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Abstract. This paper develops the Jungle model in a credit portfolio framework. The Jungle model is able to model credit con-
tagion, produce doubly-peaked probability distributions for the total default loss and endogenously generate quasi phase transi-
tions, potentially leading to systemic credit events which happen unexpectedly and without an underlying single cause. We show
the Jungle model provides the optimal probability distribution for credit losses, under some reasonable empirical constraints. The
Dandelion model, a particular case of the Jungle model, is presented, motivated and exactly solved. The Dandelion model pro-
vides an explicit example of doubly-peaked probability distribution for the credit losses. The Diamond model, another instance
of the Jungle model, experiences the so called quasi phase transitions; in particular, both the U.S. subprime and the European
sovereign crises are shown to be potential examples of quasi phase transitions. We suggest how the Jungle model is able to ex-
plain a series of empirical stylized facts in credit portfolios, hard to reconcile by some standard credit portfolio models. We look
at model risk in a credit risk framework under the Jungle model, especially in relation to systemic risks posed by doubly-peaked

distributions and quasi phase transitions.
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1. Introduction

Clustering of corporate defaults is relevant for both
macroprudential regulators and banks’ senior manage-
ment. With a robust modelling of credit losses, macro-
prudential regulators may analyse and manage the risk
of systemic events in the economy, and banks’ senior
management may compute the capital needs out of
their core credit portfolios.

Historical corporate default rate data, as described
in [24] and [10], signal the sensitivity of credit defaults
to systemic events in the economy, from the Great De-
pression and the 2007-2009 Great Recession, to the
savings and loans crisis and the burst of the dotcom
bubble, as it can be seen from Fig. 1.

Standard credit portfolio models were not able to
model the tail risks in credit portfolios when the U.S.
subprime and the Spanish Real Estate bubbles bursted.
Some of these models introduce default correlations
through the dependency of the probabilities of default
on macroeconomic factors describing the state of the
economy. As a consequence, when the state of the
economy is “good”, the probabilities of default tend to
go down. Conversely, when the state of the economy is
“bad”, the probabilities of default tend to go up. Aver-
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aging over the business cycle induces default cluster-
ing.

However, these predicted default correlations tend
to be low in comparison to empirical evidence, and
the corresponding probability distribution of the losses
shows “thin tails”. It is widely accepted that in addi-
tion to the dependence on macroeconomic risk factors,
a reasonable credit risk model should include conta-
gion effects, too.

Contagion effects should often give rise to doubly-
peaked probability distributions for the credit losses,
with the first peak being close to the peak of an equiv-
alent binomial distribution (when contagion effects are
weak, and the defaults can be considered as roughly in-
dependent, which is usually the case when the state of
the economy is “good”) and a second peak, at higher
losses, corresponding to avalanches/domino effects of
credit defaults due to contagion.

This paper has the purpose to show a particular class
of credit risk model, the Jungle model,! is able to:

IThe name “Jungle” provides intuition for the complex network
of dependencies among the constituents of a credit portfolio. More-
over, since the lion is the King of the Jungle, we will see the Dan-
delion model (from the French “dent-de-lion”, or lion’s tooth) is the
King of the Jungle of contagion models, since the Dandelion may
describe the contagion arising from banks, which are the main source
of systemic risks.
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Fig. 1. Historical default rates for Global Speculative-Grade bonds,
from [24].

(i) Model contagion among borrowers.

(ii)) Endogenously generate doubly-peaked proba-
bility distributions for the credit losses. As op-
posed to the case of single-peaked probability
distributions, for which higher credit losses are
always less likely than lower losses (at the large
loss regime), doubly-peaked probability distri-
butions show the distressing phenomenon that
very large losses may be more likely to happen
than moderately large losses.

(iii) Show how credit systemic events may occur
suddenly and unexpectedly. A credit portfolio
may inadvertently cross a “quasi phase transi-
tion point”, and its collective behaviour change
all of a sudden, potentially creating systemic
events. We want to emphasize that intuition
usually tells us a systemic crisis requires a
strong single cause originating it; however, this
is not necessarily true. We will show a systemic
crisis can be created without a strong underly-
ing, single cause, and we will learn how to rec-
ognize those “quasi phase transition points”.

Section 3 presents the Jungle model and shows the
Jungle model is the optimal probability distribution for
modelling losses in a general credit portfolio, under
two assumptions:

(1) The Maximum Entropy principle (to be de-
scribed in Section 3) is the right guiding princi-
ple to select the probability distribution of losses
in the framework of credit risk modelling.

(i) All the empirical information of a given credit
portfolio can be summarized as probabilities
of default and default correlations of its con-
stituents.

Fig. 2. A Dandelion and a Diamond.

Section 4 tries to motivate the use of the Jungle
model. In particular, we show that when there is no
empirical information available on default correlations,
the Jungle model becomes the binomial distribution (as
it should). Section 4 continues with the presentation of
a two particular cases of the Jungle model,? the Dande-
lion model and the Diamond model, both of them are
interacting models through contagion, see Fig. 2.

The Dandelion model assumes a central element
in the credit portfolio is connected through contagion
with the rest of the nodes in the portfolio, and no other
pair of nodes is connected. Intuitively, the Dandelion
model mimics the relationship between a bank and its
many borrowers, or even between a Central Bank with
the rest of the economy, see [25].

We show the Dandelion model displays a doubly-
peaked loss distribution, endogenously generated
through contagion. We also find the results of this
model can be interpreted as an endogenously gener-
ated two-valued mixture model: the two states of the
central node can be understood as the two states of the
economy, with the probability of default in the “bad”
state of the economy being higher than the probability
of default in the “good” state of the economy, by an
amount given by the variable representing contagion.
In a sense, the Dandelion model provides a unifying
way to think about both contagion and macroeconomic
risk factors.

We argue the Diamond model experiences a quasi
phase transition for a not unreasonable set of empirical
parameters, showing quantitatively that a small change
in the empirical data may result in significant changes
for the profile of the probability loss distribution, lead-
ing to severe systemic risks, of the kind qualitatively
described in [30] and [31].

In Section 5, we provide a series of policy impli-
cations arising from our contagion models. In partic-
ular, we show both the U.S. subprime and the Euro-

2An expanded version of the article has been posted at arXiv:
1502.06984.
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pean peripheral crises can be understood as particular
instances of quasi phase transitions. Also, we are able
to understand qualitatively other empirical evidence,
such as the thick tails in the historical probability distri-
butions of credit losses presented in Section 2, as well
as the surprising fact that quite often, the worst quality
credit portfolios end up with default rates lower than
the corresponding ones with a better rating.

The final section concludes with a summary of the
results.

1.1. Related literature

Recent literature suggest there are three main
sources of credit clustering: macroeconomic risk fac-
tors, contagion and frailty.

Macroeconomic risk factors, such as S&P 500 re-
turns or short term rates, are common to all credits
in the portfolio. When the economy grows strongly,
the conditional probabilities of default are low. On the
contrary, when the economy weakens, the conditional
probabilities of default increase. The passage in time
of the business cycle induces in a natural way a cor-
relation among credits. Many standard credit portfolio
models can be understood as particular instances of a
mixed binomial model, see [8].

References [2] and [5] reject the hypothesis that
macroeconomic risk factors are able to fully explain
the clustering of corporate defaults by themselves,
even though [19] argues on the contrary.

Contagion can be understood as direct links among
credits, such as the ones in a supply chain, or the bank-
creditor relationship. A financial crisis may be a proto-
typical case of contagion, since banks tend to be highly
connected with large parts of the economy, and their
financial failure may create a deleveraging, impact-
ing directly on the balance sheet of their borrowers.
Contagion was analysed with a dynamical approach in
[6,11,13,21,28,29] and in an Ising setting by [23], fol-
lowed by [16] and [9].

Frailty can be described as the “Enron effect”: once
the disputable accounting practices were revealed to
the public, the probabilities of default of many other
companies, in different sectors and regions, readjusted
according to the new information. Most likely, no di-
rect links out of contagion between Enron and those
companies ever existed, but default correlations arose
nonetheless.

References [2,7,19] and [17] include frailty, conta-
gion or both in order to try and explain the clustering
of corporate defaults, on top of macroeconomic risk

factors. References [2] and [17] conclude both frailty
and contagion are necessary to fully explain the clus-
tering of corporate defaults in their datasets, on top of
the macroeconomic risk factors.

This paper differentiates from the rest of the litera-
ture on contagion networks in the credit arena by argu-
ing its results are independent from the specific details
of the “microscopic” credit interactions. In particular,
the Maximum Entropy principle argues that given a
set of empirical moments of an, in principle, unknown
probability distribution, the “best” probability distribu-
tion is the Jungle model. The relevant empirical data
in the credit arena is known by market participants to
be probabilities of default and default correlations. We
show that assuming both the probabilities of default
and the default correlations correspond to the empiri-
cal moments of the unknown probability distribution of
credit losses, the Jungle model arises “naturally” and
without the need to impose the specific knowledge of
the credit interactions among the constituents of the
considered credit portfolio.

1.2. The data

We use Moody’s All rated Annual Issuer-Weighted
Corporate Default Rates, from 1920 to 2010, see [24],
and [10] value-weighted default rates on bonds is-
sued by U.S. domestic nonfinancial firms from 1866 to
2008.

As often discussed in the literature and among prac-
titioners, default rate data tends to have issues regard-
ing its interpretation as default losses. This is even
more the case for such a long term data set as the ones
we use. Our approach is pragmatic: [24] and [10] data
are no-nonsense, since even though the data definition
process is probably not “rigorous” enough (and it can-
not be), the data probably is robust enough (the data
contains several full business cycles in both cases).

One of the reasons we use a longer data set than is
customary in the literature ([2] uses data starting on
1970; [5] on 1979; [19] on 1982; [7] on 1979) is that
our models do not require the use of macroeconomic
or firm-specific data, so we can go backwards as far
as we want, while there is still default rate empirical
data. On the contrary, for example the S&P 500 was
launched on 1957, so a researcher needs a lot of inge-
nuity to be able to find the corresponding macroeco-
nomic and firm-specific data corresponding to several
decades ago.

From [24], using the default rate for speculative
grade bonds, as well as the number of defaults corre-
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sponding to speculative grade bonds, we are able to
compute approximately the total amount of speculative
grade bonds for each year. For the rest of the paper,
when we try to model speculative grade bonds, we will
use the average number, close to 800.

Unfortunately, the corresponding data for single rat-
ings is not provided in the paper. As a consequence,
when we deal with Caa-C ratings, we arbitrarily reduce
the number for speculative grade bonds by one order
of magnitude, 80.

2. Credit portfolio modelling

A credit portfolio consists of N credit instruments.
A credit portfolio model is a theoretical construct pro-
viding as an output the unconditional probability dis-
tribution for the losses of a given credit portfolio (the
unknown we will focus our attention on for the rest of
the paper).

Moody’s KMV [22], CreditMetrics [12], Credit-
Risk+ [4] and CreditPortfolioView [33] are commer-
cially available credit portfolio models. Additionally,
the Gaussian copula [20] became a widespread tool to
value credit derivatives. None of these credit portfolio
models were able to model tail risks adequately dur-
ing either the U.S. subprime crisis or the sovereign and
banking crisis in peripheral Europe. Especially, some
observers believe the Gaussian copula was a “recipe
for disaster”, see [15,27], when modelling credit tail
risks.

The losses of a credit portfolio can be calculated as
L =YY L =YY EQ—=RR)l, where E; de-
notes the Exposure at Default, i.e. the maximum po-
tential loss out of the credit instrument i (usually, the
nominal of the bond or loan), (1 — RR;) denotes the
Loss Given Default (RR stands for Recovery Rate) de-
scribing the fraction of the Exposure at Default that is
effectively lost when the ith borrower defaults, and /;
is an indicator taking values in {0, 1}, and which de-
scribes if the ith borrower is defaulted or not.

In general, real world cases, [; variables are stochas-
tic, as well as the recovery rates, and the portfolio is
inhomogeneous (in general, E; # E; for at last some
i # j). The modelling for the related probability dis-
tribution of losses is challenging.

We will state our credit portfolio model has been
solved when we have found the probability distribution
for the losses of that portfolio, L. Our target for the rest
of the paper will be to motivate, calculate and analyse
the probability distribution of L.

In this paper and for easiness of presentation, we
will make the assumption of analysing homogeneous
portfolios (with Exposure at Default set at 1), and
we will not model Recovery Rates (which is analo-
gous to assume the Recovery Rates are constant and
the same for all borrowers). However, our methodol-
ogy can equally cope with the general case of inho-
mogeneous portfolios and state-dependent Recovery
Rates, by using standard numerical methods in Sta-
tistical Physics. As a consequence and for the rest of
the paper, the state space simplifies to a set of discrete
variables taking values O or 1, Q = {(I1,l2,...,In) |
i € {0,1},i = 1,2,..., N}. The loss simplifies to
t= Zz]'v:l li.

The probability distribution of a random variable is,
in general, difficult to estimate from empirical data.
One possible way to derive it is to aggregate the dy-
namical, “microscopic” processes underlying the ran-
dom variable. For example, modern physics has been
successful at stating microscopic dynamical laws from
first principles (quantum mechanics and quantum field
theory), and finding the related macroscopic equations
(thermodynamics) through an averaging process called
Statistical Mechanics.

However, in social sciences this process is fraught
with difficulties. In general, the underlying dynamical
processes are unknown. The usual methodology then
is as follows:

The probability distribution of a random variable is
hard to observe per se. But there are observables of the
random variable which can be understood as direct cal-
culations from using the probability distribution. For
example, the expected value of the random variable is
the first moment of the corresponding probability dis-
tribution. The variance and the correlation correspond
to the second moments of the probability distribution.
Skewness and kurtosis, which are widely used empir-
ical observables, are the third and fourth moments of
the distribution.

A mathematically well behaved probability distri-
bution can be fully described by its moments. In par-
ticular, our underlying random variable, the loss in a
credit portfolio, is a bound variable, so we are not con-
cerned about the possibility of moments becoming in-
finite when the tail of an unbound probability distri-
bution is “fat enough”, see [3]. As a consequence, it
makes sense to assume that despite the probability dis-
tribution being not observable, an analyst may finally
recover it through the empirical knowledge of its mo-
ments (or in general, through the knowledge of the ex-
pected value of a general function; the moments are
expected values of polynomials).
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The question is then: given the knowledge of all or
some of its moments, is there a way to find the general
form of the probability distribution of the underlying
random variables?

The Maximum Entropy principle, or Maxent, pro-
vides a specific answer to this question. Maxent as-
serts:

Given a finite state space €2, the probability dis-
tribution in 2 that maximizes the entropy and satis-
fies the following m < card(2) constraints, given
m different functions in 2, fx(x), and m fixed num-
bers Fi, (fi(0) = Yyeq PO)i) = Fi k =

1,2,...,m, as well as a normalization condition
(1) =3 cq P(x) =1,is:
1

P(x) = e‘Z?”:l )\[fi(x)’ (1)

VAUSTYS NN )

where Z is called the partition function, Z(A1, Ao, ...,

Am) =Yg exp (= D Ai fi(x)).

The Lagrange multipliers A; are found by in-

verting the set of m equations F; = (fi(x)) =
_10gZGdgdm) | o m
8)“]" b} — Ly Ly ey .

The intuition behind Maxent is P (x) is the “best”>
probability distribution an analyst can come up with,
assuming all the empirical evidence about the prob-
lem at hand is summarized as expected values of func-
tions (the F; numbers and the f;(x) functions, respec-
tively). The expected values are taken over the (un-
known) probability distribution P (x).

It often happens that while the “real” probability
distribution of a given system is unknown, some con-
straints are naturally known. For example, in the triv-
ial case of throwing a dice, we know that whatever the
correct probability distribution is, the probabilities for
each state (each of the six faces of the dice) must add
up to one. In fact, Maxent for the dice gives a uniform
probability distribution, with a p = % for each of the
faces of the dice.

In the same way, if we know, in addition to the fact
that all probabilities must add up to one, the expected
value of the random variable, Maxent produces the bi-
nomial distribution. We will see below that when, in
addition to the fact that all probabilities must add up
to one, both the expected value of the random variable
and its correlations are known, Maxent gives the Jun-
gle model.

Maxent is a general principle which pervades sci-
ence, see [14]. As a consequence, we feel comfortable

3We leave the “best” concept undefined.

enough by stating that Maxent is a reasonable principle
to pick the probability distribution of losses for a credit
portfolio, consistent with the available empirical data.

Let us apply Maxent to a given credit portfolio:

Our state space is Q = {(1,0,...,In) | I; €
{0,1},i = 1,2,..., N}, a set of discrete variables, ;,
taking O or 1 values, and representing the default/non-
default state of the ith credit. As a consequence, the po-
tential moments we might derive from the (unknown)
probability distribution of losses are:

e The first order moment, (/;). This is the so called
probability of default of the ith borrower, p;.

o The second order moment, (/;/;), fori # j. This
is directly related to the so called default corre-
lation between the ith and jth borrower, p;; =

4ij—Pibj gii = (il;).
Vpia=p)/pid-p))’ J v
e The second order moment, (;l;) = (I?), for

i = j. However, since /; only takes values in
{0, 1}, it is true that ll.2 = [;, so the knowledge of
this second moment becomes irrelevant.

e In general, any power of /;, [ f, with k being a nat-
ural number, becomes /;.

o The third order moment, (/;/;ly), fori # j # k,
would correspond to the effect on the creditwor-
thiness of the ith borrower, assuming both the
jth and kth borrower also default. This effect is
conceivable in theory. However, and as far as we
know, there is no serious discussion of this phe-
nomenon in the credit literature.

e Any moment of order higher than three is bound
to the same discussion as the one for the third or-
der moment above.

There is a general consensus among practitioners
that the corresponding available empirical information
for a credit portfolio can be summarized as:

e The probability of default of a borrower can gen-
erally be estimated, either from CDS for liquid
names, or from Internal Ratings models for illig-
uid bonds or loans. Estimates tend not to be too
noisy.

e The default correlation between two borrowers is
harder to estimate that the corresponding proba-
bilities of default. There are no financial instru-
ments similar to the CDS to imply the default cor-
relation, or if there are, they tend to be illiquid and
over-the-counter (opaque information), and pro-
viding noisy estimates. Having said that, and de-
spite the practical difficulties for its estimation,
the consensus is the default correlation exists, it
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can at least be measured in some cases, and it is a
key variable to understand default clustering.

e Third, and higher, order moments bear no specific
names in the credit arena.

As a consequence, we claim that (at least in our men-
tal framework, which consists of disregarding dynam-
ical, “from-first-principle” equations, and only consid-
ering probability distributions arising from imposing
empirical constraints to Maxent) the empirical avail-
able information for credit portfolios can be summa-
rized in the probabilities of default and default correla-
tions of its constituents.

Maxent selects the Jungle model as its preferred
probability distribution for credit losses, consistent
with the available empirical data, as seen in the next
section.

3. The Jungle model and credit risk

We consider a credit portfolio of N credit instru-
ments, with a space state Q = {(I1,lr,...,.In) | i €
{0,1},i =1,2,...,N}.

We consider the set “labeling” the N nodes, ® =
{1,2,..., N} and the set “labelling” the N (N D pairs
ofnodes,fb ={G ) |i= 1,2,...,N&] > [} (the
pair ij and the pair ji are considered to be the same),
and two subsets of those, 0 € ® and ¢ € D.

In consistency with the previous section, we assume
the full available empirical information of the corre-
sponding credit portfolio can be summarized as the
probabilities of default and the default correlations of
its constituents.

We will always consider & = ©, or in other words,
we assume it is possible to give estimates of the proba-
bilities of default for all the constituents in the portfo-
lio, but ¢ will usually be a proper subset of @, mean-
ing some of, but not all, the default probabilities can
be estimated. The general case will be one in which

1 < card(¢) < YI=1,

Using the framework of Maxent, we claim that
given the following empirical data, consisting of de-
fault probabilities and default correlations:

e p;, Vi € 0,with p; € [0, 1].
e pij,V(, j) € ¢, with p;; € [—1, 1]'wedeﬁneq,~j
4ij=PiP;

such that the relationship —————"—"~~L——
Vpill=pi)/pj(1=pj)

pij>» Y(i, j) € ¢ holds.

Leading to the following empirical constraints:

o pi=(l:),Vieo.
o gij = (lil}),V(, j) € .

Maxent picks the Jungle model among all the prob-
ability distributions consistent with those constraints:*

P b, Iy) = %ezl‘e wilit L pes Pilly

@

where Z = ) g exp (3, aili + Z(i,j)ezz) Bijlil}).
The unknown parameters «; and B;; have to be

found by forcing the probability distribution gives the

right estimates for the empirical information at our dis-

posal, i.e. the constraints p; = (l;) = alaoiz and

gij = (lilj) = L Vi € 0 and V(. j) € ¢.

4. The Jungle model, hands on

After showing the Maxent principle picks the Jun-
gle model as the probability distribution of choice to
analyse credit risk (assuming the full empirical infor-
mation of the credit portfolio can be summarized as the
probabilities of default and the default correlations of
its constituents), we try and motivate the Jungle model,
by studying some particular instances of the general
model.

To accomplish that goal, this section presents a few
particular cases of the general Jungle model: the bi-
nomial model, the Dandelion model and the Diamond
model.

In this section, we will show the Jungle model is
able to introduce credit contagion in a way the standard
credit portfolio models cannot. In particular, the Jungle
model will be shown to model credit correlations un-
der “normal economic conditions” (in a similar way to
a Gaussian copula, at least at a non-quantitative level
of discourse), but also to endogenously generate quasi-
phase transitions, which can be understood as mod-
elling systemic credit crises, arising “out of nowhere”,
a phenomenon that by definition, a Gaussian copula
cannot cope with (in other words, a model under a
Gaussian copula never suffers from systemic crises).

“In the physics literature, the Jungle model is called the Ising
model with external field, with both space dependent external fields
and space dependent local interactions.
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4.1. The binomial model

For a credit portfolio whose probabilities of default
are known and equal to each other, {p; := p | i =
1,2,..., N} but whose default correlations {p;; | i =
1,2,...,N & j # i} are unknown, the probability
distribution chosen by the Maximum Entropy principle
is Py, Ly ... In) = Lexp@ X)L ).

Due to homogeneity, the distribution above becomes
the binomial distribution:

N
P <Z I = e) - (’Z)p@u A
i=1

with the identification p = 1 +£ — . In other words, for

the uncorrelated portfolio, the parameter o can be in-
terpreted as (a simple function of) the probability of
default.

Since the binomial distribution corresponds to in-
dependent defaults, it makes intuitive sense the Maxi-
mum Entropy principle selects it when there is no in-
formation whatsoever on empirical correlations.

4.2. The Dandelion model

The Dandelion model corresponds to a Jungle model
with N + 1 borrowers, such that the first one, defined
as i = 0 and considered to be at the centre of the
Dandelion, is “connected” to all remaining borrow-
ers, at the external surface of the Dandelion, such that
Boi =: BF#O0fori =1,2,..., N. Any other borrow-

ers remain unconnected, g;; = Ofori =1,2,..., N
& j > i. For simplicity, we assume «; =: « for
i=1,2,...,N.

The probability distribution for the Dandelion model
is P(li,by...,In) = Lexplaolo + a XN 1 +
B ZiNzl loly).

The Dandelion model, despite being interacting, can
be fully solved, with the probability distribution for its
losses given by:

N
1 (N
P<€ - Zl') = 5 (e o),
i=l
4)

where Z is given by Z = (14 %)V +¢%0(1 4 ¢*+F)N|

and ag = (N — D)log(+52) + Nlog(=2=4 ),

N=800 p=0.028 p,=0.028

p=0.00 -

0.1 p=001 -
p=0.02
p=0.04 -

2008 p=0.08 -

= p=0.16

a p=032 -

g 0.06 - ‘ L
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Fig. 3. Probability distributions for the losses of the Dandelion
model, corresponding to different default correlations.

- pP—q4 — g 1=po—p+tq
o = log( l—po—p+q) and f = IOg(po—q P—q ),
where g can be derived from the definition of default

correlation, p = 4= Ppo

Vp(I=p)/po(1—=po)
To provide intuition for the Dandelion model, we

have calculated its probability distribution for a set of
reasonable parameters, N = 800 and p = py = 2.8%,
which correspond to the historical default rate average
for global speculative-grade bonds, as per [24], and for
a given range of possible default correlations. The re-
sult can be found in Fig. 3.

The probability distributions in the picture show a
“double peak” pattern: on one hand, a first peak, cen-
tred at low losses and not unlike the corresponding
peak for a binomial distribution. On the other hand,
a smaller but not insignificant second peak, corre-
sponding to a high level of losses, and consistent with
avalanches/domino effects due to contagion.

The higher the default correlation, the higher the
extreme losses (the second peak moves further to the
right on the chart). Also, the higher the default cor-
relation, the lower losses on the first peak. Contagion
works both ways: defaults lead to more defaults (with
respect to the binomial case), non-defaults lead to more
non-defaults (with respect to the binomial case). These
two effects can be seen more specifically from the two
insets in the chart.

The Dandelion model can be understood as a bridge
between macroeconomic risk factors and contagion.
Specifically, in the derivation of the Dandelion model,
the following equation arises:

p = - po)p(@)+ pop(ax+p) &)
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where p(a) = H-%

between p and « described for the binomial (non-
interacting) case.

As a consequence, the central node in the Dande-
lion could be interpreted as endogenously generating a
“macroeconomic state of the economy”, whereby for a
fraction of time given by 1 — po the economy remains
in a “good” state of the economy, with a probability
of default for its constituents given by p(«x) = H%’
and for a fraction of time given by pg the economy re-
mains in a “bad” state of the economy, with a probabil-
ity of default for its constituents given by p(a + B) =
where p(a + B) > p(«), and the difference

corresponds to the relationship

is accounted by the “contagion factor” g.

In other words, the Dandelion model endogenously
generates a kind of mixture of binomials, able to gen-
erate a doubly peaked distribution and clustering of de-
faults.

4.3. The Diamond model

The Diamond model is defined by Z =
le,lz,...JN exp(a ZlNzl L + B Zi>j lilj), and it was
first analysed in [23]; see also [1] and [26].

The Diamond model describes a set of credits, all
interacting among each other. For example, if N = 4,
node 1 could be a bank, node 2 a cement producer,
node 3 areal estate developer and node 4, a car dealer.
The cement producer, the real estate developer and the
car dealer get financing from the bank, so there are
correlations of defaults between the pairs 12, 13 and
14. Also, the cement producer is a supplier to the real
estate developer, so the pair 23 is also correlated. Fi-
nally, workers at firms 2 and 3 purchase cars from the
car dealer, so a default of 2 or 3 would impact on 4
business, creating also default correlations between 24
and 34.

The partition function for the Diamond model is
given by:

N N Bypa B2
7 — (@=5)e+56 6
g(z)"’ (6)

And the corresponding probability distribution for
the losses will be:

N _B B2
N\ el@—De+5¢
P e:}jz,):( )7 (7)
( i=1 ¢ 4

We can relate the empirical data, p and p to the
model parameters « and B8, from the following two
equations which can be inverted numerically:

N
1 N Brpo B2
— ¢ (a—5)e+5¢ , 8
P=7N L (z) ¢ ®)
2
1= 7NN -1

N N\ 1 Brpo B2
x Z <E>54(5 — 1)@ D3, )
=0

The Diamond model clearly exemplifies one of the
most interesting phenomena of the Jungle model: quasi
phase transitions.

Let us see how the probability distribution of losses
for the Diamond model changes, when we smoothly
change default correlations, for the probability of de-
fault fixed at a given level (with parameters N = 20
and p = 40%, for easiness of visual inspection; below,
we will provide another example, with N = 50 and
p = 2.8%), as shown in Fig. 4:

We can see there is a sudden change of collective be-
haviour for the probability distribution of losses when
we smoothly change p from 10% to 20% to 30%, at
some point between these default correlations:

For default correlations at around 10% or below, the
Diamond model presents a standard behaviour with
losses spread with a given width around the expected
value, 40%. However, when the default correlation in-
creases only slightly (to 25%, say), a different be-
haviour for the probability distribution of losses starts
to emerge: the probability distribution for the losses
becomes bimodal, as it can be seen from Fig. 4. And
the more the default correlation increases, the larger
the potential losses out of the second peak on the right.

Another numerical example, this time with N = 50
and p = 2.8%, the average default rate for speculative-
grade bonds in the [24] sample, shows how a quasi
phase transition changes dramatically the risk pro-
file of the loss probability distribution, given small
changes of the empirical values determining the port-
folio (probabilities of default and, especially, default
correlations):

From Fig. 5, we can see a sudden jump for the Value
at Risk at the 99.9% confidence level, given a small
increase in the default correlation.’

SThis is the explanation for the use of the “phase transition” con-
cept, borrowed from Statistical Mechanics. Phase transitions suffer
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Fig. 4. Loss probability distributions for default correlations below,
around and above the quasi phase transition point.

The above phenomenon can also be analysed by
looking at how the empirical variables, both the prob-
ability of default and the default correlation, change
when the model parameters, « and §, change, as shown
in Fig. 6.

Despite the fact that for a finite N, there can be no
(exactly discontinuous) phase transition, from the fig-
ures above we can see a sharp, almost discontinuous
behaviour throughout a clearly visible diagonal line in
the space of model parameters. By analogy, we give
the name “quasi phase transition” to that phenomenon.
The existence of such a line, ending in the so called
“critical point”,6 is well known in the Condensed Mat-
ter physics literature.

a sudden jump in a given variable, induced by a small change in an-
other, underlying variable. However, a quasi phase transition is not
a phase transition, as properly defined in Statistical Mechanics. For
example, phase transitions for the Ising model, the equivalent of the
Jungle model in Physics, cannot happen for finite N, and throughout
the paper we assume N is always finite.

61t is known in the Physics literature the critical point lies at o =
-2,8 = % in the large N limit, corresponding approximately to a
probability of default of 44% and a default correlation of 11% for
N = 80.
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Fig. 5. Cumulative probability loss distributions for default correla-
tions below, around and above the quasi phase transition point.

Since there is a known relationship between the em-
pirical parameters, the probability of default and the
default correlation, and the model parameters, o and
B, an analyst can use either the empirical parameters
or the model parameters to describe the behaviour of
the model. The model parameters tend to be more use-
ful to analyse the behaviour of such systems, because
as observed from Fig. 6, a small change in the empiri-
cal parameters always results in a small change for the
model parameters, but the opposite is clearly not true
(at the line of quasi phase transitions):

Also, any credit portfolio is driven by underlying,
fundamental economic factors (both macroeconomic
and microeconomic). As a consequence, we can un-
derstand the evolution in time of a credit portfolio de-
scribed by such a model as the smooth change of the
model parameters when the underlying, fundamental
economic factors change. Usually, the empirical pa-
rameters will be such that the system will move around
the bottom left corner of Fig. 6 (relatively low proba-
bilities of default and default correlations).

However, when the economic conditions are such
that the system is close to (but still below) the line of
quasi phase transitions, a small change in the underly-
ing, fundamental economic factors may lead to a small
change in the model parameters, such that the system
may inadvertently cross the line of quasi phase tran-
sitions, resulting in an abrupt, almost discontinuous,
change in the empirical parameters.

As a consequence, the Diamond model shows anti-
intuitively that the collective behaviour of the portfolio
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Fig. 6. Probability of default and default correlation for a given set of model (normalized to values between O and 1) parameters, « and B, and

N = 80.

may significantly change due to small changes of the
empirical values determining it.

This phenomena is not unlike the phase transition
of water into steam: if we increase one degree Celsius
the temperature of water at 98 degrees Celsius, the re-
sulting water at 99 degrees Celsius continues “being
water” (small details will change, for example a ther-
mometer inside the water will show a small increase
in its readings, but water will remain “being water”).
However, when the temperature increases a further de-
gree Celsius, there is a sudden change in the collective
behaviour of water, becoming a coexistence of steam
bubbles and liquid.

So, a small change of the underlying parameters
leads to a significant change of the behaviour for the
whole system. This is surprising, since if we could
solve all the dynamical equations of motion for the say
1023 particles in a litre of water, it seems unlikely that
with that knowledge we could have forecasted such a
dramatic change of behaviour. It is the averaging out of
“irrelevant” degrees of freedom, undertaken by statis-
tical mechanics, which allows to keep only the (small
set of) parameters which really matter at the level of
one litre of water.

Analogously, the Diamond model shows a quasi
phase transition from a phase dominated by a
“binomial-like” behaviour, whereby losses spread over
a given width, centred around the expected loss, to-
wards a coexistence region, dominated by avalanches
due to credit contagion, and determined by a doubly
peaked distribution. The transition from one phase to

the coexistence region is caused by a smooth change of
the empirical parameters defining the portfolio (prob-
abilities of default and default correlations). However,
the variation in the global shape of the probability dis-
tribution changes significantly the risk profile of the
portfolio, potentially inducing systemic risks.

5. Policy implications of contagion

In Section 4, we have described how the Jungle
model depends on the probabilities of default and de-
fault correlations of its constituents, plus the topology
of the “contagion network”.

We have seen that for several topologies, with not-
too-unreasonable values for the probabilities of default
and default correlations, the probability distributions of
the credit losses become doubly peaked, out of credit
avalanches triggered by contagion.

In particular, we have analysed how increasing the
default correlation for the Dandelion model, leads to
the second peak moving to more extreme losses (more
extreme domino effects), as well as the first peak mov-
ing towards zero losses. The inability of some credit
portfolio models to accommodate these stylized facts,
even for some models used in practice for regulatory
purposes such as [32], has been highlighted by [18].

In the following sections, we will describe the policy
implications suggested by the effects above.
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5.1. The U.S. subprime and the European sovereign
crises as quasi-phase transitions

Both the U.S. subprime and the European sovereign
crises caused sharp spikes in probabilities of default
“across the board”. However, such increases were
mostly concentrated in specific sectors of the economy
(e.g., financial corporates, such as Lehman and AIG,
during the U.S. subprime crisis).

For the following argument, it will be important
to highlight that not only the probabilities of default
jumped during the financial crises, but also the (av-
erage pairwise) default correlations, as it can be seen
from Fig. 7.

Before the crisis, market expectations implied low
probabilities of default and default correlations for the
overall economy, in particular the same held true for
the financial sector. Also, risk aversion was probably
“low”, and as a consequence, the risk premium associ-
ated to the market values of both empirical parameters
was also “low”.

However, when the crisis erupted, both probabilities
of default and default correlations spiked up for the fi-
nancial sector as a whole. Even more, if it were pos-
sible to define the sub-sector of the most speculative
parts of the financial sector (those companies exposed
the most to subprime assets), it seems reasonable to
assume the probability of default of such sub-sector
reached exceedingly high levels, of the order of mag-
nitude of 50%.

From the analysis of the Diamond model, we have
seen quasi phase transitions arise naturally. And the
Diamond model, with equally pairwise default cor-
relations, is the corresponding Jungle model associ-
ated to a homogeneous portfolio whereby all nodes
are connected to each other. And the sub-sector of
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Fig. 7. Historical default correlation for both iTraxx XOver and CDX
1G.

the most speculative parts of the financial sector con-
stitutes a credit portfolio which probably can be cor-
rectly approximated as homogeneous, with each node
connected to any other node in the network. In fact,
the standard methodology to imply default correlations
from traded credit indices, such as CDX IG or iTraxx
XOver, assumes all their individual components have
the same default correlation with every other name in
the index.

Then, for a Diamond model, and under “normal”
(non-crisis) conditions, the fundamental situation of
the economy is such that both the probabilities of de-
fault and the default correlations are “low”, resulting in
an economy located around the bottom-left corner of
Fig. 6. However, in a crisis, and for that sub-sector of
the economy exposed the most to the key fundamen-
tals of the crisis, the model parameters o and 8 may
get closer to the “line of quasi phase transitions”, from
below. As we have observed before, the “critical point”
of such line corresponds to a probability of default of
44% and a default correlation of 11% for a reasonable
set of parameters.

As a consequence, if for such a sub-sector, the im-
pact of the deterioration in the fundamental situation of
the economy implies that the corresponding probabili-
ties of default and default correlations are close (from
below) to 44% and 11%, resp., just a little bit of fur-
ther economic deterioration may result in the model
parameters, o and B, crossing up the “line of quasi
phase transitions” (from the bottom left corner, to the
top right corner). Such a small change may be immate-
rial in the model parameters space, but in the empirical
parameters space, the impact is huge: both the prob-
ability of default and the default correlation spike up,
from low levels (close to 0%) to high levels (close to
100%).

The policy implication of the discussion above is
then as follows: monitor closely the model parameters,
a and B, of the sectors of the economy most exposed
to potential future systemic crises (the financial sec-
tor being always one of such sectors), and raise a red
flag once and if the model parameters are getting closer
to the “line of quasi phase transitions”, or at least, a
reasonable stress test suggests the model parameters
might cross such line in case of a sudden macroeco-
nomic/microeconomic shock.

In particular, let us highlight that such a policy
would have resulted in a “red flag” for both the U.S.
subprime and the European sovereign crises at the be-
ginning of such crises, and even possibly a bit before
their sudden eruption, as it can be seen intuitively from
the default correlation figures above.
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5.2. Understanding the historical probability
distributions of credit losses

The historical default rates provided by [24] (also
data from [10] would allow us to reach similar conclu-
sions) yield the histograms in Fig. 8.

From visual inspection for the three figures, there
are too few data points to robustly ascertain if the prob-
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Fig. 8. Histograms for data in [24].

ability distributions for the default rates have one peak
or more. Intuitively, it seems the tail is a fat one, with
credit loss realizations up to 100%, in the case of Caa-
C rating.

The question is then if this evidence contradicts our
claim that the fact that Maxent picks the Jungle model
as its probability distribution of losses of choice sug-
gests the Jungle model is a reasonable credit risk model
to be considered in practice, since the Jungle model is
often (for several topologies) doubly peaked, as for ex-
ample the Dandelion model.

The answer is that it does not. The historical distri-
bution of losses presented above can be understood as
follows:

Let us assume, without loss of generality, that the
empirical probabilities of default and default correla-
tions only change once per year, on Jan Ist. Let us as-
sume the corresponding topology gives rise to a Jungle
model generating doubly-peaked probability distribu-
tions. Then, the losses that year will be a realization of
that particular Jungle model. Probably, the realization
will fall under the first peak. But the more years we
repeat the same procedure (with their corresponding
probabilities of default, default correlations and topol-
ogy), the more likely is a realization occurs on the sec-
ond peak (contagion effects, generating an avalanche/
domino effect of credit defaults).

From the Dandelion model, we have found out the
position of the second peak is largely determined by
the default correlation (the probabilities of default also
matter).

As time passes by, we will have a series of realiza-
tions of the second peak. But importantly, the empir-
ical data for each realization (probabilities of default,
default correlations and topology) will most likely be
different for each year, probably generating a double
peak at different location on the axis of losses for each
realization of the second peak.

As a consequence, the historical probability distribu-
tion of losses will probably have only a first peak, con-
sistent with the fact that in the majority of realizations,
losses are basically contagion-less, so that first peak
will be roughly similar to the one of a binomial model,
but wider due to the mixing with different macroeco-
nomic conditions over several business cycles, and a
fat tail generated by realizations of the doubly-peaked
probability distributions arising from the Jungle model.

This way of thinking allows us to understand how is
it possible the tail of the empirical probability distribu-
tions is so “thick™: the tail is generated through indi-
vidual realizations of double peaks. This way of think-
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ing relaxes the need to include extreme probability dis-
tributions which are able to cope by themselves with
the difficult task to model both extreme default events,
and default events in a “good” economy state.

Even more, the Jungle model allows us to under-
stand a stylized fact of the probability distribution
of losses for highly risky portfolios, exemplified by
Moody’s Caa-C rating data: despite the fact Caa-C rat-
ing bonds are highly risky (and there is even one year
where 100% of bonds in the sample defaulted), it also
happens very often that Caa-C rating bonds enjoy a de-
fault rate close to 0% (on the sample, there are several
years with 0% default rate). In fact, this phenomenon
of 0% default rate happens more often for Caa-C than
for bonds with a much better rating, which seems intu-
itively odd, see [18].

However, the Dandelion model is able to explain this
stylized fact: for Caa-C rating bonds, it seems likely
that the individual bonds are described not only by high
probabilities of default, but also by high default corre-
lations among themselves (or with a central node, in a
similar way to the Dandelion model; possibly banks or
other financial suppliers specialized on risky lending).

From the charts in the Dandelion model section, we
can see that in this region of parameters, the higher the
default correlation, the larger the losses for the dou-
ble peak. But in addition to this effect, also the higher
the default correlation, the lower the losses for the first
peak. This is consistent with a contagion effect: conta-
gion not only works on “bad” situations (a default in
a node induces a default in another node nearby), but
also on “good” situations (a non-default in a node in-
duces a non-default in another node nearby).

As a consequence, this framework of thinking leads
us to suggest that the most relevant variable to ascer-
tain default clustering is not the probability of default
(as standard rating classifications appear implicitly to
suggest) but default correlations.

6. Conclusions

This paper presents and develops the Jungle model
in a credit portfolio framework. The Jungle model gen-
erates a probability distribution for the losses of a
credit portfolio with the following stylized facts:

(i) The Jungle model is able to model contagion
among borrowers.

(i) The Jungle model endogenously generates
doubly-peaked probability distributions for the
credit losses, with the second peak consistent
with avalanches/domino effects out of conta-
gion.

(iii) The Jungle model endogenously generates
quasi phase transitions, meaning small changes
in the portfolio may result in sudden and unex-
pected systemic risks. The Jungle model helps
us to ascertain the location and nature of those
quasi phase transition points.

We study a series of particular cases of the Jungle
model, in particular the Dandelion model and the Dia-
mond model.

The Dandelion model exemplifies the emergence of
doubly-peaked probability distributions. The Diamond
model quantifies how and when a quasi phase transi-
tion may occur for the Jungle model.

Model risk arises from the genuine model uncer-
tainty: potentially, there will be many different Jun-
gle models consistent with the set of available empir-
ical data for our portfolio. As a consequence, by con-
sidering the potential systemic risks of this ensemble
of Jungle theories allows us to address model risk. In
particular, we have shown that for not too unreason-
able data, some Jungle models endogenously generate
a quasi phase transition, i.e. given small changes in the
underlying empirical parameters may induce sudden
changes in the collective behaviour of the system, po-
tentially and inadvertently generating systemic events.
Quasi phase transitions and doubly-peaked probability
distributions represent a challenge for model risk.

The analysis of the Jungle model in general, and of
the Dandelion and Diamond models in particular, leads
to some policy implications of contagion. We are able
to understand qualitatively some empirical evidence,
such as the embedding of the U.S. subprime and the
European peripheral crises into the general framework
of quasi phase transitions, the thick tails in the histor-
ical probability distributions, as well as the surprising
fact that quite often, the worst quality credit portfolios
end up with default rates lower than the corresponding
ones with a better rating.

We believe the study of the Jungle model in the
credit arena, especially for regulatory purposes, de-
serves further attention.
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