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Volterra type operators on Bergman spaces with exponential
weights

Jordi Pau and José Ángel Peláez

Abstract. In this paper we characterize the boundedness, compactness and
membership in Schatten p-classes of Volterra type operators on Bergman spaces
with exponential weights.

1. Introduction and main results

Let D be the unit disc in the complex plane, dm(z) = dx dy
π be the normalized

area measure on D, and denote by H(D) the space of all analytic functions in D. If
g ∈ H(D), we consider the linear operator Jg defined by

(Jgf)(z) =

∫ z

0

f(ζ) g′(ζ) dζ, f ∈ H(D).

This operator was introduced by C. Pommerenke in [9] as a tool in his study of
BMOA functions. The operator Jg has received many names in the literature: the
Pommerenke operator, a Volterra type operator (since the choice g(z) = z gives the
usual Volterra operator), the generalized Cesàro operator (since the usual Cesàro
operator appears with the choice g(z) = − log(1 − z)), a Riemann-Stieltjes type
operator, or simply called an integration operator. It not was until the works of
Aleman and Siskakis in [2] and [3] that the operator Jg began to be extensively
studied. The operator Jg is related to the multiplication operator Mg(f) = gf
by the formula Mg(f) = f(0)g(0) + Jg(f) + Ig(f), where Ig is another integration
operator defined by

(Igf)(z) =

∫ z

0

f ′(ζ) g(ζ) dζ, f ∈ H(D).

We refer to [1] and [11] for surveys on the operator Jg acting in several spaces of
analytic functions. We are mainly interested on the operator Jg acting on weighted
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Bergman spaces, so let’s recall the definition.

A weight function is a positive function w(r), 0 ≤ r < 1, which is integrable
in (0, 1). We extend w to D setting w(z) = w(|z|), z ∈ D. For 0 < p < ∞, the
weighted Bergman space Ap(w) is the space of functions f ∈ H(D) such that

‖f‖pAp(w) =

∫
D

|f(z)|pw(z) dm(z) < ∞.

A characterization of those symbols g ∈ H(D) such that Jg is bounded on Ap(w),
where w belongs to a large class of radial weights including the standard weights
w(r) = (1− r)α, α > −1, but excluding the exponential ones

(1.1) wγ,α(r) = (1− r)γ exp

(
−c

(1− r)α

)
, γ ≥ 0, α > 0, c > 0,

is offered in [3].
The following result describes the boundedness and compactness of the operator

Jg on Ap(wγ,α) in terms of the growth of the maximum modulus of g′, for the
exponential type weights wγ,α.

Theorem 1.1. Let 0 < p < ∞, g ∈ H(D), and consider the weights wγ,α defined
by ( 1.1). Then

(i) Jg : Ap(wγ,α) → Ap(wγ,α) is bounded if and only if

sup
z∈D

(1− |z|)1+α|g′(z)| < ∞.

(ii) Jg : Ap(wγ,α) → Ap(wγ,α) is compact if and only if

lim
|z|→1−

(1− |z|)1+α|g′(z)| = 0.

We note that Theorem 1.1 answers the question which appears in [3, p. 353].
The case p = 2, c > 0 and α ∈ (0, 1] was proved by Dostanić in [4], while the general
case is proved by the authors in [7], where a characterization is also obtained for a
general class of radial rapidly decreasing weights. It is our aim in the first part of this
note to provide a different proof of Theorem 1.1 using the test functions considered
by Dostanic when α ∈ (0, 1], and Oleinik’s description [6] of the Carleson measures
for Ap(wα) when α > 1, where wα are the exponential weights

(1.2) wα(r) = exp

(
−c

(1− r)α

)
, c > 0, α > 0.

One of the main tools in order to prove Theorem 1.1 is a description of the
weighted Bergman spaces in terms of derivatives obtained in [8]. The version proved
in [8] is much more general than the one we state next, and uses a suitable distorsion
function.

Theorem A. Let 0 < p < ∞, and g ∈ H(D). Then

‖g‖pAp(wγ,α) � |g(0)|p +
∫
D

|g′(z)|p (1− |z|)(1+α)p wγ,α(z) dm(z).

Let H be a separable Hilbert space. Given 0 < p < ∞, let Sp(H) denote the
Schatten p-class of operators on H. Sp(H) contains those compact operators T
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on H whose sequence of characteristic (or singular) numbers λn belongs to �p, the
p-summable sequence space. The singular numbers of an operator T are defined by

λn = λn(T ) = inf{‖T −K‖ : rankK ≤ n}.

Thus finite rank operators belong to every Sp(H), and the membership of an oper-
ator in Sp(H) measures in some sense the size of the operator. If 1 ≤ p < ∞, Sp(H)
is a Banach space with the norm ‖T‖p = ‖{λn}‖�p . We refer to [12, Chapter 1] for
more information about Sp(H).

Our next result will be a characterization, in terms of the symbol g, of the
membership of the operator Jg in the Schatten p-classes of A2(wγ,α). In order to
state our result, we recall the definition of another class of analytic function spaces,
the so called Besov type spaces Bp

σ. Let 0 < p < ∞, and σ ≥ 0. The space Bp
σ

consists of those analytic functions on D with

‖f‖p
Bp

σ
=

∫
D

|f ′(z)|p (1− |z|2)p−2+σ dm(z) < ∞.

Theorem 1.2. Let 1 < p < ∞, g ∈ H(D), and consider the weights wγ,α defined
by ( 1.1). Then Jg ∈ Sp(A

2(wγ,α)) if and only if g ∈ Bp
α(p−1).

This result was also proved by the authors in [7] for more general weights. How-
ever, here we will present a different proof.
The paper is organized as follows: Section 2 is devoted to some preliminaries

needed for the proofs of the main results. We prove Theorem 1.1 in Section 3 and
Theorem 1.2 in Section 4.
Throughout the paper, the letter C will denote an absolute constant whose value

may change at different occurrences. We also use the notation a � b to indicate
that there is a constant C > 0 with a ≤ Cb, and the notation a � b means that
a � b and b � a.

2. Preliminary results

In this section we shall prove a few preliminary results which are used for the
proofs of the main results of the paper.
From now on, we will always use the following notations: D(z, r) is the Euclidean

disc centered at z with radius r > 0; For fixed α > 0, the function τα is defined by

τα(z) = (1− |z|2)1+α
2 .

If there is no confusion and for easy of notation, we shall write τα = τ and for
any δ > 0, D(δτ (z)) for the disc D(z, δτ (z)).
The following result (see [7] or [6]) says that |f(z)|p wγ,α(z) verifies a certain

sub-mean-value property.

Lemma 2.1. Let γ ≥ 0 and 0 < p, α < ∞. Then there exist constants M =
M(α, γ) ≥ 1 and m = m(α, γ) > 0 such that

|f(a)|pwγ,α(a) ≤
M

δ2 τ (a)2

∫
D(δτ(a))

|f(z)|p wγ,α(z) dm(z),

for all 0 < δ ≤ m and f ∈ H(D).
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An immediate consequence of Lemma 2.1 is that the point evaluations are
bounded linear functionals on Ap(wγ,α). In particular, A2(wγ,α) is a reproduc-
ing kernel Hilbert space: there are reproducing kernels Kz ∈ A2(wγ,α) with

f(z) = 〈f,Kz〉 =
∫
D

f(ζ)Kz(ζ)wγ,α(ζ)dm(ζ).

It also follows from Lemma 2.1 that ‖Kz‖2A2(wγ,α) wγ,α(z) � (1 − |z|2)−2−α. In

fact, it is proved in [5, Lemma 3.5] (see also [7, Corollary 1]) that this is the
corresponding growth of the reproducing kernel, that is,

(2.1) ‖Kz‖2A2(wγ,α) wγ,α(z) � (1− |z|2)−2−α, z ∈ D.

Next, bearing in mind Lemma 4 of Dostanic’s paper [4], the following “test
functions” are constructed in order to prove Theorem 1.1 for 0 < α ≤ 1.

Lemma 2.2. Let 0 < α ≤ 1, γ ≥ 0 and c > 0. For each a ∈ D, consider the
functions

Fa(z) =
1

(1− āz)γ/2
exp

(
2αc

(1− āz)α

)
.

Then Fa ∈ A2(wγ,α) with ‖Fa‖2A2(wγ,α) ≤ C (1− |a|2)2+α+γ/2 |Fa(a)|.

Proof. Since |1− āz|γ ≥ (1− |a|)γ , it follows from [4, Lemma 4] that

‖Fa‖2A2(wγ,α) ≤ C

∫
D

∣∣∣∣exp
(

2αc

(1− āz)α

)∣∣∣∣
2

wα(z) dm(z)

≤ C(1− |a|2)2+α exp

(
2αc

(1− |a|2)α

)
= C (1− |a|2)2+α+γ/2 |Fa(a)|.

�

Finally, we remind the reader a description of Carleson measures for Ap(wα) due
to Oleinik (see [6, Theorem 3.3]), for α > 1.

Theorem B. Suppose that μ is a finite positive Borel measure on D, α > 1 and
0 < p ≤ q < ∞. The following are equivalent:

(i) Id : Ap(wα) → Lq(μ) is a bounded operator.
(ii) If δ > 0 is sufficiently small then

Kμ,α = sup
a∈D

1

τ (a)2q/p

∫
D(δτ(a))

wα(z)
−q/p dμ(z) < ∞.

Moreover, if (i) or (ii) holds, then Kμ,α � ||Id||qAp(wα)→Lq(μ).

Theorem C. Suppose that μ is a finite positive Borel measure on D, α > 1 and
0 < p ≤ q < ∞. The following are equivalent:

(i) Id : Ap(wα) → Lq(μ) is a compact operator.
(ii) If δ > 0 is sufficiently small then

lim
r→1−

sup
|a|>r

1

τ (a)2q/p

∫
D(δτ(a))

wα(z)
−q/p dμ(z) = 0.
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3. Proof of Theorem 1.1.

Throughout this section, for each z ∈ D and g ∈ H(D), we will use the notation:

Bg(z)
def
= (1− |z|)1+α|g′(z)|.

Proof of (i). Suppose first that supz∈D
Bg(z) < ∞, and let f ∈ Ap(wγ,α).

Since (Jgf)
′(z) = f(z)g′(z), from Theorem A we obtain

‖Jgf‖pAp(wγ,α) � |(Jgf)(0)|p +
∫
D

|(Jgf)′(z)|p (1− |z|)(1+α)p wγ,α(z) dm(z)

=

∫
D

|f(z)|p |g′(z)|p (1− |z|)(1+α)p wγ,α(z) dm(z)

≤
(
sup
z∈D

Bg(z)
)p ‖f‖pAp(wγ,α),

and it follows that Jg : Ap(wγ,α) → Ap(wγ,α) is bounded.

Suppose now that Jg is bounded on Ap(wγ,α) and choose δ > 0 sufficiently small.
We shall split the proof of this implication in two cases.

Case 0 < α ≤ 1. If f ∈ Ap(wγ,α) and a is any point of D, then by Lemma 2.1
we have

|(Jgf)′(a)|p � 1

wγ,α(a)τ (a)2

∫
D(δτ(a))

|(Jgf)′(z)|p wγ,α(z) dm(z)

� (1− |a|)−(1+α)p

wγ,α(a)τ (a)2

∫
D(δτ(a))

|(Jgf)′(z)|p (1− |z|)(1+α)p wγ,α(z) dm(z).

In the last inequality we have used the fact that (1−|a|) � (1−|z|) for z ∈ D(δτ (a)).
Since (Jgf)

′(a) = f(a)g′(a), then it follows from Theorem A and the boundedness
of Jg that

(3.1) |f(a)|p (1− |a|)(1+α)p |g′(a)|p �
‖Jgf‖pAp(wγ,α)

wγ,α(a) τ (a)2
�

‖Jg‖p ‖f‖pAp(wγ,α)

wγ,α(a) τ (a)2
.

Now, consider the test function Fa(z) defined in Lemma 2.2. Since Fa(z) has no
zeros on D, then the function Ha(z) = (Fa(z))

2/p belongs to Ap(wγ,α) with

(3.2) ‖Ha‖pAp(wγ,α) = ‖Fa‖2A2(wγ,α).

Since 2−γ ≤ |Fa(a)|wγ,α(a) (1− |a|2)−γ/2, it follows from Lemma 2.2 that

(3.3) ‖Fa‖2A2(wγ,α) ≤ C (1− |a|)2+α wγ,α(a) |Fa(a)|2.

Therefore, taking the function f = Ha in (3.1), using (3.2), (3.3) and recalling that
τ (a)2 = (1− |a|)2+α, we get

(
(1− |a|)1+α |g′(a)|

)p �
(‖Fa‖A2(wγ,α)

|Fa(a)|

)2 ‖Jg‖p
wγ,α(a) τ (a)2

� ‖Jg‖p ,
and then, bearing in mind that a is arbitrary, we have

sup
a∈D

Bg(a) � ‖Jg‖.

This finishes the proof for the case 0 < α ≤ 1.
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Case α > 1. It follows from Theorem A and the boundedness of Jg that∫
D

|f(z)|p |g′(z)|p (1− |z|)(1+α)p wγ,α(z) dm(z) � ‖Jgf‖pAp(wγ,α)

≤ C‖Jg‖p ‖f‖pAp(wγ,α),
(3.4)

whenever f belongs to Ap(wγ,α). Next, note that if h is a function in Ap(wα), then

fζ(z)
def
=

h(z)

(1− ζ̄z)γ/p
∈ Ap(wγ,α), for any ζ ∈ D,

and moreover supζ∈D
‖fζ‖pAp(wγ,α) ≤ C‖h‖pAp(wα). Consequently, if we write

dμζ(z) = |g′(z)|p (1− |z|2)(1+α)p (1− |z|2)γ
|1− ζ̄z|γ

wα(z) dm(z),

bearing in mind (3.4), we deduce that

sup
ζ∈D

∫
D

|h(z)|p dμζ(z) ≤ C ‖Jg‖p sup
ζ∈D

‖fζ‖pAp(wγ,α) ≤ C‖Jg‖p ‖h‖pAp(wα),

where C is a constant independent of ζ. That is, the operators Id : Ap(wα) →
Lp(μζ), ζ ∈ D, have norm uniformly bounded by C‖Jg‖. Then, if δ > 0 is suffi-
ciently small, by Oleinik’s theorem (see Theorem B) one has

sup
ζ∈D

sup
a∈D

1

τ (a)2

∫
D(δτ(a))

dμζ(z)

wα(z)
≤ C ‖Jg‖p.

So, taking ζ = a, we get

(3.5) sup
a∈D

1

τ (a)2

∫
D(δτ(a))

dμa(z)

wα(z)
≤ C‖Jg‖p.

On the other hand, for any a ∈ D, the subharmonicity of |g′|p yields

(
Bg(a)

)p
= (1− |a|)(1+α)p |g′(a)|p � (1− |a|)(1+α)p

τ (a)2

∫
D(δτ(a))

|g′(z)|p dm(z).

This together with the fact that (1− |a|) � (1− |z|) � |1− āz| for z ∈ D(a, δτ (a))
gives

Bg(a)
q � 1

τ (a)2

∫
D(δτ(a))

|g′(z)|p(1− |z|2)(1+α)p

wα(z)
wα(z)

(1− |z|2)γ
|1− āz|γ dm(z)

=
1

τ (a)2

∫
D(δτ(a))

dμa(z)

wα(z)
.(3.6)

Finally, bearing in mind (3.5), this gives

sup
a∈D

Bg(a) � ‖Jg‖.

Thus, the proof is complete. �

Before going into the proof of the compactness part, some previous results will
be needed. Using the fact that the point evaluation functionals are bounded on
Ap(wγ,α), the proof of the following result is standard, and we omit it here.
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Lemma 3.1. Let 0 < p < ∞ and g ∈ H(D). Then Jg is compact on Ap(wγ,α)
if and only if whenever {fn} is a bounded sequence in Ap(wγ,α) such that fn → 0
uniformly on compact subsets of D, then Jgfn → 0 in Ap(wγ,α).

Now we choose the appropriate test functions to study the compactness.

Lemma 3.2. Let 0 < α ≤ 1, γ ≥ 0, and let λ = 1 + α/2 + γ/4. For each a ∈ D,
consider the functions

fa(z) = (1− |a|2)−λ Fa(z)√
Fa(a)

,

where Fa is the function defined in Lemma 2.2. Then ‖fa‖A2(wγ,α) ≤ C, where
C > 0 does not depend on the point a, and

lim
|a|→1−

|fa(z)| = 0

uniformly on compact subsets of D.

Proof. The fact that ‖fa‖A2(wγ,α) ≤ C is a consequence of Lemma 2.2. Now,
for z ∈ D we have

|Fa(z)| ≤
1

(1− |z|)γ/2 exp
( 2αc

(1− |z|)α
)
, a ∈ D.

Therefore the result follows from the fact that

lim
|a|→1

(1− |a|2)−λ√
Fa(a)

= 0. �

Proof of (ii). Suppose first that g ∈ H(D) satisfies

(3.7) lim
|z|→1−

Bg(z) = 0,

and let {fn} be a bounded sequence of functions in Ap(wγ,α) such that fn → 0
uniformly on compact subsets of D. Fixed ε > 0, by (3.7) there is r ∈ (0, 1) such
that Bg(z)

p < ε, for all z ∈ {ξ ∈ D : r ≤ |ξ| < 1}. Moreover, since fn → 0
uniformly on compact subsets of D, there is n0 ∈ N such that

|fn(z)|p < ε, for all n ≥ n0 and z ∈ {ξ : |ξ| < r}.
Since (3.7) gives that supz∈D

(1−|z|)(1+α)|g′(z)| < ∞, by Theorem A the function
g belongs to Ap(wγ,α). Using again Theorem A, for n ≥ n0 we obtain

‖Jg(fn)‖pAp(wγ,α) ≤ C

∫
D

|g′(z)|p|fn(z)|p (1− |z|)(1+α)p wγ,α(z) dm(z)

≤ Cε

∫
|z|<r

|g′(z)|p (1− |z|)(1+α)p wγ,α(z) dm(z)

+ C

∫
r≤|z|<1

|g′(z)|p|fn(z)|p (1− |z|)(1+α)p wγ,α(z) dm(z).

≤ Cε ‖g‖pAp(wγ,α) + C

∫
r≤|z|<1

|fn(z)|p Bg(z)
p wγ,α(z) dm(z)

≤ Cε

(
‖g‖pAp(wγ,α) + sup

n
‖fn‖pAp(wγ,α)

)
≤ Cε, for all n ≥ n0,
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that is, limn→∞ ‖Jg(fn)‖pAp(wγ,α) = 0. So by Lemma 3.1, Jg is compact.

Conversely, suppose that Jg is compact. We shall split the proof of this implica-
tion in two cases.

Case 0 < α ≤ 1. Consider the function fa from Lemma 3.2. Since fa(z) never
vanishes on D, then, by Lemma 3.2, the function ha(z) = (fa(z))

2/p belongs to
Ap(wγ,α) with ‖ha‖pAp(wγ,α) = ‖fa‖2A2(wγ,α) ≤ C, and ha → 0 as |a| → 1 uniformly

on compact subsets of D. Since Jg is compact, Lemma 3.1 implies that

(3.8) lim
|a|→1−

‖Jg(ha)‖pAp(wγ,α) = 0.

For f ∈ Ap(wγ,α), proceeding as in the proof of the boundedness part (see equa-
tion (3.1)), we obtain

(3.9) |f(a)|p (1− |a|2)(1+α)p |g′(a)|p ≤ C
‖Jgf‖pAp(wγ,α)

wγ,α(a) τ (a)2
.

Recall that τ (a)2 = (1− |a|2)2+α. On the other hand,

wγ,α(a)|fa(a)|2 = wγ,α(a)(1− |a|2)−2λ|Fa(a)| ≥ C(1− |a|2)−2−α,

so
1

wγ,α(a)(1− |a|2)2+α
≤ |fa(a)|2,

which together with (3.9) (with f = ha) and (3.8) gives that

lim
|a|→1−

Bg(a)
p � lim

|a|→1−

(
(1− |a|)(1+α)p|g′(a)|p|fa(a)|2wγ,α(a) τ

2(a)
)

� lim
|a|→1−

‖Jg(ha)‖pAp(wγ,α) = 0.

This finishes the proof of this case.

Case α > 1. This can be proved with similar arguments as in the boundedness
part using Theorem C. We left the details to the interested reader. �

4. Schatten p-classes

In this section we will prove Theorem 1.2. For easy of notation, throughout this
section we denote Sp := Sp(A

2(wγ,α)), the norm ‖ · ‖ is the norm in A2(wγ,α),
and 〈·, ·〉 is the inner product in A2(wγ,α). First, we need several definitions and
preparatory results that can be of independent interest. Let F = {fn} be a sequence
of analytic functions on D. We denote

‖F (z)‖�2 =

(∑
n

|fn(z)|2
)1/2

, z ∈ D,

and for 0 < p < ∞, consider the p-integral means

Mp
p (r, F ) =

∫ 2π

0

∥∥F (reiθ)
∥∥p
�2

dθ

2π
, 0 ≤ r < 1.

If ω is a weight function, following Siskakis [10], we define the distorsion function
of ω as

ψω(z) =
1

ω(z)

∫ 1

|z|
ω(s) ds.
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Now, the proof of the following lemma is analogue to the case of one function (see
[10, Lemma 2.1]. We shall give an sketch of the proof for the sake of completeness.

Lemma 4.1. Let 1 ≤ p < ∞, F = {fn} ⊂ H(D) with F (z) ∈ �2 for each z ∈ D,
and let F ′ = {f ′

n}. Then for any weight function ω one has∫
D

‖F (z)‖p�2 ω(z) dm(z) ≤ C

(
‖F (0)‖p�2 +

∫
D

‖F ′(z)‖p�2 ψω(z)
p ω(z) dm(z)

)
,

where the constant C depends only on p and the weight ω.

Proof. First, we will show that

(4.1)
d

dr
Mp

p (r, F ) ≤ pMp−1
p (r, F )Mp(r, F

′), 0 < r < 1, for p ≥ 1.

If F = 0, (4.1) is clear. If F �= 0, at points z ∈ D where F is not zero, by
Cauchy-Schwarz inequality

r
∂ ‖F (z)‖p�2

∂r
=

rp

2
‖F (z)‖p−2

�2
∂ ‖F (z)‖2�2

∂r

=
p

2
‖F (z)‖p−2

�2

∑
n

(
r
∂ |fn(z)|2

∂r

)

= p ‖F (z)‖p−2
�2

∑
n

Re
(
zfn(z)f ′

n(z)
)

≤ rp ‖F (z)‖p−1
�2 ‖F ′(z)‖�2 ,

and consequently

d

dr
Mp

p (r, F ) ≤ rp

∫ 2π

0

∥∥F (reiθ)
∥∥p−1

�2

∥∥F ′(reiθ)
∥∥
�2

dθ

2π
.

Thus (4.1) holds for p = 1. If p > 1 apply Hölder’s inequality to obtain (4.1). From
now, the proof can be mimicked from that of [10, Lemma 2.1]. �

We also need the fact that for any orthonormal set {en} of A2(wγ,α), one has

(4.2)
∑
n

|en(z)|2 ≤ ‖Kz‖2, z ∈ D,

with equality if {en} is also an orthonormal basis.
The following Proposition gives the sufficiency in Theorem 1.2.

Proposition 4.2. Let 1 < p < ∞. If g ∈ Bp
α(p−1), then Jg ∈ Sp

Proof. If p ≥ 2, then Jg ∈ Sp if and only if∑
n

‖Jgen‖p < ∞

for all orthonormal sets {en} of A2(wγ,α) (see [12, Theorem 1.33]). But, by Theo-
rem B we get

‖Jgen‖p =

(∫
D

|Jgen(z)|2 wγ,α(z) dm(z)

)p/2

�
(∫

D

|en(z)|2 |g′(z)|2 (1− |z|2)2(1+α) wγ,α(z) dm(z)

)p/2

.
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Therefore, since p/2 ≥ 1, and ‖en‖ = 1, Hölder’s inequality, (4.2) and (2.1) give

∑
n

‖Jgen‖p �
∑
n

(∫
D

|en(z)|2 |g′(z)|2 (1− |z|2)2(1+α) wγ,α(z) dm(z)

)p/2

≤
∑
n

∫
D

|en(z)|2 |g′(z)|p (1− |z|2)(1+α)p wγ,α(z) dm(z)

=

∫
D

(∑
n

|en(z)|2
)
|g′(z)|p (1− |z|2)(1+α)p wγ,α(z)dm(z)

≤
∫
D

‖Kz‖2 |g′(z)|p (1− |z|2)(1+α)p wγ,α(z)dm(z)

�
∫
D

|g′(z)|p (1− |z|2)(1+α)p−2−α dm(z)

≤ ‖g‖p
Bp

α(p−1)

.

This finishes the proof for p ≥ 2.

If 1 < p < 2, then Jg ∈ Sp if and only if∑
n

|〈Jgen, en〉|p < ∞

for all orthonormal sets {en} of A2(wγ,α) (see [12, Theorem 1.27]). We begin the
proof of this case by establishing the inequality

(4.3)
∑
n

|〈Jgen, en〉|p ≤
∫
D

(∑
n

|Jgen(z)|2
)p/2

‖Kz‖2−p wγ,α(z)dm(z).

Since p > 1 and ‖en‖ = 1, we can use Hölder’s inequality to obtain∑
n

|〈Jgen, en〉|p ≤
∑
n

(∫
D

|Jgen(z)| |en(z)|wγ,α(z)dm(z)

)p

≤
∑
n

∫
D

|Jgen(z)|p |en(z)|2−p wγ,α(z)dm(z)

=

∫
D

(∑
n

|Jgen(z)|p |en(z)|2−p
)
wγ,α(z)dm(z)

Next, since p < 2, we can use Hölder’s inequality with exponent 2/p > 1

∑
n

|〈Jgen, en〉|p ≤
∫
D

(∑
n

|Jgen(z)|2
) p

2
(∑

n

|en(z)|2
) 2−p

2

wγ,α(z)dm(z)

≤
∫
D

(∑
n

|Jgen(z)|2
) p

2 ‖Kz‖2−p wγ,α(z)dm(z),

and this proves (4.3).

Now, (4.3) and the fact that ‖Kz‖2 wγ,α(z) � (1− |z|2)−2−α gives

(4.4)
∑
n

|〈Jgen, en〉|p �
∫
D

∥∥{Jgen(z)}∥∥p�2 ω∗(z) dm(z),
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where

ω∗(z) = (1− |z|2)−
(2+α)(2−p)

2 wγ,α(z)
p/2 = (1− |z|2)γ∗

exp

(
−cp/2

(1− r)α

)
,

with γ∗ = p
2γ − (2+α)(2−p)

2 . Since the distorsion function of the weight ω∗ is

comparable to (1−|z|2)1+α (see [10, Example 3.2]), then Lemma 4.1 together with
(4.4) gives

∑
n

|〈Jgen, en〉|p �
∫
D

∥∥{(Jgen)′(z)}∥∥p�2 (1− |z|2)(1+α)pω∗(z) dm(z)

=

∫
D

(∑
n

|(Jgen)′(z)|2
)p/2

(1− |z|2)(1+α)pω∗(z) dm(z)

=

∫
D

|g′(z)|p
(∑

n

|en(z)|2
)p/2

(1− |z|2)(1+α)pω∗(z) dm(z)

≤
∫
D

|g′(z)|p ‖Kz‖p (1− |z|2)(1+α)pω∗(z) dm(z)

�
∫
D

|g′(z)|p wγ,α(z)
−p/2 (1− |z|2)

αp
2 ω∗(z) dm(z)

=

∫
D

|g′(z)|p (1− |z|2)p−2+α(p−1) dm(z) = ‖g‖p
Bp

α(p−1)

.

This completes the proof of the Proposition. �

For the necessity we need first some lemmas.

Lemma A (Oleinik [6]). Let τ (z) = (1 − |z|2)1+α
2 . There is a number δ0 and a

sequence of points {zj} ⊂ D, such that for each δ ∈ (0, δ0) one has:

(i) zj /∈ D(δτ (zk)), j �= k.

(ii)
⋃

j D(δτ (zj)) = D.

(iii) D̃(δτ (zj)) ⊂ D(3δτ (zj)), where D̃(δτ (zj)) =
⋃

z∈D(δτ(zj))
D(δτ (z)), j =

1, 2, . . .

(iv)
{
D(3δτ (zj))

}
is a covering of D of finite multiplicity N .

Let kz = Kz/‖Kz‖ be the normalized reproducing kernels of A2(wγ,α).

Lemma 4.3. Let {zj} be the sequence given in Lemma A. Then for every ortonor-
mal sequence {ej} in A2(wγ,α), the operator B taking ej to kzj is bounded.

Proof. It is required to show

∥∥∥∥∥∥B
(∑

j

ajej

)∥∥∥∥∥∥ ≤ C

⎛
⎝∑

j

|aj |2
⎞
⎠

1/2

.
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For any g ∈ A2(wγ,α), we have

∣∣∣∣∣∣
〈
B
(∑

j

ajej

)
, g

〉∣∣∣∣∣∣ =
∣∣∣∣∣∣
〈∑

j

ajkzj , g

〉∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j

aj
〈
kzj , g

〉∣∣∣∣∣∣ ≤
∑
j

|aj |
|g(zj)|
‖Kzj‖

≤

⎛
⎝∑

j

|aj |2
⎞
⎠

1/2 ⎛
⎝∑

j

|g(zj)|2 ‖Kzj‖−2

⎞
⎠

1/2

.

Now the result follows from the fact that, by (2.1), Lemma 2.1 and Lemma A

∑
j

|g(zj)|2 ‖Kzj‖−2 �
∑
j

|g(zj)|2wγ,α(zj)τ (zj)
2

�
∑
j

∫
D(τ(zj))

|g(z)|2 wγ,α(z) dm(z)

≤ C‖g‖2. �

The next result gives the necessity in Theorem 1.2 completing the proof of that
Theorem.

Proposition 4.4. Let 0 < p < ∞. If Jg ∈ Sp(A
2(wγ,α)), then g ∈ Bp

α(p−1).

Proof. We consider first the case p ≥ 2. Suppose that Jg is in Sp, and let
{ek} be an orthonormal set in A2(wγ,α). By Lemma 4.3, the operator B taking ej
to the normalized reproducing kernels kzj is bounded on A2(wγ,α), where {zj} is
the sequence from Lemma A. Since Sp is a two-sided ideal in the space of bounded
linear operators on A2(wγ,α), then JgB belongs to Sp (see [12, p.27]). Thus, by
[12, Theorem 1.33]

∑
j

‖Jg(kzj )‖p =
∑
k

‖JgBej‖p < ∞.

Now, using the subharmonicity of |g′|2 and Lemma A we obtain

‖g‖p
Bp

α(p−1)

�
∫
D

(
1

τ (ζ)2

∫
D(δτ(ζ))

|g′(z)|2 dm(z)

)p/2

(1− |ζ|2)p−2+α(p−1)dm(ζ)

=
∑
j

∫
D(δτ(zj))

(∫
D(δτ(ζ))

|g′(z)|2 dm(z)

)p/2

(1− |ζ|2)
αp
2 τ (ζ)−2 dm(ζ)

�
∑
j

(∫
D(3δτ(zj))

|g′(z)|2 (1− |z|2)α dm(z)

)p/2

.

This together with (2.1), the fact that (see [5, Lemma 3.6])

|kzj (z)| � ‖Kz‖ for z ∈ D(δτ (zj)),
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and Theorem A gives

‖g‖p
Bp

α(p−1)

�
∑
j

(∫
D(3δτ(zj))

‖Kz‖2 |g′(z)|2 (1− |z|2)2(1+α) wγ,α(z) dm(z)

)p/2

�
∑
j

(∫
D(3δτ(zj))

|kzj (z)|2 |g′(z)|2 (1− |z|2)2(1+α) wγ,α(z) dm(z)

)p/2

≤
∑
j

(∫
D

|kzj (z)|2 |g′(z)|2 (1− |z|2)2(1+α) wγ,α(z)dm(z)

)p/2

�
∑
j

‖Jg(kzj )‖p < ∞.

This completes the proof for the case p ≥ 2.

If 0 < p < 2 we follow the argument in [12, Proposition 7.15]. If Jg ∈ Sp then the
positive operator J∗

g Jg belongs to Sp/2. Without loss of generality we may assume
that g′ �= 0. Suppose J∗

gJgf =
∑

n λn〈f, en〉 en is the canonical decomposition of
J∗
gJg. Then {en} is also an orthonormal basis. Indeed, if there is an unit vector

e ∈ A2(wγ,α) such that e ⊥ en for all n ≥ 1, then by Theorem A,∫
D

|g′(z)|2|e(z)|2(1− |z|2)2(1+α) wγ,α(z) dm(z) � ‖Jge‖2 = 〈J∗
gJge, e〉 = 0

because J∗
gJg is a linear combination of the vectors en. This would give g′ ≡ 0.

Now (2.1), the fact that equality holds in (4.2) (since {en} is an orthonormal
basis), and Hölder’s inequality yields

‖g‖p
Bp

α(p−1)

�
∫
D

|g′(z)|p (1− |z|2)(1+α)p ‖Kz‖2 wγ,α(z) dm(z)

=
∑
n

∫
D

|g′(z)|p |en(z)|2 (1− |z|2)(1+α)p wγ,α(z) dm(z)

≤
∑
n

(∫
D

|g′(z)|2 |en(z)|2 (1− |z|2)2(1+α) wγ,α(z) dm(z)

)p/2

�
∑
n

〈J∗
gJgen, en〉p/2 =

∑
n

λp/2
n = ‖J∗

gJg‖
p/2
Sp/2

.

The last inequality is due to Theorem A. This completes the proof. �

Corollary 4.5. Let 0 < p ≤ 1. Then Jg ∈ Sp if and only if g is constant.

Proof. The sufficiency is obvious, and the necessity follows from Proposition
4.4, since Bp

α(p−1) contains only constant functions for 0 < p ≤ 1. �
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