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We investigate the dynamics of a F=1 spinor Bose-Einstein condensate of 87Rb atoms confined in a
quasi-one-dimensional trap both at zero and at finite temperature. At zero temperature, we observe coherent
oscillations between populations of the various spin components and the formation of multiple domains in the
condensate. We study also finite temperature effects in the spin dynamics taking into account the phase
fluctuations in the Bogoliubov-de Gennes framework. At finite T, despite complex multidomain formation in
the condensate, population equipartition occurs. The length scale of these spin domains seems to be determined
intrinsically by nonlinear interactions.
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I. INTRODUCTION

The seminal theory papers of Ho �1� and Ohmi and
Machida �2�, as well as the experiments performed by the
MIT group on optically trapped sodium Bose-Einstein con-
densates �BEC� �3� have stimulated the development of a
new interesting area of research in the field of multicompo-
nent quantum gases: BEC with spin degrees of freedom, i.e.,
the so-called spinor condensates. The bosonic quantum field
operator in such systems is no longer a scalar, but a vector,
and depending on various parameters the system can be
found in a coherent superposition or in an incoherent mixture
of condensates with different spin components that can ex-
change population depending on the intrinsic nonlinear cou-
pling. The couplings between the different spin components,
similarly as in the standard scalar BEC, can be described by
zero range potentials that, however, acquire a matrix form
and describe couplings that ensure total spin conservation in
elastic binary collisions �4�.

It is worth mentioning that spinor condensates are closely
related to the effective spin-1 /2 systems realized by radio-
frequency coupling of the two hyperfine states in 87Rb �5�; in
such systems, spin waves above the critical temperature �6�
and decoherence effects were observed �7�. From the theo-
retical point of view, collective modes in two-component
BEC’s have been studied in Ref. �8�, while an analysis on the
formation of spin domains can be found, e.g., in Ref. �9�.

Spinor condensates are suitable systems to study various
quantum phenomena that do not occur in single component
BEC’s. Equilibrium states of spinor condensates in an optical
trap can exhibit magnetic ordering of various kinds. For in-
stance, for sodium �F=1�, the freedom of spin orientation
leads to the formation of spin domains in an external mag-
netic field, which can be either miscible or immiscible with
one another �3�. Excitations in such systems may manifest
the different spin character; stability of topological excita-
tions and textures, such as ordinary vortices, coreless vorti-

ces �Skyrmions� �1,10�, and t’Hooft-Polyakov monopoles
�11�, depends in a complex manner on the parameters of the
system. The complexity of these systems becomes even more
transparent in the limit of strongly correlated systems: ultra-
cold Bose spin gases in optical lattices exhibit fascinating
properties, including different types of quantum phases, such
as a polar condensate phase, a condensate of singlet pairs, a
crystal spin nematic phase, and a spin singlet crystal phase
�12�.

The ground state, its magnetic properties, and the low
temperature thermodynamics of spinor condensates have
been studied in several experiments: in 23Na �13� �F=1�
which has an antiferromagnetic ground state, in 87Rb in the
F=1 spin state �14–17� which is ferromagnetic, as well as in
the F=2 spin state, which presents a rich ground state be-
havior �14,17�. Recent experiments involving nondestructive
imaging of magnetization of a spin F=1 Bose gas of 87Rb
atoms �18� open a new route to study magnetism of spinor
condensates. Also, a recent experiment with chromium �19�
condensates opens the possibility to study even higher spin
states �F=3� with long range �dipolar� interactions and, pre-
sumably, a much more complex phase diagram.

In the last two years the focus of investigation has shifted
towards two other very important aspects of the spinor BEC
physics: the equilibrium properties at finite T, and dynamics
of spinor BEC’s. The thermodynamic properties of an ultra-
cold spin Bose gas have been experimentally investigated in
Ref. �20�. Recently, finite temperature effects to describe the
properties of the equilibrium density distribution have been
considered within the Hartree-Fock-Popov theory �21�. Spin
dynamics has been experimentally studied in 87Rb conden-
sates for F=1 in Ref. �15�, and more exhaustively for F=2 in
Refs. �14,15,17�. Coherent collisional spin dynamics in 87Rb
for F=2 has been recently observed also in optical lattices
�22�. These experiments pave the way towards the efficient
creation of entangled atom pairs in optical lattices.

Here we focus on the dynamics of F=1 elongated spinor
condensates at zero and finite temperatures. One of our major
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motivations to study the thermal effects on spin dynamics is
to learn something about decoherence in multicomponent
systems. In the case F=1 the internal coupling of the spin
components depends only on two coefficients, while for F
=2 it depends on three. Due to this simplicity, the case F
=1 allows for a better understanding of the interplay between
nonlinear interactions, spin couplings, and temperature ef-
fects. We consider here the full coupled dynamical equations
of the spin components, obtained within a mean-field frame-
work, without any further approximation such as the single
mode approximation �SMA� �23,24� or variational ansatz
�25� that would mask some aspects of the complex dynami-
cal evolution. We restrict our analysis to the quasi-one-
dimensional �1D� case, when the condensates are kinemati-
cally frozen in the transverse directions. We investigate then
the influence of thermal effects on the spin dynamics. To this
aim we use the Bogoliubov-de Gennes description of phonon
modes and treat them as classical random fields, similarly as
in Ref. �26�. For quasi-1D condensates at finite T the main
contribution to phonon fluctuations comes from the fluctua-
tions of the condensate phase �27�, and this contribution is
fully accounted for in our simulations.

The paper is organized as follows. First, in Sec. II we
introduce the model for T=0. We describe some of the de-
tails of the numerical method in Sec. III. In Sec. IV we
describe our results for T=0. Section V presents a discussion
of finite temperature effects. We conclude in Sec. VI.

II. DESCRIPTION OF THE SYSTEM

The many-body Hamiltonian describing an F=1 spinor
condensate in the absence of an external magnetic field is
given by �1�

H =� d3r��m
† �−

�2

2M
�2 + Vext��m +

c0

2
�m

† � j
†� j�m

+
c2

2
�m

† � j
†Fmk · F jl�l�k	 , �1�

where �m�r� ��m
† � is the field operator that annihilates �cre-

ates� an atom in the mth hyperfine state 
F=1,m� at point r
�m=1,0 ,−1�. The trapping potential Vext�r� is assumed har-
monic and spin independent. The terms with coefficients c0
and c2 describe binary elastic collisions of spin-1 atoms in
the combined symmetric channel of total spin 0 and 2, and
are expressed in terms of the s-wave scattering lengths a0
and a2: c0=4��2�a0+2a2� /3M and c2=4��2�a2−a0� /3M,
where M is the atomic mass. F are the spin-1 matrices �1,21�.
The system is ferromagnetic if c2�0 �87Rb�, and antiferro-
magnetic if c2�0 �23Na�.

The total number of atoms N=�dr�
�1
2+ 
�0
2+ 
�−1
2�
and the total magnetization M=�dr�
�1
2− 
�−1
2� commute
with the Hamiltonian, and are thus constants of motion.

In the mean-field approach, a condensate order parameter
is introduced for each magnetic sublevel �m�r�= �m�r��,
and by neglecting quantum fluctuations it yields the follow-
ing energy functional:

E =� d3r��m
* �−

�2

2M
�2 + Vext��m +

c0

2
�m

* � j
*� j�m

+
c2

2
�m

* � j
*Fmk · F jl�l�k	 . �2�

According to i���m /�t=�E /��m
* , the coupled dynamical

equations for the spin components are obtained �23,28�

i�
��m

�t
= �−

�2

2M
�2 + Vm

ef f��m + c2Tm
* , �3�

nm�r�= 
�m
2 is the density of the m-th component, and n
= 
�1
2+ 
�0
2+ 
�−1
2 is the total density normalized to the
total number of atoms N. The population of the hyperfine
state 
1,m� is Nm=�dr
�m
2 such that N=N1+N0+N−1. We
have defined T±1

* =�0
2��1

* , T0
*=2�1�0

*�−1, and the effective
potentials that will determine the spatial dynamics of each
component

V±1
ef f = Vext + c0n + c2�±n1 + n0 � n−1� ,

V0
ef f = Vext + c0n + c2�n1 + n−1� . �4�

Analogously to a spin-polarized condensate, the multicom-
ponent Gross-Pitaevskii equations �3� can be rewritten in the
form of continuity equations �29�,

�

�t
nm + � · jm = �ṅm�r,t� , �5�

where jm=���m
* ��m−�m��m

* � /2iM is the current, and
�ṅm�r , t�=−�2c2 /��Im�Tm�m� is the rate of transfer of popu-
lations between spin components. Since the total number of
atoms and magnetization are conserved, and the dynamical
equations for m= ±1 are symmetric, it is verified that �ṅ0
=−2�ṅ±1= �2c2 / i����1�0

*2�−1−�1
*�0

2�−1
* �.

In our calculation, we assume an axially symmetric har-
monic confinement Vext=M�	�

2 r�
2 +	z

2z2� /2. In the limit of
highly elongated traps �	�
	z�, the tight confinement en-
sures that no excited states are available in the transverse
direction and thus the dynamics takes place along the axial
direction. Factorizing �m�r� into a longitudinal and a trans-
verse function, and approximating the transverse part as the
two-dimensional ground state of the transverse oscillator
�23,25�, the equations of motion �3� become one-dimensional
for the longitudinal wave functions �m�z�, and the coupling
constants c0 and c2 are accordingly rescaled by a factor
1 / �2�a�

2 �, with a�=�� /m	� the transverse oscillator length
�30�.

III. NUMERICAL METHOD

The dynamics of the spin components is obtained by nu-
merically integrating the coupled nonlinear differential equa-
tions �3�. For the time evolution, our numerical procedure
combines the split operator method with the fast Fourier
transform to treat the kinetic terms and a fourth-order Runge-
Kutta method for the remaining terms of the dynamical equa-
tions. We have compared our combined numerical method
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with an evolution using a pure fourth-order Runge-Kutta as
the one used in Ref. �23�, and we have found that our method
allows larger time steps, making the computation notably
faster.

In this paper, we consider N=20 000 atoms of spin-1 87Rb
trapped in a quasi-1D harmonic trap with 	�=2��891 Hz
and 	z=2��21 Hz. The coupling constants are a0
=101.8aB, and a2=100.4aB �31�, with aB the Bohr radius.
Since c2�0 the atomic interactions for 87Rb atoms are fer-
romagnetic. The initial wave functions �m�z , t=0� have the
same spatial profile as the ground state of the scalar conden-
sate with coupling constant c0 / �2�a�

2 �. Each initial wave
function component is, however, normalized to the corre-
sponding initial population in spin-m, Nm. Since �m�z , t� are
complex functions, �m�z ,0�= 
�m�z ,0�
exp�i�m�, the initial
phases have also to be fixed. However, for initial symmetric
configurations �N1=N−1� the dynamical evolution depends
only on one initial relative phase �=2�0−�1−�−1 �23�, and
thus only one initial phase has to be fixed. Experimentally
the initial phases are not well determined and the results are
averaged over several repeated measurements �15�. There-
fore, we will average the dynamics over different initial rela-
tive phases randomly distributed over �0,2�� in order to ob-
tain results easy to compare with experiments.

IV. SPINOR DYNAMICS AT T=0

We consider that initially a quasipure condensate in the
m=0 spin component is populated. Spin component mixing
requires, at least, a small seed of atoms populating the other
components but keeping the total magnetization equal to
zero. In Fig. 1 we plot the population of each spin compo-
nent as a function of time at zero temperature, for the initial
populations �N1 /N ,N0 /N ,N−1 /N�= �0.5% ,99% ,0.5% �. In
absence of an external magnetic field gradient the dynamical
evolutions of the spin m= ±1 components are symmetric.
Dashed lines correspond to the dynamical evolution with a
given initial relative phase �=0, and solid lines are the av-
erage over 20 random initial relative phases. The oscillations

of the populations with a given initial phase are smeared out
by the average over different runs. It is interesting to point
out the damping of the oscillations obtained in our numerical
calculations, which is a finite size effect related to collapse
phenomena characteristic of discrete anharmonic spectra
�32�, and to dephasing of Josephson oscillations �33�. During
the time evolution, the magnetization is conserved, as has
been experimentally observed �15�. The populations oscillate
around the ground state configuration of the system with
M=0 that in absence of applied external magnetic field is
�25%, 50%, 25%� �28�. Our numerical results are in qualita-
tive agreement with the experimental measurements of Ref.
�15� obtained in a strongly anisotropic disk-shaped spin-1
condensate, where the relaxation to the steady state is also
not monotonic but damped.

In Fig. 2 we plot the density profiles of the spin compo-
nents for the configuration �=0 �see Fig. 1�. At the initial
stages of the evolution, the population of the spin-0 compo-
nent decreases due to the spin exchange interaction, and thus
the ±1 spin components start to be populated by the same
amount, keeping the symmetry of the initial state. The total
magnetization is conserved along the time evolution. Initially
�t�100 ms�, the conversion of atoms from 0 to ±1 states
mainly occurs at the central part of the condensate, where the
density is higher and thus the coupling between different
spin components is more effective, see Eq. �4�.

Then, the ±1 spin components swing back to the 0 com-
ponent, and vice versa. The oscillations between the popula-
tions of the m=0 and m= ±1 states are not regular and
present a dynamical instability around t�100 ms, when the
large amplitude oscillations become small amplitude oscilla-
tions �34–36�. At this moment the condensate starts the mul-
tidomain formation process into small dynamical spin do-
mains. A simple estimation of the time scale for the
appearance of the instability tdom�2�� / �c2n� has been pro-
vided by studying the normal excitation modes of the system
�35,36�. In our case, taking n�2�1014 cm−3 at the center of
the trap, tdom�140 ms, which is in agreement with our re-
sults. Notice that, in the present study, the analysis is per-
formed directly from the spatial and temporal evolution of
the population of the spin components.

FIG. 1. �Color online� Population of the spin components as a
function of time for the initial configuration �N1 /N ,N0 /N ,N−1 /N�
= �0.5% ,99% ,0.5% � at T=0. Solid lines: numerical results aver-
aged over 20 random initial relative phases �. Dashed lines: initial
phase �=0.

FIG. 2. �Color online� Density profiles of the spin components
at different times �in ms� at T=0, n1�z , t� �black� and n0�z , t�
�green�. The initial configuration corresponds to �0.5%, 99%,
0.5%�, and �=0 �dashed line in Fig. 1�.
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The transfer of population remains coherent along all the
time evolution, and it does not become chaotic even for large
times. The number of small spin domains does not grow
indefinitely, but it is limited by a characteristic size of the
spin domains �ldom� that depends on the internal coupling
between different spin components, and more weakly on
temperature. The formation of multiple spin domains, also
found recently in Refs. �35,36�, is a result of the ferromag-
netic character of the spin-1 87Rb condensate: c2�0 favors
the spatial separation of ±1 atoms from 0 atoms, as obtained
in our numerical results. Since in our simulations the initial
condition for m= ±1 are identical, the density profiles of m
= ±1 components are equal along the time evolution. Appar-
ently, the value of ldom�5 m, being much smaller than the
harmonic oscillator length, does not depend on the external
trapping potential, but it is an intrinsic characteristic of the
spin coupling strength �36�.

The dynamical evolution between spin components can
be easily interpreted in terms of the effective potential
Vm

ef f�z , t� felt by each spin component �m�z , t�, and from the
continuity equations. For the same initial configuration as in
Fig. 2, we plot in Fig. 3 the effective potentials V0

ef f and
V1

ef f =V−1
ef f �top panels�, and the local transfer of population

�ṅ0�z , t� and �ṅ1�z , t�=�ṅ−1�z , t� �bottom panels� for t=0, 40,
and 80 ms. For a fixed time t, �ṅm�z , t� represents the local
exchange of atoms between spin components. If �ṅm�z , t�
�0 at that position the population of the spin-m component
is decreasing and thus the atoms convert to the other spin
components. For example, at the first stages of the time evo-
lution �t�60 ms� �ṅ1�z , t�=�ṅ−1�z , t��0, and consequently
�ṅ0�z , t��0: the spin-exchange interaction is favoring the
conversion from 0 to ±1 states as it is shown in Fig. 1. At
t=0 this is also true, but it cannot be appreciated from the
scale of the figure. Moreover, since the minimum and maxi-
mum of �ṅ0�z , t� and �ṅ±1�z , t�, respectively are at the center
of the condensate, the spin-exchange mainly occurs at the
central region, as we have already commented in Fig. 2. At
t=80 ms, �ṅ±1 is positive at the boundaries of the conden-
sate, and negative at the central region, whereas �ṅ0 has the
opposite behavior. Therefore, the population with m= ±1 is
decreasing at the center and increasing at the boundaries, and

the ±1 atoms convert to 0 state mainly at the center, where
the m=0 condensate develops a new central peak.

We have also performed simulations starting from other
initial conditions. In particular, we observe that multidomain
formation is inhibited if the starting configuration coincides
with the ground state composition �25%, 50%, 25%�. More-
over, we find a good agreement with the very recent experi-
mental results of Chang et al. �37�, starting from
�0,3 /4 ,1 /4� and converging to �1/5 ,2 /5 ,2 /5�.

V. SPINOR DYNAMICS AT FINITE T

The spinor dynamics of these multicomponent quantum
gases is rather complex due to the internal coupling between
different spin components. We consider now thermal effects
in the spinor dynamics. At low temperature, thermal excita-
tions can be described within the Bogoliubov-de Gennes
theory. Recently, finite temperature effects in the equilibrium
density distribution of the condensed and noncondensed
components of spin-1 trapped atoms has been investigated
within Hartree-Fock-Popov theory �21�. We will investigate
thermal effects in the spinor dynamics using a
Bogoliubov-de Gennes description of the thermal cloud. For
a highly elongated trap, the condensate is quasi-1D, and total
density fluctuations are strongly suppressed at small tem-
peratures, whereas phase fluctuations are relevant and in the
Thomas-Fermi regime can be described analytically in terms
of Legendre polynomials Pj�z� �27,38� Analogously, we as-
sume that spin fluctuations can be disregarded in a first ap-
proximation.

In Refs. �7,20� it has been shown that at finite temperature
each spin component has its own thermal cloud. Thus, we
assume that initially the condensate corresponding to each
spin-m component can be described by an order parameter
�m�z�=�nm�z�exp�i�m+�m�, which has a random fluctuating
phase �39�,

�m�z� = �4n0�z��−1/2�
j=1

� � j + 1/2

RTF
�1/2

��2

� j
�1 − �z/RTF�2��1/2

Pj�z/RTF��aj
m + aj

m*� ,

�6�

where n0�z� is the equilibrium total density profile of the
initial condensate,  and RTF are its chemical potential and
Thomas-Fermi radius, � j =�	z�j�j+1� /2 is the spectrum of
low-lying axial excitations �40�, and aj

m �aj
m*� are complex

amplitudes that replace the quasiparticle annihilation �cre-
ation� operators in the mean-field approach. In the numerical
calculation in order to reproduce the quantum statistical
properties of the phase �26�, aj

m and aj
m* are sampled as ran-

dom variables with a zero mean value and 
aj
m
2�=Nj

m,
where Nj

m= �exp�� j /kBT�−1�−1 is the occupation number for
the quasiparticle mode j �41,42�.

In Fig. 4 we plot the dynamical evolution of the spin
populations at T=0.2Tc for the same initial populations as in
Fig. 1. The critical temperature of Bose-Einstein condensa-

FIG. 3. �Color online� For the initial configuration �0.5%, 99%,
0.5%�, with �=0 and T=0. Top panels: Effective potentials of the
spin components for t=0, 40, and 80 ms. Bottom panels: Transfer
of populations �ṅm�z , t� for the same times.
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tion, Tc=�	zN / ln�2N�, corresponds here to a single compo-
nent Bose gas in a harmonic trap of frequency 	z. Solid lines
correspond to the numerical results averaged over 20 random
initial relative phases, and dashed lines to a single run with
initial phase �=0. The interaction of the condensate atoms
with the thermal clouds smears out the oscillations present at
T=0 �Fig. 1� and leads to an asymptotic configuration with
all m components equally populated �equipartition�.

Thermal effects in the density profiles of the spin compo-
nents are shown in Fig. 5. The occurrence of phase fluctua-
tions due to thermal excitations at t=0 transforms to modu-
lations of the density during the time evolution as in a spin-
polarized single component elongated condensate �26�. In a
spinor condensate this leads to multidomain formation at
much earlier times than at T=0 �see Fig. 2�, and the density
profiles are no longer symmetric at finite T. Moreover, the
existence of different thermal clouds for each spin compo-
nent �20� breaks also the symmetry of the m= ±1 spin com-
ponents of the initial state of system. Therefore the m= ±1
density profiles are different during the time evolution, and
the three components separate in different spin domains. The
local magnetization is no longer conserved as at T=0 but, as

expected, the total magnetization is still a conserved quantity
along all the time evolution Similiar results are obtained at
lower temperatures T /Tc=0.01 and 0.001.

VI. CONCLUSIONS

In this paper, we have studied the spinor dynamics of a
spin-1 87Rb condensate in a highly elongated trap. We have
solved the full three-coupled dynamical equations for the
spin components within Gross-Pitaevskii framework without
any further approximations. This is in fact necessary, since
approximated approaches frequently mask some of the as-
pects of the dynamics. We have also considered here finite
temperature effects, using the approach of Ref. �41�. We have
found that the spinor dynamics towards the steady state is
not monotonic but rather slowly damped, involving a coher-
ent transfer of population between different spin compo-
nents. At finite temperature the coherent oscillations of popu-
lations are almost smeared out. The internal coupling of the
spin components leads to the formation of multiple spin do-
mains of a small but finite characteristic length ldom, which
does not decrease with time, and seems thus to be deter-
mined intrinsically by the nonlinear interactions. This scale
is evidently larger than the condensate healing length, lheal

=2�� /�2Mc0n, which for scattering lengths a of order of
5 nm is of order of 10–100 nm. In fact, ldom is of the order of
the spin healing length �s=2�� /�2M
c2
n. The presence of
different thermal clouds for each spin component breaks the
symmetry of the m= ±1 components, and therefore separates
them in different spin domains. For a condensate with ini-
tially zero magnetization, the spin populations oscillate
around the ground state configuration �25%, 50%, 25%� at
T=0, whereas at finite temperature the interaction of the con-
densate atoms with their corresponding thermal clouds leads
to equipartition in populations, i.e., �1/3 ,1 /3 ,1 /3�.

Our results shed, in our opinion, also some light on the
question of decoherence. Our simulations, and in particular
the finding of multidomain formation, suggest that decoher-
ence undergoes enhancement with the number of compo-
nents in the system. Of course, there are many open ques-
tions connected to this, e.g., does the multidomain formation
go along with a loss of phase relations, and give rise to some
enhanced �generalized� phase fluctuations? These questions
go beyond the present study, and will be discussed in detail
in a future publication, in which we will compare the F=1
and F=2 cases.
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FIG. 4. �Color online� Population of the spin components as a
function of time for the initial configuration �0.5%, 99%, 0.5%� at
T=0.2Tc. Solid lines: numerical results averaged over 20 random
initial relative phases �. Dashed lines: initial phase �=0.

FIG. 5. �Color online� Density profiles of the spin components
at different times �in ms� at T=0.2Tc for the same initial configu-
ration as in Fig. 2.
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