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Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around
the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the
evolution of ground state structures of such systems as the rotational frequency � increases. Various kinds of
ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair
correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density.
For N�10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N
increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much
more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak
rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is
restricted to the vicinity of some critical values of the rotational frequency �.
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I. INTRODUCTION

A. Ordered structures in ultracold gases and their detection

Ordered structures, and in particular hidden ordered struc-
tures, have been a subject of intensive studies in the physics
of Bose-Einstein condensates �BECs� �1–4�, and more gen-
erally, in the physics of ultracold atoms.

The paradigm example of such structures is realized in the
interference of two BECs, observed in seminal experiments
of Ref. �5�. Suppose that, despite the superselection rule, one
could prepare the two condensates in coherent atomic states,
characterized by fluctuating atom numbers N1, N2, but
sharply defined phases �1, �2, minimizing the Heisenberg
uncertainty relation for the number and phase operators.
Then, the phase difference ��=�1−�2 would determine the
position of the interference fringes. Similarly, if we prepared
two condensates by, say, splitting a parent condensate with
fixed number of atoms N=N1+N2, we would arrive at sharp
values of both �� and N1−N2. Amazingly, the interference
pattern will also appear if the two BECs in the Fock states
�with fixed N1 and N2� overlap. The reason is, as pointed out
in Refs. �6,7�, that as soon as we start detecting atoms with-
out knowing which condensate they originate from, the mea-
surement will introduce the necessary uncertainty of the
atom numbers, narrowing the relative phase distribution. As
a consequence, an interference pattern with a sharply defined
�� is obtained in each realization of the measurement. We
may say that the measurement process uncovers the other-
wise hidden interference pattern in the two-point first order
correlation function of atomic creation and annihilation field

operators, ��̂†�r��̂�r���. If experimentally averaged over
many realizations the interference pattern vanishes, since
each realization leads to a different and completely random
��. Similar measurement induced structures, and the inter-
play between single shot and averaged results, have also
been discussed in the context of dark solitons in BEC �8�.

Other types of ordered structures occur in rotating BECs.
In the standard scenario, as the rotational frequency in-

creases, more and more vortices appear in the form of regu-
lar structures �4,9,10�. As their number grows, they organize
themselves in a triangular Abrikosov lattice �11�. Note that in
principle the ground state of the rotating system in a har-
monic trap should ideally be rotationally invariant and have a
fixed total angular momentum L, ergo it should not exhibit
any structures that break rotational symmetry, as the Abriko-
sov lattice does. In reality though, the preparation of vortices
is performed by a “laser stirring” process that breaks rota-
tional symmetry, and introduces significant couplings be-
tween states with different total angular momenta �12�. Here,
one deals with a situation in which the preparation process
�which may also be regarded as a form of measurement�
reveals elsewise hidden structures in the density of the con-
densate, i.e., in the one-point first order correlation function
��̂†�r��̂�r��.

As it is very well-known from quantum optics, measure-
ments of first order correlation functions �first order “coher-
ence”� do not always reveal the underlying structures. In
order to see them, one has to measure higher order coher-
ences, such as second order correlation functions
��̂†�r1��̂†�r2��̂�r3��̂�r4��. The paradigm example for this
necessity goes back to Michelson interferometry �13� which
measures first order coherences and is sensitive to atmo-
spheric fluctuations. This deficiency of Michelson interfer-
ometry has stimulated Brown and Twiss �14� to measure the
intensity-intensity correlations of the radiation coming from
Sirius, which in turn allowed them to precisely determine the
coherence length and the angular size of this star.

Measurements of second order correlations play an
important role in the physics of ultracold gases �for
earlier works on atomic beams, see �15��. The most directly
measurable quantity is the density-density correlation
�pair correlation function, called pc function below�:
��̂†�r1��̂†�r2��̂�r2��̂�r1��, which formally is the two-point
second order correlation function of the atomic field opera-
tors. This function has been directly measured in a recent
atom counting experiment of the Orsay group �16�, for the
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first time directly demonstrating an atomic Hanbury Brown-
Twiss effect for thermal atoms and the second order coher-
ence of a BEC. Earlier, a four-point second order correlation
function had been measured in Hannover �17� where density-
density correlations of interfering condensates have been
monitored in order to precisely determine the phase coher-
ence length of quasi-one-dimensional �1D� condensates, in
full analogy to the Hanbury Brown and Twiss method.

Recently, yet another tool, i.e., noise interferometry, has
been proposed to analyze visible and hidden structures ap-
pearing in various quantum phases of ultracold gases
�18–20�. This method also allows one to determine density-
density correlations, and has been used by several groups to
study, for instance, interference of independent BECs �21�,
residual coherence and lattice order in Mott insulators �22�,
and pair correlations of fermionic atoms in a Fermi super-
fluid �23�.

At this point it is necessary to mention that the double
�spatial and temporal� Fourier transform of the pc function is
known to be a dynamical structure factor �4�, and is also
measurable, for instance, in Bragg scattering experiments
�24�.

B. Rapidly rotating ultracold gases

Recently, a considerable interest has been devoted to rap-
idly rotating ultracold gases, which also exhibit various kinds
of ordered structures, and should therefore be investigated
along the lines discussed in the previous section.

Typically, one considers a quasi-two-dimensional �2D�
gas in the XY plane rotating around the Z axis with frequency
�, and confined in a harmonic trap of frequency ��.
As stated above, in macroscopic atomic clouds for moderate
����, the Abrikosov vortex lattice is formed �9,10�. As
� approaches ��, the vortex lattice melts, and the system
evolves through a sequence of strongly correlated states
�25,26�. Finally, in the regime of critical rotation, it forms a
bosonic Laughlin liquid �27�.

Alternatively, the various regimes of rapidly rotating
gases can be described in the terminology of fractional quan-
tum Hall effect �FQHE� theory �28�. The crucial role is
played by the direct analog of the Landau level filling factor
in the FQHE which can be related to the number of vortices
Nv by �=N /Nv as defined in the BEC mean field description
valid for large systems and moderate rotation.

The first papers on atomic systems �25,26� have consid-
ered the lowest Landau level �LLL� for strong enough rota-
tion. Recently, correlated liquids at �=k /2 for k=1,2 ,3 , . . .
for �	�c�6–10 have been discussed �29�. These states re-
semble to a great extent the states from the Rezayi-Read
�RR� hierarchy �30�: k=1 is the Laughlin state, k=2 is the
Moore-Read paired state �31�, etc. It has been shown that the
presence of but a small amount of dipole-dipole interactions
unambiguously makes the RR state with k=3 the ground
state at filling �=3/2. This state is particularly interesting,
since its excitations are both fractional and non-Abelian. The
validity of the LLL approximation for rotating gases is also
discussed in the recent preprint �32�.

Most of the literature on ultracold rapidly rotating gases
aims at considering relatively large systems and even the

thermodynamic limit. In numerical simulations, either peri-
odic �torus� or spherical boundary conditions are used. Un-
fortunately, in the N→
 limit the gap separating the Laugh-
lin state from its excitations vanishes. Observation of
Laughlin states not only requires one to reach the LLL, but
also to control very precisely a delicate balance between �
and ��. Despite the progress in experimental studies of vor-
tex lattices �33,34�, and first steps towards LLL physics �35�,
experiments have not yet reached this regime.

The problems related to the short range nature of the Van
der Waals forces can be overcome in dipolar gases, i.e., gases
that interact via magnetic or electric dipole moments �for a
review see �36��. Rotating dipolar bosonic gases are expected
to exhibit exotic behavior in the weakly interacting regime
�37�, whereas fermionic dipolar gases have a finite gap for
the �=1/3 Laughlin state �38�. The first observation of BEC
of a dipolar gas of chromium atoms with large magnetic
dipole has been recently reported �39�, and several groups
are trying to realize and control an ultracold gas of hetero-
nuclear molecules with large electric dipole moments �40�.

Another way to create highly correlated liquids could be,
not to mimic effects of magnetic fields by rotation, but by
appropriately designed control of tunneling phases in optical
lattices �41�. In trapped gases, a similar effect may be real-
ized by employing electromagnetically induced transparency
�42�.

However, the most promising way towards the FQH re-
gime and related states may be achieved by use of an array of
rotating optical microtraps, either in an optical lattice �43�, or
created by an array of rotating microlenses �44� or by ma-
nipulation of microscopic size traps created by a tightly fo-
cused laser, as in experiments of Ref. �45�.

In such arrangements, it will be natural to study
mesoscopic, or even microscopic systems, of few atoms.
Such experiments demand careful theoretical studies of few
atom systems using possibly exact methods, such as exact
diagonalizations of the Hamiltonian with open boundary
conditions in the presence of the harmonic trap, or even a
deformed trap. Such studies have recently been initiated
�46�, and the possibilities of an adiabatic path to fractional
quantum Hall states of a few bosonic atoms have been in-
vestigated in detail. We continue the studies of small systems
of atoms in rotating traps, and expand them in the present
paper.

C. Plan of the paper

The main focus of the present paper is to study and ana-
lyze the ground state �GS� ordered structures and interfer-
ence patterns �IP� of two-dimensional Bose systems of few
atoms confined in a harmonic trap in the XY plane and sub-
mitted to fast rotation around the Z axis. We investigate here,
on one hand, the situations where the cylindrical symmetry is
explicitly broken so that the one particle density already ex-
hibits ordered structures due to the coherent mixing of de-
generated GS with different total angular momenta. Further-
more, we consider situations in which the ordered patterns
are hidden in a pure single state with well-defined angular
momentum, and are evident only through inspection of the
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pair correlation �pc� function calculated by means of exact
diagonalization. This formalism turns out to be the appropri-
ate method to deal with small systems, for which the as-
sumptions made in mean field theories do not apply. Such
systems are experimentally accessible, and both density and
pc functions are measurable by various experimental tech-
niques discussed in the previous section. Experimental infor-
mation on the IP can be obtained in the last case.

According to our findings, the behavior of confined sys-
tems of few atoms strongly differs from the behavior of large
systems. These differences are not only related to the nucle-
ation of vortices in the regime of relatively slow rotation, but
also to the nature of the Laughlin state and other highly
correlated states, when the rotational frequency is close to
the trap frequency.

In particular, we obtain that for N�10 atoms �and in
some cases even for larger values of N� the standard scenario
valid for large sytems �i.e., the nucleation of vortices into an
Abrikosov lattice, melting of the lattice, and subsequent ap-
pearance of fractional quantum Hall type states up to the
Lauhglin state� is only gradually recovered as N increases.
Within the regime of relatively weak rotation, the transition
of the ground-state angular momentum from zero to N can-
not be interpreted as the nucleation of the first centered vor-
tex with circular symmetric structure that would exhibit no
spacial correlation. Instead, some correlation is detected in
the pc function that even survives in the case of N=20. Fur-
thermore, as � increases, the possibility to obtain broken-
symmetry ground states that would show vortex structures is
restricted to the vicinity of some critical values of � for
which degeneracy of several different eigenstates with well-
defined angular momenta is possible. This situation differs
from the behavior of large systems for which the amount
of vortices increases monotonously while � increases as it
has been experimentaly obtained by Chevy et al. �47�.
In addition, as � approaches ��, the Laughlin state reveals
ordered structures in its pc function much more similar to
the finite version of a Wigner crystal than to a Fermi liquid
type state expected for large systems. This last result has
some similarities to electronic systems, extensively analyzed
previously.

This paper is organized as follows. In Sec. II we describe
our system �Sec. II A� and address the questions related to
the realization and analysis of ground states with hidden
�Sec. II B�, or explicit �Sec. II C� broken cylindrical symme-
try. In Sec. III, the main results of this work are presented.
Finally, in Sec. IV, we compare our findings with previous
results in the literature, and draw our conclusions.

II. ORDERED STRUCTURES IN GROUND STATES:
BROKEN CYLINDRICAL SYMMETRY

A. Description of the system

Our system consists of N bosonic atoms trapped in a ro-
tating parabolic potential. The Hamiltonian in the rotating
reference frame reads �48�

H = �
i=1

N 	
p� −
e

c
A*� �

i

2

2M
+

1

2
M���

2 − �2�ri
2� + g�

i�j

��r�i − r� j� ,

�1�

where r�= �x ,y�, �� is the trap frequency, A� *= �M�c /e�ẑ
�r� is the vector potential, ẑ is the unitary vector along the Z

direction, and B� *=�� �A� *= �2M�c /e�ẑ is the effective mag-
netic field of an equivalent system of electrons submitted to
a magnetic field perpendicular to the XY plane �we use here
the symmetric gauge�. Thus the rotation of the trap has for-
mally the same effect on atoms of mass M as a magnetic
field has on electrons; the electronic charge −e and the speed
of light c are solely introduced for reasons of algebraic
equivalence. V=g�i�j��r�i−r� j� is the contact interaction po-
tential, where g is the interaction coefficient that approxi-
mates the potential of the Van der Waals forces between the
atoms in the very dilute limit. We assume the rotational fre-
quency to be large enough to restrict the system to the lowest
Landau level �LLL� regime, and choose the appropriate
Fock-Darwin single particle �sp� wave functions with no
nodes in the radial direction as the basis in order to represent
all operators �49�,

m� =
1

��m!

 z


�m

e−z2/22
�2�

with =�� / �2M���, and generalized complex coordinates
z=x+ iy.

The Hamiltonian can be written in second quantized form
as

Ĥ = �L̂ + �N̂ + V̂ , �3�

where �=����−��, �=���, L̂ and N̂ are the total
z-component angular momentum and particle number opera-
tors, respectively, and

V̂ =
1

2 �
m1m2m3m4

V1234a1
†a2

†a4a3, �4�

where the matrix elements of the interaction term are given
by

V1234 = �m1m2Vm3m4� =
g

2�

�m1+m2,m3+m4

�m1!m2!m3!m4!

�m1 + m2�!
2m1+m2+1 .

�5�

Here, the operators ai
† and ai create and annihilate a boson

with single-particle �sp� angular momentum mi, respectively.
The cylindrical symmetry of the Hamiltonian allows the
diagonalization to be performed in different subspaces
of a well-defined total z-component of angular momentum
L=�i=1

N mi.
Figure 1 shows the total angular momentum of the GS of

a system of N=5 particles while � grows from zero to ��,
the maximum possible value before the system becomes cen-
trifugally unstable. We observe that the GS angular momen-
tum remains constant for a finite range of � until transitions
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to new angular momenta take place at critical values labeled
as �cn. Not all L-values can be associated with the GSs.
However, on the steps, different L-states may be degenerate
in energy as in the case of the states with L=8, 10, and 12 on
the third step �indicated by stars in Fig. 1�. The last possible
GS at L=N�N−1� is the Laughlin state, for which the inter-
action energy is zero due to the fact that the wave function of
each atom has zeros of order two at the positions of the other
N−1 atoms; this can be easily deduced from the analytical
expression of the many-body wave function given by

�Laughlin = N�
i�j

�zi − zj�2e−�zi
2/22

. �6�

In the following, the GS of the system in the L-subspace
is denoted by �L. In order to study the nature of the GSs, it
is useful to analyze the expectation values of some relevant
operators. First of all, it is crucial to realize that the density
operator defined in first quantization as

�̂�r�� = �
i=1

N

��r� − r�i� �7�

does not exhibit any interference pattern when calculated for
a definite �L, as it can be inferred from its analytical expres-
sion in second quantized form

�̂�r�� = �
ij

��i�r�� ���r� − r�� �� j�r�� ��ai
†aj , �8�

where �i�r���= mi� as in Eq. �2�. Due to angular momentum
conservation, the operator ai

†aj selects only one sp state and,
as a consequence, it loses all information contained in prod-

ucts of different amplitudes, thus losing the interference pat-
tern. It solely preserves the information of individual densi-
ties, e.g.,

��r�� = ��L�̂�r���L� = �
i

N

�i�r��2Oci, �9�

where Oci is the total occupation of the sp state mi� in the
GS. In effect, ��r�� can only represent cylindrically symmet-
ric distributions. However, we note that this cylindrical sym-
metry is a direct consequence of the definition of the opera-
tor �̂�r��, and is not necessarily a manifestation of the
symmetric nature of the GS.

To exhibit ordered patterns and analyze the GS structures,
we proceed in two different ways; one investigates the pair
correlation function for states with fixed L �Sec. II B�, the
other combines different �L’s �Sec. II C�.

B. Ordered structures in pair correlation functions

In order to analyze the internal structure of relevant states,
we consider the following operator:

�̂�r�,r�0� = �
i�j

N

��r�i − r�0���r� j − r�� , �10�

which yields the conditional probability to find an atom at r�,
when another is simultaneously found at r�0. This operator
contains information that originates from the amplitudes of
sp wave functions, and not only from their density as it has
been in the case of the single particle density operator. In
second quatized formalism, its expected value with respect to
�L reads

��r�,r�0� = �
ijkl

�
pp�

�p
*�p��i

*�r��� j
*�r�0��k�r���l�r�0�

���pai
†aj

†alak�p�� , �11�

where

�L = �
p=1

nd

�p�p, �12�

and �p are the bosonic Fock N-body states of the basis in the
L-subspace of dimension nd. The condition i+ j=k+ l must be
fulfilled for reasons of angular momentum conservation. It
should be stressed that ��r� ,r�0� in Eq. �10� obviously differs
from the single particle density matrix

n�1��r�,r�� � = ��̂+�r���̂�r�� �� , �13�

which defines the off-diagonal long-range order that charac-
terizes Bose condensation �4�. The operator �̂ is a two-

particle operator, whereas n̂�1��r� ,r���=�̂+�r��� is a single-
particle operator; in particular, ��r��=n�1��r� ,r��, whereas
��r��= 1

N−1 �dr�0��r� ,r�0�. As a rule of thumb, if n̂�1��r� ,r��� re-
veals symmetry breaking, so does �̂, whereas the opposite is
not necessarily true.

Equation �11� can be interpreted as the sum of products of
amplitudes at r� weighted by a factor that depends on r�0, and

FIG. 1. Change of the GS angular momentum Lgs for N=5 as
the rotation frequency increases; transitions take place at critical
values of the rotational frequency labeled by �cn. � is defined as
�=����−�� in units of ���; it lowers as the rotation frequency
approaches ��.
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on the GS via the �p coefficients. In the particular case

r�0=0� , cylindrical symmetry is recovered, since in this case
l= j=0 is the unique nonzero contribution. This implies i=k
and yields

��r�,0�� = �0�0��2�
i

�i�r��2�
pp�

�p
*�p��¯� , �14�

which is independent from �.
In order to understand the role of the parameter r�0 in

��L�̂�r� ,r�0��L� as a function of r�, we consider

�n
*�r��� j

*�r�0��k�r���l�r�0� =
1

�2

rmn

�mn!

r0
mj

�mj!

rmk

�mk!

r0
ml

�ml!
ei�mk−mn��

�ei�ml−mj��0e−r2
e−r0

2
, �15�

in units of . As l− j=n−k follows from angular momentum
conservation, the angular dependence reads

ei�mk−mn��ei�ml−mj��0 = ei�mk−mn���−�0�. �16�

Evidently, if r0 is fixed, the change of �0 is nothing but a
rigid rotation of the function. In other words, any arbitrary
choice of �0 fixes the origin of angles, and breaks cylindrical
symmetry, in the analogous way as it happens in experiments
which perform a single shot measurement. Within this point
of view, the experimental measurement and the choice of �0
are equivalent processes �see for instance �18,22��.

The expected values of the pc function for r0�0 can re-
veal very different situations: from circular symmetric struc-
tures showing no spatial correlation, to ordered structures
that reveal intrinsic Wigner molecules or crystals while pass-
ing through all possible intermediate states, as it is shown in
Sec. III.

C. Ordered structures in the density:
Superpositions of different L-subspaces

In this section, we consider ordered structures in GSs with
no well-defined angular momentum in two different situa-
tions. On the one hand, we build �somewhat ad hoc� linear
combinations of different �L’s to explicitly reveal the struc-
ture present in the expectation value of the density operator.
We obtain ordered IPs for combinations, whenever one of the
contributing �L’s has an ordered hidden IP contained in its
pc function. On the other hand, after the introduction of an
anisotropic term to the Hamiltonian which mimics the defor-
mation introduced by the stirring laser, we perform numeri-
cal diagonalization without the restriction of angular momen-
tum conservation, and obtain in this way GS structures with
broken symmetry. These exact calculations give hints how to
construct approximated GS superpositions in the previous ad
hoc construction.

To explain more precisely, how the first procedure works,
we start from the pc function and observe what kind of or-
dered structures can be expected. In the case of the Laughlin
state L=20, N=5, the pc function suggests that the atoms
form a pentagon. Quite generally, the best way to visualize
this structure within the first procedure is to form a superpo-
sition A�L+B�L+N, where �L is the GS that contains a hid-

den ordered IP. It is easy to understand this result from
what follows. The terms that contribute to the broken cylin-
drical symmetry are those of the form ��Lai

†aj�L+M�
with M �1. However, it is necessary to arrive at M =N in
order to obtain contributions from all the sp states contained
in �L. To be more precise, none of the combinations from
L=20+21 to L=20+24 reproduces the structure of L=20 for
N=5. It is necessary to combine L=20+25 to obtain the
regular pentagon implicit in �20. The best contrast is ob-
tained for A=B=1, and not for a small amount of �L+N as
one would expect if only a perturbation would be necessary.

It is important to stress that the ordered hidden IP was
obtained in the Laughlin state L=20 for N=5. In order to
assure that this state is the GS, a very small amount of ki-
netic energy is necessary in such a way that the states
L+M for M �0 are quasidegenerate. Then, the combination
considered above corresponds to a “legitimate” GS.

The second procedure, followed in order to obtain ordered
structures as, e.g., multiple vortex states, was suggested by
experiments. In the experimental setup described by Chevy

FIG. 2. The same as in Fig. 1 for N=3 to 9 from bottom to top.
Graphs are vertically shifted for clarity. The �quasi-�degenerate
states which the same step are not included.
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et al. �47� and by Madison et al. �9�, vortices are generated
as equilibrium states of a Bose condensate rotating under the
action of a stirring laser that produces anisotropy in the XY
plane. Subject to this anisotropic potential, the state with
vortices is a GS, and it survives during the time of flight
�TOF� detection as an excited state of the restored symmetric
Hamiltonian after the trap is switched off.

With this idea in mind, we introduce an additional aniso-

tropic term in the Hamiltonian given by V̂p=A�i=1
N �x2−y2�i

or in second quantized form as �50�

Vp =
A

2
2�

m

��m�m − 1�am
+ am−2 + ��m + 1��m + 2�am

† am+2� .

�17�

We assume this term to be a small perturbation of the system,
thus, A2 / �2����−���� �1, and perform exact diagonal-
ization to obtain the GS of H+Vp.

Amazingly, the structure of, say, two vortices can only be
obtained at very specific plateau steps �cn. There, the GS is
a combination of quasidegenerate �L-states which are
coupled by a perturbing term slightly larger than their energy
difference but much smaller than the next eigenenergy. As a
consequence, the linear combination of the states above has
nearly equal coefficients. Thus a direct ad hoc combination
of degenerated states of the symmetric Hamiltonian of Eq.
�1� are educated guesses to reveal underlying structures. This
combination was previously used by Wilkin et al. in exact
diagonalization calculations to obtain two vortices �25�.
More precisely, the unique situation where vortices are gen-
erated in the density corresponds to the steps in the Lgs de-
pendence on �, where a degeneracy of states with different L
takes place at �cn. At first sight, this result does not agree
with the experimental results reported by Chevy et al. �47�.

However, it can be attributed to an essentially different be-
havior of systems with a large and a small number of atoms,
respectively. As N grows, the size of some of the plateaus
shown in Fig. 1 drastically shrinks in such a way that finite
ranges of �-values with energetically degenerate states be-
come possible; not only at critical values �cn. In Fig. 2,
we show the appearance of such microplateaus obtained for
N=6, 7, 8, and 9.

Deduced from these features, our prediction is that the
experimental graph, analogous to the one displayed by
Chevy et al. �47� in their Fig. 2 which shows a monotonous
growth of the vortex contribution to Lgs as a function of �,
from the first vortex nucleation �at �c1� to the turbulent re-
gime, would look radically different for small N. We expect
that it would present a curve with minima at those values of
� where the GS is deep in a plateau, and exhibits no vortices
in the density. Vortices will solely be visible on micropla-
teaus surrounding �cn. For fixed but larger N, the micropla-
teaus contain more and more states as � increases, and thus
a larger number of vortices is nucleated. Ultimately, in the
large N limit, the number of vortices becomes proportional to
the rotational frequency.

III. NUMERICAL RESULTS

In what follows, we display the results obtained from ex-
act diagonalization for g−2=1 in units of ���. The values
��=�=0 were considered for density and correlation func-
tions of single states, or combinations of states with well-
defined angular momentum, as the diagonalization of H de-
pends only on the interaction energy. In contrast, specific
values of � and � �see Eq. �3�� are considered when the
diagonalization of H+Vp is performed. Correlation functions
are always displayed in pairs, a 3D and a contour plot, unless

FIG. 3. Pair correlation function �3D plot and contour plot� for
N=3, 10, and 20 of the L=N state. The parameter r0 is equal to 0.8,
0.95, and 1.0 in units of , respectively.

FIG. 4. Occupation of the m=1 single state divided by N as a
function of N.
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otherwise specified. We consider  and ��� as units of
length and energy unless otherwise stated.

For N�1, the first vortex is nucleated at �c1=��

−gN / �8�� when the transition from L=0 to L=N takes place
at the first step of Lgs���. The L=N state whith a vortex at
the center is the GS from �c1 to �c2 �see Fig. 1�. This state
is characterized by a high occupancy of the m=1 sp state
and circular symmetry possessing no space correlations. In
contrast, for small values of N a vortex is not clearly mani-
fested unless a considerably large number of atoms is con-
sidered, as it is shown in Fig. 3, where the pc of the L=N
state is displayed for N=3, 10, and 20. In all the cases, the
density has a minimum at the origin and r0 is set to its maxi-
mum. The slow tendency to recover the behavior of large
condensed systems is explained in Fig. 4, where the occupa-
tion of the m=1 sp state over N is shown. Namely, for few
atoms, the angular momentum of the state is not fully due to
vortices. For a large number of atoms, Nakajima and Ueda
have analyzed the formation of the first vortex, from its ini-
tial nucleation at the cloud boundary towards its final stabi-
lization at the center �51�; our results share some similarity
with this situation: for small N, the vortex is not yet fully
inside the trap, and as N increases, it approaches the trap
center from the boundary of the cloud.

In Figs. 5–8, we show the main results for N=3 including
the ground state evolution as � increases. Figure 5�a� shows
the lowest eigenenergies for each L, the so-called Yrast line.
The initial points of the plateaus, at L=0, 3, and 6 are the
unique possible GSs �besides degeneracies at the steps�. A
general result is that the plateau previous to the Lauhglin

state �from L=3 to L=5 in this case� always has N points.
Figure 5�b� is similar to Fig. 1 for N=5. The densities from
L=0 to 9 are shown in Fig. 6. The parameter r0 used in the
pc calculation was set to the maximum of the density unless
it is located at the center. Then, r0=1 is used if not stated
otherwise. Figure 7 displays the pc function for L=0, 3, 4, 5,
6, and 9. The system evolves from a completely “condensed”
system at L=0 to the Laughlin state at L=6 where a clear
triangular structure appears. The loss of condensation is re-
lated to the increase of space correlations. To complete the
analysis, we show in Fig. 8 the evolution of sp occupations,
and demonstrate that “macroscopic” occupation of a specific
sp wave function vanishes as L increases.

In order to see how the previous general tendency evolves
as N increases, we analyzed the N=5 case. In Fig. 9 we show
the densities of the GSs from L=0 to the Laughlin state, and
in Fig. 10 we display their pc. The same tendency towards
space ordering at the Laughlin state is clear. In addition, it
can be inferred from the L=20 case that correlations are
stronger for nearest neighbors as a manifestation of partial
long range order in finite systems. In Fig. 11 the occupations
of sp states are shown. It is remarkable that some indications
of the Laughlin state typical for large systems, i.e., a flat
density at the central part and a hump at the edge, are already
manifested in such small systems, as it can be seen in the last
graphs of Figs. 11 and 9, respectively. Moreover, the density
at the origin is very close to 1/ �2��=0.16, as necessary for a
homogeneous system at filling factor 1 /2.

In Figs. 12 and 13, we concentrate on the Laughlin state
for N=3, 4, 5, 6, 7, and 8 atoms. The right-hand side picture

FIG. 5. For N=3, �a� lowest
value of the interaction contribu-
tion to the energy as a function of
total angular momentum �Yrast
line�. �b� Angular momentum of
the GS over � �see Eq. �3��. The
critical values for � /��� at the
steps are 0.1194 and 0.0398.

FIG. 6. N=3, density of the
L-states.
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for N=3, 4, and 5 contains the pc function and the left-hand
side displays the density of the superposition made from L
and L+N. This superposition of quasidegenerated states be-
comes a possible realization of a GS for a certain value of �,
as commented previously. The value of the parameter r0 in
the pc functions was obtained in a different way as the one
used previously. Taking advantage of the fact that the Laugh-
lin wave function �Eq. �6�� is the exact solution, and know-
ing that its pc shows a ring shape structure of an unknown
radious r0, we can maximize the probalibity distribution
given by

�Laughlin�r1
� ,r2

� , . . . ,rN
� �2 = e−T, �18�

where

T = �
i

ri
2

22 − 2q�
i�j

lnzi − zj �19�

�with q=2 for the bosonic Laughlin state�, or equivalently,
minimize T with respect to r0. Minimization yields
r0=�N−1 �or r0=�N if one atom is at the origin as for
N=6, 7, and 8� which is always smaller than the size of the

FIG. 7. The same as Fig. 3 for N=3, and L=0, 3, and 4 on the left-hand side and from top to bottom and for L=5, 6, and 9 on the
right-hand side and from top to bottom. r0=1.0, 0.8, 1.0, 1.0, 1.3, and 1.7 in units of , respectively.

FIG. 8. For N=3, total occupations of the single particle states of angular momentum m for several L-states.
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system given by R=�4N−2. To see the evolution of these
hidden ordered structures as N increases, the “degree of cor-
relation” C as a function of N is displayed in Fig. 14; C is
defined as the height of the maximum peak in the pc func-
tion. It decreases for increasing N as it is expected in order to
recover the quantum liquid character of the Laughlin state
for large systems.

Suggested by our results, a possible explanation for the
realization of Wigner molecules in the Laughlin states for
few bosons is the following. The first observation is that the
nature of the GS does not depend on the kinetic part as the
diagonalization is fully determined by the interaction, in
other words, the structure does not result from the competi-
tion between different kinds of energy. In addition, as the
repulsive interaction energy is zero in the Laughlin state, it
seems that the reason why the atoms choose symmetric and
well-separated positions is due to two conditions, first, the
system must have a large angular momentum given by L
=N�N−1� �which means large distances from the origin� and
second, each atom is surrounded by a quasihole �which leads
to effective mutual repulsion�. This last statement is sup-
ported by the following observation. The contour plots of
N=3 for L=4 and L=5 in Fig. 7 suggest that in those pre-
cursory states �the Laughlin state has L=6�, quasiholes not
attached to atoms are created without cost of internal energy,

the contribution to the angular momentum of each one would
evolve as 1/3 �in L=4�, 2 /3 �in L=5�, and 3/3 until the
Laughlin structure becomes possible with one quasihole at-
tached to each atom, lowering the interaction energy. A final
observation relates to the evolution of this behavior as N
increases. Due to the fact that the dependence of L on N is
quadratic, the increase of L with N is more efficient for large
N, and atoms do not have to be widely separated. Thus the
symmetric distribution tends to disappear. Recently, it has
been proposed that the phenomenology of strongly correlated
bosonic and fermionic rotating systems converges to the case
of classical particles, and finally crystallizes at high rota-
tional frequencies �63�. Our results exhibit some traces of
such crystallization, but it should be pointed out that this
“crystallization” ceases to be manifested when the bulk
structure starts to dominate the system. This happens for big-
ger particle numbers, where the GS at Laughlin angular mo-
mentum will start to behave more and more like a true quan-
tum liquid as pointed out above.

For N=5 and 6, Fig. 15 shows patterns of two incipient
vortices obtained from full diagonalization of H+Vp at
����−��=0.0458 and ����−��=0.05904 in units of ���,
respectively �at the third step in both cases�. The possibility
to obtain these patterns for the given anisotropy strongly
depends on the possibility to obtain truly degenerate states

FIG. 9. N=5 density of the
L-states �GS�.

FIG. 10. The same as Fig. 7 for N=5 and L=0, 5, and 8 on the left-hand side and L=12, 15, and 20 on the right-hand side. r0=1.0, 0.9,
1.0, 1.0, 1.0, and 2.0 in units of , respectively.
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with angular momenta L and L±2 at one of the steps Lgs���.
For N=7 we were not able to find such steps. For N=5 the
result of the diagonalization at the third step, where L=8, 10,
and 12 are involved, is that the weights of L=8 and 10
within the expansion of the GS are much larger that the

weight of L=12. This leads in effect to a state with expected
vortex angular momentum lower than 10, in agreement with
the results demonstrated in Ref. �52� related to the fact that
the contribution of a vortex to the total angular momentum
depends on its distance from the origin, it runs from N at the
center to zero at the trap boundary.

FIG. 11. N=5 occupations of the L-states �GS�.

FIG. 12. For N=3, 4, and 5 the left-hand side 3D plots show the
density of the mixtures �with equal coefficients� of angular mo-
menta 6+9, 12+16, and 20+25, respectively. The right-hand side
shows the pair correlation function �contour-plots� for L=6, 12, and
20, respectively �the Laughlin states�, with r0=�N−1/.

FIG. 13. The same as Fig. 3 for N=6, 7, and 8 and for L=30,
42, and 56, respectively �the Laughlin states�. We consider
r0=�N /.
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In accordance with the results commented in the previous
paragraph, in order to generate incipient vortices in the den-
sity distribution, the value of � must be carefully tuned
around �cn. We were not able to generate vortices for values
of � comprised within the interval ranging from �cn to
�cn+1. This would have important experimental conse-
quences in the dependence of the vortex contribution to the
angular momentum as a function of �. While this function is
monotonously increasing for large systems, we expect it to
become a function with peaks around �cn and wide minima
in between for small systems. As N increases, the peaks
would broaden due to the appearance of microplateaus
�shown in Fig. 2� which in turn lead to finite ranges of
�-values where quasidegenerate states coexist. In this

manner the experimental result for large systems would be
recovered. It is to be noted that in all our calculations we
considered g−2=1 in units of ��� which is large compared
with typical experimental values used for large systems
�g−2 /���=0.02 would be obtained by using data from
Refs. �53,54� for 87Rb�. However, the effect of a reduced g is
solely a change of scale with respect to the x axis in Fig. 2
which does not affect any previously obtained conclusions.

IV. SUMMARY

The main result of this paper is the identification of im-
portant differences between large and small systems of rap-
idly rotating cold bosonic atoms. These differences can be
understood by looking at the expected values of the density
and the pc functions, on which we have concentrated our
analysis. The characterization of small samples in rotating
traps has recently attracted increasing interest due to the pos-
sibility to deal with a small number of atoms per well in
optical lattices �46�.

Within the regime of low rotational frequency, we obtain
that a relatively large number of atoms is necessary to nucle-
ate the first vortex carrying N units of angular momentum.
The evolution towards the condensed state with L=N is
shown by the increase of the occupation of the sp m=1 state
as N increases. On the other hand, in the regime of strong
rotation, space correlations increase significantly, and in the
Laughlin state a hidden ordered structure modulates the pc
pattern. For small systems, the atoms sit around a ring of
radius r0=�N−1 �N=3, 4, and 5� or r0=�N �N=6, 7, and 8�.
The degree of correlation defined as the height of the peaks
in the ordered pattern decreases with N, evolving towards a
noncorrelated structure of a quantum liquid. We have argued
about the observability of the ordered IP in similar experi-
ments as those reported, for instance, by Fölling et al. �22�.

Numerous references have analyzed the Wigner structures
of few electrons �55–59�; Yannouleas and Landman �cf. �60��
and Li et al. �cf. �61�� have extensively investigated these
ordered structures exhibited in the pc function for several
filling factors including 1/3 and obtain that for electrons, the
crystallization of the ground state is much stronger than that
exhibited by the Laughlin wave function. It is important to
remark that it is well-established from exact diagonalization
studies in a torus geometry and from the analysis of the
Laughlin wave function, that states of filling factor 1 /3 for
electrons and 1/2 for bosons are fermionic quantum liquids
in the thermodynamic limit �cf. �62��. Whenever the Laugh-
lin function is a good approximation, its implied properties
are independent from the interaction. However, for small
confined systems the previous results do not apply, and the
analysis of some of their properties relies on the competition
between the kinetic and interaction energies, aside from their
statistics.

Finally, precursors of two-vortex arrays are obtained as
the ground states of an asymmetric Hamiltonian that models
the experimental setup used to increase the angular

FIG. 14. Correlation degree �see text� of the Laughlin state as a
function of N.

FIG. 15. For N=5 and 6 density �3D plot and contour plot� of
two vortex structures. For N=5, L=8+10+12 and for N=6,
L=10+12+14 �see text�.
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momentum of a trapped Bose condensate by a stirring laser.
We conclude that the possibility to nucleate vortex patters in
the density is restricted for small N to the specific values �cn

at the steps where several degenerate or quasidegenerate
states of different angular momentum L coexist. This pro-
duces peaks in the vortex angular momentumdependence on
�. We predict these peaks to broaden as N increases, due to
the appearance of “microplateaus” which in turn lead to fi-
nite ranges of � values where quasidegenerate states coexist.
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