effective,
local diffusion derived for ideal systems in the framework
of the Fick-Jacobs equation. A generalization of the density
profile beyond Eq. (30) for non-ideal systems, outside the
scope of this paper, will clarify the relative relevance of the
different contributions to a local, position-dependent, diffusion
matrix for highly corrugated channels.

Eq. (32) shows that the flux along the channel is only a
function of the local DXX component of the pore averaged
diffusion matrix. However, the transverse flux, Eq. (33), will
depend on the cross component DXZ, which does not vanish
only for interacting systems in corrugated channels.

Although the procedure described can be easily extended
beyond the tracer limit, the results obtained are formal and more
complex to use because the friction matrix depends in general
on the concentration of both A and B particles, which depend
now on time. Notice that V B(x, z) and µB

int(x, z) are known
because in the tracer limit they depend only on the majority
species A, so that P(x |z) is time independent. Current intensity
(34) contains a one dimensional diffusive term, a drift term due

to the interactions with the B particles and the walls, and an
entropic term due to the non-uniform shape of the channel.

Since at steady state IX must be constant on every section,
due to particle number conservation, we can express the
evolution equation for the tracer density,c(x), simply as

dc(x)
dx
+ β

dA(x)
dx

c(x) = − IX
DXX(x) , (37)

which can be expressed as a quadrature

c(x) = e−βA(x)

−IX

 x

0

eβA(s)

DXX(s)ds + eβA(0)c(0)

. (38)

At equilibrium, since IX = 0, the tracer species steady state
density profile reduces to its equilibrium shape

c(x) = e−βA(x)eβA(0)c(0), (39)

as expected.

VI. RESULTS

After having obtained the relevant effective transport
equations and density profiles for the tracers along a generic
channel, in this section, we will analyze in more detail
the effects that the inhomogeneities in the distribution of A
particles and/or the channel corrugation have on the transport
properties of the system. The slit is defined by the condition
that the centers of the A particles have their transverse
coordinate −h(x) < z < h(x) and for h(x), we assumed the
functional form

h(x) = h0 + ∆ cos
2π
L

x.

The density profile nA(z, x) can be obtained independently and
numerically by discretizing Eq. (18) on a two dimensional grid
in the (x, z) domain. The solution is determined by an iterative
process which was terminated when the difference between
the profiles relative to the n-th and (n − 1)-th iteration was less
than a relative tolerance 10−10. Using the nA(z, x) profile as
an input, we can compute the inhomogeneous pair correlation
function and the matrix elements of the friction tensor.

We consider first a channel with planar walls as a reference
geometry where the geometrical constraint does not lead to an
x-dependent modulation in the transport coefficient, yet the
presence of a boundary affects the local density of A-particles,
as shown in Fig. 1(b). In particular, in the vicinity of the walls,
the profiles vary rapidly over molecular length scales due to
the action of the confining walls. The inhomogeneous density
leads to a dependence in the friction matrix. As shown in
Fig. 1(a), both elements of the friction matrix decrease upon
approaching walls, whereas near the center of the slit, they
both approach their bulk isotropic value given by Eq. (10).
By inverting the friction matrix, via Eq. (23), we can compute
the diffusion matrix elements. As shown in Fig. 1(b), the non-
homogeneous density profiles lead to an increase of the local
diffusion coefficients. In particular, the transverse diffusion
coefficient DZZ results to be larger than the longitudinal
diffusion coefficient, DXX as shown in Fig. 1 due to the reduced
rate of collision along the normal direction caused by the
presence of the wall (see Appendix B). DXX characterizes the
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FIG. 1. Flat walls. (a) Friction matrix elements γXX (green dotted-dashed
line) and γZZ (blue dashed line) as a function of the distance from the center
of the pore normalized by the particle size σAA. (b) Density profiles (red
solid line), normalized by its values at the center of the channel, ρ0= 0.2,
and DXX,DZZ (green dotted-dashed and blue dashed lines, respectively)
normalized by their values at the center of the channel as a function of the
transverse coordinate, z, normalized by the channel half-section, h0. Inset:
zoom of the main panel.

diffusion of tracer articles along the channel. For impermeable
walls, the diffusion transverse to the channel, and proportional
to DZZ, is essentially a transient process. Finally, we may
expect that in the presence of wetting layers adjacent to the
walls, the friction tensor may increase due to the presence of a
region of higher density close to the wall leading to a reduction
of the local diffusion coefficient.

We quantify the channel corrugation through the param-
eter

∆S = ln


hmax

hmin


. (40)

The dependence of the density profile of A particles upon
channel amplitude is captured in Fig. 2(a). As shown in the
inset of Fig. 2(a), for a slowly varying channel, the density
profiles essentially collapse in a unique curve if the density is
plotted as a function of their distance to the wall. Therefore, the
variation of channel amplitude modulates the overall density
profile but not at length scales comparable to the size of A
particles.

As sown in Fig. 2, for corrugated walls, the variations in
the local channel amplitude lead on one hand to a modulation
of both DXX and DZZ (see Figs. 2(b) and 2(d), respectively),
and on the other hand to a non-vanishing contribution to the
off-diagonal term DXZ (see Fig. 2(c)). In contrast to the density
profiles, which collapse on a master curve in the vicinity of

the channel wall, even though the modulations of DXX and
DZZ approach a master curve when plotted as a function of
the rescaled distance from the wall δz, as shown in the insets
of Figs. 2(b) and 2(d), they show larger deviations from a
master curve when compared to Fig. 2(a). Analogous to the
flat channel, we always find the transverse diffusion larger than
the longitudinal one, DZZ > DXX, whereas for corrugated
channels, the off-diagonal contribution, DXZ, does not vanish
and, as expected, has a magnitude smaller than observed for the
diagonal terms of the diffusion matrix. Moreover, it is interest-
ing to note that while DXX and DZZ are symmetric about the
channel longitudinal axis, DXZ is antisymmetric. Therefore,
particles above (below) the channel longitudinal axis will
experience a local “drift” towards the closest channel wall
that reflects in a positive (negative) off-diagonal mobility µ
= βDXZ that can lead to an excess accumulation of particles on
channel walls when B particles are driven by an external force.

Fig. 3 shows that the dependence of the average
diffusion coefficients, DXX, DZZ, and DXZ, is enhanced
by increasing ∆S. Interestingly, both DXX and DZZ attain
their maximum value in the channel bottleneck, x = 0. In
particular, whileDXX, Fig. 3(a), shows a broader dependence
on the longitudinal coordinate,DZZ, Fig. 3(c) is more sensitive
around the channel bottleneck, x = 0. In contrast, Fig. 3(b)
shows that the maximum ofDXZ is not obtained in the channel
bottleneck and that its position is ∆S-dependent. Showing the
variation of the maximum value of the different components
of the diffusion matrix as a function of the channel corrugation
highlights the impact that geometrical variations have on the
diffusion of trace particles, see Fig. 3(d). For the diagonal
components, one can see increases of tens of a percent for the
longitudinal component of the diffusion and up to 50% for the
transverse one. This plot also highlights that the off-diagonal
component becomes non-zero exclusively as a result of the
corrugation in an interacting system and that the increase in
its value is linear in ∆S.

Both the inhomogeneities in the density of the solvent
species (A-particles) across the channel and the channel
corrugation affect the net transport properties of the system. In
particular, our framework allows us to analyze systematically
the impact that the channel corrugation has on the mean
particle flows. To this end, we analyze the particle flux
induced by an applied, uniform external field when the channel
is in contact with two reservoirs kept with equal chemical
potentials. For what concerns the dependence of the net flux on
the channel geometry, imposing periodic boundary conditions,
c(−L/2) = c(L/2) in Eq. (37) and assuming the symmetry
of the channel, h(x) = h(−x), we obtain expressions for the
flux under the action of a constant driving force, F0, in the
flat channel and in the corrugated channel cases, I f and Ic,
respectively,

I f ,c = cf ,c(L/2)eβ(A f ,c(L/2)− f L/2)(eβF0L − 1)

·
 L/2

−L/2

eβ(A f ,c(x)−F0x)

DXX, f ,c(x) dx
−1

, (41)

where ∆A f ,c = A f ,c(L) − A f ,c(0) and A f ,c stands for the
equilibrium free energy for a flat or a corrugated channel, as
defined in Eq. (35), and DXX, f ,c(x) equals DXX calculated,
respectively, for a flat or corrugated channel.
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FIG. 2. Corrugate walls (∆S = 0.2 for all panels). (a) Density profile, normalized by the bulk value ρ0= 0.2, of A particles as a function of the transverse
distance, normalized by the local channel half-amplitude h(x), for different longitudinal positions, x = 0, L/8, L/4,3L/8, L/2 standing lighter colors for larger
values of x. (b), (c), and (d) Components of the diffusion tensor profile XX (panel b), XZ (panel c), and ZZ (panel d) component, normalized by the bulk value
D0, as a function of the transverse distance, normalized by the local channel half-amplitude h(x), for different longitudinal positions, x = 0, L/8, L/4,3L/8, L/2
(solid lines) and x =−L/8,−L/4,−3L/8 (dashed lines) standing lighter colors for larger values of |x |. (Note that in panels (b) and (d), the dashed lines coincide
with the solid one for symmetry reasons.) Insets: dependence of the respective diffusion tensor profile as a function of the absolute distance from the channel
wall, ∆z = h(x)− |z |, normalized by the A particle diameter, σAA.

The ratio of the mean fluxes in the corrugated and flat
channels, Ic/I f , gives

Ic
I f
=

cc(L/2)e−βAc(L/2)

cf (L/2) e−βF0L/2 eβF0L − 1
βDXX, f (L/2) f

·
 L/2

−L/2

eβ(Ac(x)− f x)

DXX,c(x) dx
−1

, (42)

where we have exploited the fact that for a flat channel L/2
−L/2

e
β(A f (x)−F0x)
DXX, f (x) dx = e

βA f (L/2)
DXX, f (L/2) (eβF0L − 1). For a weakly

corrugated channel, βA ≪ 1 we can expand the diffu-
sion coefficients with respect to the reference, flat channel,
DXX,c(x) = D̄XX,c + D̃XX,c(x). Accordingly, we can expand
the last integral in Eq. (42) for small β(A f (L/2) − F0L) and
D̃XX,c(x) up to second order getting

 L/2

−L/2

eβ(Ac(x)−F0x)

DXX,c(x) dx ≃ 1
D̄c

 L/2

−L/2
1 + β(Ac(x) − F0x) − D̃XX,c(x)

D̄XX,c

+
1
2
β2(Ac(x) − F0x)2 + 2

D̃2
XX,c(x)
D̄2

XX,c

− βAc(x) D̃XX,c(x)
D̄XX,c

dx, (43)

where we have assumed D̃XX,c(x) ≪ D̄XX,c. Without loss of generality, we can assume
 L/2
−L/2 D̃XX,c(x)dx = 0. Accordingly,

the last expression reduces to

 L/2

−L/2

eβ(Ac(x)−F0x)

DXX,c(x) dx ≃ 1
D̄XX,c


L + β(Ãc − F0L) +

 L/2

−L/2

1
2
β2A2

c(x) + 2
D̃2

XX,c(x)
D̄2

XX,c

− βAc(x) D̃XX,c(x)
D̄XX,c

dx


(44)
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FIG. 3. Dependence of DXX (a), DXZ (b), and DZZ (c) as a function of the longitudinal position for different values of the entropic barrier ∆S
= 0.22,0.4,0.51,0.92,1.1,1.6 standing lighter colors for larger values of ∆S (solid lines are for channels whose maximum amplitude is 10σAA while dashed
lines for channel whose maximum amplitude is 6σAA). (d) Dependence of the normalized maximum value of DXX (solid line), DZZ (dotted line), and DXZ

(dashed-dotted line, magnified by a factor of 10 for clarity shake) as a function of ∆S.

which indicates, interestingly, that the tracer flux in a
corrugated channel is reduced by an amount controlled by
the modulation amplitude in both A and D. Moreover, the
presence of the cross term−

 L/2
−L/2 βAc(x) D̃XX,c(x)

D̄XX,c
dx reduces

the overall flux. In principle, this contribution can lead to
flux reversal and, in any case, indicate that there will exist an
optimal channel shape that maximizes the net flux of tracer
particle along the channel.

VII. CONCLUSIONS

We have analyzed the impact that channel corrugation has
on diffusive particle transport. To this end, we have developed
a framework that allows us to capture the coupling between the
intrinsic inhomogeneities due to the microscopic properties of
the medium and the modulations in the channel amplitude.
In particular, we have focused on the equilibrium as well as
transport properties of a very dilute suspension (tracer limit) of
particles, B, moving through an environment formed by larger
particles, A, when the overall system is confined between two
corrugated plates. The interplay between spatial corrugation
and non-ideality leads to a new type of inhomogeneity in the
effective diffusion of tracer particles along a channel, absent for
ideal diffusing particles. The diffusion process is characterized
by a matrix where all its components depend on the local
position along the channel. Channel corrugation also leads to
the development of a new, off-diagonal term in the mobility
matrix for non-ideal systems.

As a reference, we have characterized the density profile
as well as the diffusion coefficients of the solute species (B-
particles) in a flat channel, ∆S = 0. Fig. 1(b) shows that the
presence of the walls induces heterogeneities in the solvent
density (A-particles) that ultimately affect the density and the
diffusivities of B-particles. In particular, both the longitudinal,
DXX, and transverse, DZZ, diffusion coefficients increase
upon approaching the wall. Such a behavior is due to the
lack of A particles in the vicinity of the wall that eventually
decreases the effective drag experienced by the B particle (see
Appendix B).

For corrugated channels, we characterize their inhomo-
geneity in terms of a tuning parameter that measures the
difference between maximal and minimal channel apertures,
and that can be seen, effectively, as a measure of the
geometric, or entropic resistance to particle flow, ∆S. For
corrugated channels, when ∆S , 0, the channel amplitude
modulation leads to density profiles that depend on the
channel local amplitude. Interestingly, the variation of chan-
nel amplitude only mildly affects the density profile of
A particles. Accordingly, the density profiles for different
amplitudes collapse on a master curve in a region close
to channel walls. These modulations in particle A density
eventually determine the effective diffusion coefficients of B
particles. In particular, when ∆S , 0, the off-diagonal terms
DXZ become non-vanishing therefore leading to a coupling
between the longitudinal and transverse transport properties
inside the channel. This new transport mechanism may be
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relevant since it indicates a new transport mechanism that
will affect the effective permeability across inhomogeneous
membranes.

Fig. 2(c) shows the most striking effect of the mesoscopic
modulation of channel amplitude, namely, the appearance of
off-diagonal terms, DXZ in the diffusion matrix of B particles.
This new term appears due to a coupling between the change
in the channel cross section and the interaction between
particles. It is not present for non-ideal systems when the
density profiles satisfy local equilibrium. Interestingly DXZ

is antisymmetric with respect to the transverse coordinate.
Therefore, for systems under an external weak force (for
which the linear response holds), we expect an excess of
accumulation of B particles towards the channel walls in the
first half of the channel and the opposite in the second half,
compare solid and dashed lines in Fig. 2(c).

Since the modulation of the diffusion coefficients depends
on the position of the particles along the channel, the
overall relevance of the modulation of channel amplitude
on the diffusion coefficient is better captured by the average
quantities, DXX, DXZ, and DZZ. Fig. 3 shows that all the
components of the diffusion matrix grow upon increase of ∆S.
In particular, Fig. 3(d) shows that DXZ is the most sensitive
component to changes in the channel corrugation and that it
depends linearly on ∆S. From the point of view of the impact
that channel modulation has on the absolute magnitude of the
diffusion coefficients for the solute, Fig. 3(d) shows that for
the system under study, namely, hard sphere suspension, those
modulations are of the order of some tens of a percent and,
in order to increase them further more corrugated channels
are needed therefore limiting the possible relevance of the
phenomena describe here. In particular, here we focused on
the case of hard sphere suspensions (for which an analytical
form for the two point correlation function is provided) that
introduce a typical length scale, namely, the sphere radius
σAA/2. Therefore, for hard spheres suspension, the bottleneck
of the channel cannot be smaller than σAA and, namely, cannot
be smaller than the characteristic length. However, recently it
has been shown that when the typical length characterizing
the microscopic interactions is comparable to the channel
bottleneck, the coupling between the microscopic properties

of the medium and the mesoscopic properties of the channel
is maximized.11 Therefore, we expect an amplification of the
phenomena we have described for hard sphere suspension in
systems characterized by a typical interaction length that is
larger than the hard-core repulsion such as fluids, polymer
suspensions, or in electrolytes11 just to mention a few among
others that allows for a better overlap between the microscopic
interaction length and the channel bottleneck.
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APPENDIX A: BOUNDARY CONDITIONS

Here, we show that since in the stationary state, the B-
current is solenoidal,

∇ · JB(x, z) = 0 (A1)

and the current intensity, IX, along the axial direction must be
uniform in space. Integrating Eq. (A1) over z, we obtain in the
hard walls case the relation, h(x)

−h(x)
dz∇X JB

X (x, z) + JB
Z (x,h(x)) − JB

Z (x,−h(x)) = 0, (A2)

where the two boundary terms JB
Z vanish only in the case of flat

walls whose normals are parallel to the z direction (condition
of impenetrability of the walls). In order to obtain a result for
nonflat walls, we transform the first term of (A2) as

 h(x)

−h(x)
dz∇X JB

X (x, z) = ∇X

 h(x)

−h(x)
dzJB

X (x, z) − (JB
X (x,h(x)) + JB

X (x,−h(x)))∇Xh(x) (A3)

and use the vanishing of the normal flux at the walls,

JB(x,±h(x)) · n̂(x,±h(x)) = 0, (A4)

where n̂ is the normal to the wall and explicitly we have

JB
X (x,±h)∇Xh(x) ∓ JB

Z (x,±h) = 0. (A5)

We substitute such a result in Eq. (A3) and using Eq. (A2), we
finally obtain that the integral over z of the x component of

the current JB is independent of x,

 h(x)

−h(x)
dz∇X JB

X (x, z) + JB
Z (x,h(x)) − JB

Z (x,−h(x))

= ∇X

 h(x)

−h(x)
dzJB

X (x, z) = 0 (A6)
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that is JB
x is constant on every section h(x)

−h(x)
dzJB

X (x, z) = IX . (A7)

APPENDIX B: SIMPLE ARGUMENT FOR
UNDERSTANDING THE DECREASE OF THE FRICTION
MATRIX ELEMENTS NEAR A HARD WALL

Here, we give a simple argument in order to justify the
decrease of the friction matrix elements near a planar wall. The
argument is based on a rough estimate of the collision time for
normal and tangential motions of the tagged molecules. The
scattering cross section for hard spheres of diameter σ under
bulk conditions is S = πσ2. If the particle moves at an average
velocity vth =

√
kBT/m through an assembly of hard spheres

of density nA, it will suffer the following number of collisions
per unit time:

Ncoll = nASvth =
1
τ
, (B1)

where τ is the average collision time which can be related to
the friction coefficient by

γ =
1
τ
= nAπσ2vth. (B2)

Let us remark that πσ2vth is the volume of the cylinder of
influence of the particle per unit time and that such a volume
is reduced when the particle is at a distance from the wall less
than σ.

It is reasonable to assume that in the proximity of a wall,
both the normal friction and the tangential friction decrease
because the tagged particle will encounter no particles in
the region where the collision cylinder “intrudes” the wall.
Regarding the normal friction such an effect could be modeled
by replacing (B2) by

γNormal(z) = πσ2vth

 z+σ

z−σ dz′nA(z′)
2σ

. (B3)

The rationale of such a formula is the replacement of local
density nA(z) by a coarse grained density obtained averaging
it over a region of thickness σ, which is the region of influence
of the hard sphere. Modeling the presence of the surface at
z = 0 by a stepwise profile (nA(z) = 0 for z < σ/2 and nA

0
otherwise), we have

γNormal(z) = nbπσ
2vth

 z+σ

z−σ dz′θ(z′ − σ/2)
2σ

= nA
0 πσ

2vth

 z+σ

max(z−σ,σ/2) dz′

2σ
(B4)

for z < σ

γNormal(z) = nA
0 πσ

2vth
z + σ/2

2σ
(B5)

and for z > σ,

γNormal(z) = nA
0 πσ

2vth. (B6)

In the case of the tangential motion of the B-molecule,
the cylinder of influence will be smaller if the distance z

between the particle and the wall is less than σ because
part of the volume of the cylinder whose axis is parallel to
the x-direction is not available to the target particles. We
know that the area A(z) of the circular segment (the overlap
between a circle and a half-plane) as a function of the distance
of the particle z from the wall if σ/2 < z < σ is given
by

A(z) = 1
2
σ2(θ − sin θ), (B7)

where

θ = 2 arccos(z/σ). (B8)

Substituting

A(z) = σ2
(
arccos(z/σ) − z

σ


1 − ( z

σ
)2) . (B9)

Thus, the volume per unit time available to particle B to collide
is reduced

Vcyl =
(
πσ2 − A(z))vth (B10)

and we find

γTangential(z) = nA
0 Vcyl = nb

(
πσ2 − A(z))vth. (B11)
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