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Abstract. We study Hankel operators on the standard Bergman spaces
A2
α, α > −1. A description of the boundedness and compactness of

the (big) Hankel operator Hf with general symbols f ∈ L2(D, dAα)
is obtained. Also, we provide a new proof of a result of Arazy-Fisher-
Peetre on the membership in Schatten p-classes of Hankel operators with
conjugate analytic symbols.
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1. Introduction

If T is an operator induced (in some way) by a symbol f going from some
Hilbert space to another Hilbert space, one is going to hope that individual
properties of the symbol (such as smoothness or growth conditions) will give
information on the properties of the operator (boundedness, compactness,
or membership in Schatten-Von Neumann ideals). In the present paper, we
will study this when dealing with Hankel operators on standard weighted
Bergman spaces. For α > −1, the weighted Bergman space A2

α consists of
those functions f analytic on the unit disk D such that

‖f‖α =

(∫
D
|f(z)|2 dAα(z)

)1/2

<∞,

where dAα(z) = (α + 1)(1 − |z|2)α dA(z) and dA is the normalized area
measure on D. The space A2

α is a Hilbert space with reproducing kernel given
by Kz(w) = (1 − z̄w)−2−α; it is also a closed subspace of L2(D, dAα), and
the orthogonal projection from L2(D, dAα) to A2

α is given by

Pαf(z) = 〈f,Kz〉α =

∫
D

f(w)

(1− w̄z)2+α
dAα(w), f ∈ L2(D, dAα).

The author is partially supported by SGR grant 2009SGR 420 (Generalitat de Catalunya)
and DGICYT grant MTM2011-27932-C02-01 (MCyT/MEC).
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Given a function f ∈ L2(D, dAα), the Hankel operator with symbol f is the
linear operator Hf : A2

α → L2(D, dAα) defined by

Hfg = (I − Pα)(fg), g ∈ A2
α.

The operator Hf is densely defined on A2
α. For example, it is well defined

in H∞, the algebra of all bounded analytic functions on D. The following
integral formula is very useful when one is going to estimate the norm of a
Hankel operator:

Hfg(z) =

∫
D

f(z)− f(w)

(1− w̄z)2+α
g(w) dAα(w), g ∈ A2

α.

It has been a lot of activity in the theory of Hankel operators on Bergman
spaces in recent years, and this topic has become a classical theme in complex
analysis and operator theory (see for example [1], [3], [4], [10], [11], [13], and
[17]). For Hankel operators with conjugate analytic symbols, that is Hf̄ with

f ∈ A2
α, one has that Hf̄ is bounded on A2

α if and only if the symbol f
belongs to the Bloch space; Hf̄ is compact if and only if f belongs to the
little Bloch space (see [1], [2]); and the membership in Schatten p-classes of
the Hankel operator Hf̄ is equivalent to the function f being in the analytic
Besov space Bp for 1 < p < ∞, and to f being constant when 0 < p ≤ 1.
Therefore, for conjugate analytic symbols, the picture on the boundedness,
compactness and Schatten p-classes is complete. However, the proof of the
necessity and sufficiency of the condition f ∈ Bp for Hf̄ being in the Schatten
class Sp when 1 < p < 2 given in [1] is rather difficult and technical, and it
is our aim to provide a more “elementary” proof of that result.

Theorem 1. Let 1 < p < 2, α > −1 and f ∈ A2
α. The Hankel operator Hf̄

belongs to Sp if and only if f ∈ Bp.

Recall that, for 1 < p < ∞, the analytic Besov space Bp consists of
those functions f analytic on D for which∫

D
|f ′(z)|p (1− |z|2)p−2 dA(z) <∞.

Also, if H and K are separable Hilbert spaces, a compact operator T from
H to K is said to belong to the Schatten class Sp if its sequence of singular
numbers is in the sequence space `p. Recall that the singular numbers of
a compact operator T are the square root of the eigenvalues of the positive
operator T ∗T , where T ∗ denotes the adjoint of T . Also, the compact operator
T admits a decomposition of the form

T =
∑
n

λn〈·, en〉Hfn,

where {λn} are the singular numbers of T , {en} is an orthonormal set in H,
and {fn} is an orthonormal set in K. For p ≥ 1, the class Sp is a Banach

space with the norm ‖T‖p = (
∑
n |λn|p)

1/p
, while for 0 < p < 1 one has the

inequality ‖S + T‖pp ≤ ‖S‖pp + ‖T‖pp. We refer to [17, Chapter 1] for a brief
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account on the theory of Schatten p-classes.

We consider also the study of the boundedness, compactness and mem-
bership of Schatten p-classes of the Hankel operator Hf for general symbols
f ∈ L2(D, dAα). In order to state the next result we need to introduce some
notation. For z ∈ D and r > 0, let

D(z, r) = {w ∈ D : β(z, w) < r}

denote the hyperbolic disk with center z and radius r. Here β(z, w) is the
Bergman or hyperbolic metric on D. Also, for any Lebesgue measurable set
E in D, we use the notation |E|α :=

∫
E
dAα for the dAα-measure of E.

Theorem 2. Let α > −1 and f ∈ L2(D, dAα). The following conditions are
equivalent:

(a) Hf is bounded on A2
α.

(b) supz∈D ‖Hfkz‖α <∞.
(c) For any (or some) r > 0, the function Fr defined by

Fr(z)
2 = inf

{
1

|D(z, r)|α

∫
D(z,r)

|f − h|2 dAα : h ∈ A2
α

}
is bounded on D.

(d) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfies
(1 − |z|2) ∂f1(z) ∈ L∞(D), and f2 has the property that for any (or
some) r > 0 the function Gr defined by

Gr(z)
2 =

1

|D(z, r)|α

∫
D(z,r)

|f2(w)|2 dAα(w)

is bounded on D.

Note that we can put α = 0 in the statements of parts (c) and (d) since
the weight factor (1 − |z|2)α in dAα(z) is essentially cancelled out by the
extra factor (1− |z|2)α in |D(z, r)|α � (1− |z|2)2+α.

The case α = 0 of Theorem 2 was proved by D. Luecking in [10], who
also noticed that the same proof also applies to the case −1 < α < 1, and that
the only missing part for the weighted case is a proof of the implication (d)
implies (a), and this will be our contribution. The proof uses ∂-techniques,
and the main ideas for the proof were essentially given in [7] (see also the
related papers [6] and [8] of the same authors), where the corresponding result
for a class of weighted Bergman spaces is obtained. However, the standard
weights (1−|z|2)α are in the class considered in [7] only for α > 2, and also the
statement that they give is for symbols in L2(D). We remark that K. Zhu in
p.233 of his book [17] considers the question of describing the boundedness
of Hankel operators with general symbols on weighted Bergman spaces as
an open problem. Here we will use the appropriate modifications in order
to obtain a unified proof for all α > −1. We also obtain the corresponding
analogues for compactness and membership in Schatten-Von Neumann ideals.
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Throughout the paper, the letter C will denote an absolute constant
whose value may change at different occurrences. The paper is organized as
follows: Section 2 is devoted to some preliminaries needed for the proofs of
the main results. A proof of Theorem 1 is given in Section 3, and we study
the boundedness, compactness and membership in Schatten classes of Hankel
operators with general symbols f ∈ L2(D, dAα) in Section 4. Finally, we look
at little Hankel operators in Section 5.

2. Preliminaries

We will use the fact that for any orthonormal set {en} of A2
α, one has∑

n

|en(z)|2 ≤ ‖Kz‖2α, z ∈ D, (2.1)

with equality if {en} is also an orthonormal basis.
The following integral estimate (see [17]) has become indispensable in

this area of analysis, and will be used repeatedly throughout the paper.

Lemma 2.1. Suppose z ∈ D, c > 0 and t > −1. The integral

Ic,t(z) =

∫
D

(1− |w|2)t

|1− w̄z|2+t+c
dA(w)

is comparable to (1− |z|2)−c.

We also need some well known variants of the previous lemma. First
recall that a sequence {zn} of points in the unit disk D is said to be separated
in the Bergman metric if there is a constant δ > 0 such that β(zj , zk) ≥ δ for
all j and k with j 6= k. In particular, there is a constant r > 0 such that the
hyperbolic disks D(zk, r) are pairwise disjoint.

Lemma 2.2. Let {zk} be a separated sequence in D, and let 1 < t < s. Then∑
k

(1− |zk|2)t

|1− z̄kz|s
≤ C (1− |z|2)t−s, z ∈ D.

Lemma 2.3. Let c > 0 and t > −1. Then∫
D

(1− |w|2)t dA(w)

|z − w| |1− w̄z|1+t+c

is comparable to (1− |z|2)−c.

The following solution of the ∂-equation will be a key ingredient in the
proof of Theorem 2.

Proposition 2.4. Let 1 < p <∞ and α > −1. Then the function

u(z) =

∫
D

f(w) (1− |w|2)1+α

(z − w)(1− w̄z)1+α
dA(w)
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solves the equation ∂u = f in D with∫
D
|u(z)|p dAα(z) ≤ C

∫
D
|f(z)|p (1− |z|2)p+α dA(z),

provided the right hand-side integral is finite.

Proof. The function u clearly satisfies the equation ∂u = f in D. The cor-
responding estimate will follow from Hölder’s inequality and Lemma 2.3.
Indeed, let ε > 0 with α− ε > −1 and α− ε

p−1 > −1. Then

|u(z)|p ≤
(∫

D

|f(w)|p (1− |w|2)p+α+εdA(w)

|z − w| |1− w̄z|1+α

)(∫
D

(1− |w|2)α−
ε
p−1 dA(w)

|z − w| |1− w̄z|1+α

)p−1

≤ C (1− |z|2)−ε
(∫

D

|f(w)|p (1− |w|2)p+α+ε dA(w)

|z − w| |1− w̄z|1+α

)
.

Thus, Fubini’s theorem and Lemma 2.3 gives∫
D
|u(z)|p dAα(z)

≤ C
∫
D
|f(w)|p (1− |w|2)p+α+ε

(∫
D

(1− |z|2)α−ε

|z − w| |1− w̄z|1+α
dA(z)

)
dA(w)

≤ C
∫
D
|f(w)|p (1− |w|2)p+α dA(w).

�

We also need the concept of an r-lattice in the Bergman metric. Let
r > 0. A sequence {ak} of points in D is called an r-lattice if the unit disk is
covered by the Bergman metric disks {D(ak, r)}, and β(ai, aj) ≥ r/2 for all
i and j with i 6= j. If {ak} is an r-lattice in D, then it also has the following
property: for any R > 0 there exists a positive integer N (depending on r
and R) such that every point in D belongs to at most N sets in {D(ak, R)}.
There are elementary constructions of r-lattices in D. See [17, Chapter 4] for
example.

A positive Borel measure µ in the unit disk is a Carleson measure for
A2
α if there exists a finite positive constant C such that∫

D
|f(z)|2 dµ(z) ≤ C‖f‖2α

for all f ∈ A2
α. Also, µ is said to be a vanishing Carleson measure for A2

α if
the inclusion map i : A2

α → L2(D, dµ) is compact. It is well known (see [9],
or Theorems 7.4 and 7.7 in [17] for example) that the Carleson measures for
A2
α are characterized by the condition

sup
a∈D

µ
(
D(a, r)

)
(1− |a|2)2+α

<∞.

Also, the condition

lim
|a|→1−

µ
(
D(a, r)

)
(1− |a|2)2+α

= 0
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describes the vanishing Carleson measures for A2
α.

3. Proof of Theorem 1

Let f ∈ A2
α and 1 < p < 2. We prove the necessity first. So, suppose that

the Hankel operator Hf̄ belongs to Sp. We must show that f ∈ Bp. Let
β = (2 + α)p. By Theorem 5.21 of [17], f ∈ Bp if and only if

Ip(f) :=

∫
D

∫
D

|f(z)− f(w)|p

|1− w̄z|4+2β
dAβ(z) dAβ(w) <∞.

If Kz is the reproducing kernel of A2
α, since fKw ∈ A2

α for each w ∈ D, an
easy computation gives

Hf̄Kz(w) = f(w)Kz(w)− Pα(f̄Kz)(w) = f(w)Kz(w)− 〈f̄Kz,Kw〉α
= f(w)Kz(w)− 〈Kz, fKw〉α = (f(w)− f(z))Kz(w).

On the other hand, let Hf̄ =
∑
n λn〈·, en〉α fn be a decomposition of the

operator Hf̄ , with {λn} being the singular numbers of Hf̄ , and {en}, {fn}
are orthonormal sets in A2

α and L2(D, dAα) respectively. Then

Hf̄Kz(w) =
∑
n

λnen(z) fn(w).

Hence, by Hölder’s inequality,

|Hf̄Kz(w)|p ≤

(∑
n

|λn|p |fn(w)|p |en(z)|2−p
) (∑

n

|en(z)|2
)p−1

≤

(∑
n

|λn|p |fn(w)|p |en(z)|2−p
)
‖Kz‖2(p−1)

α .

This, together with the fact that ‖Kz‖2α = (1− |z|2)−2−α and β = (2 + α)p,
gives

Ip(f) =

∫
D

∫
D

|Hf̄Kz(w)|p

|1− w̄z|4+(2+α)p
dAβ(z) dAβ(w)

≤
∑
n

|λn|p
∫
D
|fn(w)|p

∫
D

|en(z)|2−p

|1− w̄z|4+(2+α)p
‖Kz‖2(p−1)

α dAβ(z)dAβ(w)

�
∑
n

|λn|p
∫
D
|fn(w)|p

∫
D

|en(z)|2−p

|1− w̄z|4+(2+α)p
dA2+α(z) dAβ(w).

Since ‖Hf̄‖
p
Sp

=
∑
n |λn|p, it is enough to show that

Jn :=

∫
D
|fn(w)|p

∫
D

|en(z)|2−p

|1− w̄z|4+(2+α)p
dA2+α(z) dAβ(w) ≤ C,
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for some positive constant C independent of n. Now, since p < 2, we can use
Hölder’s inequality with exponent 2/p > 1 to obtain

Jn ≤ C ‖fn‖pL2(D,dAα)

(∫
D

(∫
D

|en(z)|2−p

|1− w̄z|4+(2+α)p
dA2+α(z)

) 2
2−p

dAγ(w)

) 2−p
2

,

where γ = p(4+α)
2−p . Now we use Hölder’s inequality once again and Lemma

2.1 to obtain(∫
D

|en(z)|2−p

|1− w̄z|4+(2+α)p
dA2+α(z)

) 2
2−p

≤
(∫

D

|en(z)|2

|1− w̄z|4+(2+α)p
dA2+α(z)

)(∫
D

dA2+α(z)

|1− w̄z|4+(2+α)p

) p
2−p

≤ C
∫
D

|en(z)|2

|1− w̄z|4+(2+α)p
dA2+α(z)

(
(1− |w|2)α−(2+α)p

) p
2−p

.

Note that

γ +
αp− (2 + α)p2

2− p
=

4p+ 2αp− 2p2 − αp2

2− p
= (2 + α)p.

Therefore, since ‖fn‖L2(D,dAα) = 1, an application of Fubini’s theorem and
Lemma 2.1 yields

Jn ≤ C
(∫

D

(∫
D

|en(z)|2

|1− w̄z|4+(2+α)p
dA2+α(z)

)
(1− |w|2)(2+α)p dA(w)

) 2−p
2

≤ C
(∫

D
|en(z)|2

(∫
D

(1− |w|2)(2+α)p

|1− w̄z|4+(2+α)p
dA(w)

)
dA2+α(z)

) 2−p
2

≤ C‖en‖2−pα = C.

This finishes the proof of the necessity part.
Now we proceed to prove the sufficiency of the condition f ∈ Bp. Since

Bp is included in the little Bloch space, it follows that Hf̄ is compact. We
want to show that the Hankel operator Hf̄ is in the Schatten class Sp or,
equivalently, that the positive operator S = H∗

f̄
Hf̄ belongs to Sp/2. To this

end, we fix a sufficiently large number b and use the atomic decomposition
of A2

α (see [17, Theorem 4.33]) to find a separated sequence {zn} in D such
that A2

α consists exactly of functions of the form g(z) =
∑
n λn hn(z), where

λ = {λn} ∈ `2,

hn(z) =
(1− |zn|2)b−

2+α
2

(1− z̄nz)b
,

and ‖g‖α ≤ C‖λ‖`2 for some positive constant C independent of {λn}.
Fix an orthonormal basis {en} for A2

α and define a linear operator B on
A2
α by

B

(∑
n

λnen

)
=
∑
n

λnhn.
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Since B is a bounded surjective linear operator on A2
α, by [17, Proposition

1.30] we will have S ∈ Sp/2 if we can prove that the operator H = B∗SB is
in Sp/2. Moreover, since H is a positive operator and p/2 < 1, according to
[17, Corollary 1.32], we will have H ∈ Sp/2 if∑

n

〈Hen, en〉p/2α <∞.

Since

〈Hen, en〉p/2α = 〈B∗SBen, en〉p/2α = 〈SBen, Ben〉p/2α = 〈Shn, hn〉p/2α

= 〈H∗f̄Hf̄hn, hn〉p/2α = 〈Hf̄hn, Hf̄hn〉p/2α = ‖Hf̄hn‖pα,

we need to show that ∑
n

‖Hf̄hn‖pα <∞.

Since Hf̄hn = f̄hn−Pα(f̄hn) is the solution of the equation ∂u = hn f ′ with

minimal L2(D, dAα)-norm, it follows from Proposition 2.4 that ‖Hf̄hn‖α ≤
C‖Mhhn‖α, where Mh is the operator of multiplication by the function
h(z) = (1− |z|2)2f ′(z). Therefore, it is enough to show that

M :=
∑
n

‖Mhhn‖pα <∞.

Let {an} ⊂ D be an r-lattice in the Bergman metric. Since |hn(z)| is compa-
rable to |hn(ak)| for z ∈ D(ak, r) we obtain

M =
∑
n

(∫
D

(1− |z|2)2 |f ′(z)|2 |hn(z)|2 dAα(z)

)p/2

≤
∑
n

(∑
k

∫
D(ak,r)

(1− |z|2)2 |f ′(z)|2 |hn(z)|2 dAα(z)

)p/2

≤ C
∑
n

(∑
k

|hn(ak)|2
∫
D(ak,r)

(1− |z|2)2 |f ′(z)|2 dAα(z)

)p/2
.

Also, the subharmonicity of |f ′|p and the fact that D(z, r) ⊂ D(ak, 2r) for
z ∈ D(ak, r) gives

|f ′(z)|2 ≤ C

(
1

(1− |z|2)2

∫
D(z,r)

|f ′(w)|p dA(w)

)2/p

≤ C

(∫
D(ak,2r)

|f ′(w)|p dλ(w)

)2/p

for each z ∈ D(ak, r) (see [17, Proposition 4.13]). Recall that dλ(w) = (1 −
|w|2)−2 dA(w) is the hyperbolic metric in D. This together with the fact that
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p/2 ≤ 1 yields

M ≤ C
∑
n

∑
k

|hn(ak)|2(1− |ak|2)2

(∫
D(ak,2r)

|f ′(w)|pdλ(w)

)2
p∣∣D(ak, r)

∣∣
α

p/2

≤ C
∑
n

∑
k

|hn(ak)|p (1− |ak|2)p
∫
D(ak,2r)

|f ′(w)|p dλ(w)
∣∣D(ak, r)

∣∣p/2
α
.

Finally, since {zn} is a separated sequence, it follows from Lemma 2.2 that∑
n

|hn(ak)|p =
∑
n

(1− |zn|2)bp−(2+α) p2

|1− z̄nak|bp
≤ C(1− |ak|2)−(2+α) p2 .

This, together with the fact that |D(ak, r)|α � (1− |ak|2)2+α gives

M ≤ C
∑
k

(1− |ak|2)p
∫
D(ak,2r)

|f ′(w)|p dλ(w)

≤ C
∑
k

∫
D(ak,2r)

|f ′(w)|p (1− |w|2)p dλ(w) ≤ C‖f‖pBp .

This completes the proof of the theorem.

4. Hankel operators with general symbols

Proof of Theorem 2. The implications (a) ⇒ (b); (b) ⇒ (c); and (c) ⇒ (d)
follows the same arguments of the proof given in [10] (see also the proof of
Theorem 8.34 in K. Zhu’s monograph [17]). So, suppose that (d) holds. The
condition on f2 says that |f2|2 dAα is a Carleson measure for A2

α. Therefore

‖Hf2g‖2α ≤ ‖f2g‖2α =

∫
D
|g(z)|2 |f2(z)|2 dAα(z) ≤ C‖g‖2α,

and the Hankel operator Hf2 is bounded on A2
α. It remains to show that the

Hankel operator Hf1 is bounded on A2
α. Let g ∈ H∞. Since (1− |z|2)∂f1(z)

is bounded in D, using Lemma 2.4 we see that there exists a solution u of
the equation ∂u = g ∂f1 in D with

‖u‖2α =

∫
D
|u(z)|2 dAα(z) ≤ C

∫
D

(
(1− |z|2)|∂f1(z)|

)2

|g(z)|2 dAα(z)

≤ C
∫
D
|g(z)|2 dAα(z) = C‖g‖2α.

Since Hf1g = f1g − Pα(f1g) is the solution of the equation ∂u = g ∂f1 with
minimal L2(D, dAα)-norm, we obtain

‖Hf1g‖2α ≤ C‖g‖2α,

completing the proof of the boundedness of Hf . �

The corresponding result for compactness is the following one.
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Theorem 3. Let α > −1 and f ∈ L2(D, dAα). The following conditions are
equivalent:

(a) Hf is compact on A2
α.

(b) lim|z|→1− ‖Hfkz‖α = 0.
(c) For any (or some) r > 0, the function Fr defined by

Fr(z)
2 = inf

{
1

|D(z, r)|α

∫
D(z,r)

|f − h|2 dAα : h ∈ A2
α

}
is in C0(D).

(d) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfies
(1 − |z|2) ∂f1(z) ∈ C0(D), and f2 has the property that for any (or
some) r > 0 the function Gr defined by

Gr(z)
2 =

1

|D(z, r)|α

∫
D(z,r)

|f2(w)|2 dAα(w)

is in C0(D).

Proof. Since every function in C0(D) is bounded in D, each of the conditions
implies the boundedness of the Hankel operator Hf on A2

α. We will prove
only the implication (d) ⇒ (a), since the other implications are well known.
Thus, suppose that f = f1 + f2 with (1− |z|2) ∂f1(z) ∈ C0(D), and |f2|2 dAα
being a vanishing Carleson measure for A2

α. We will show that both Hf1

and Hf2 are compact. The condition on f2 implies that the multiplication
operator Mf2 is compact from A2

α into L2(D, dAα) (see Theorem 7.8 in [17]),
and therefore the Hankel operator Hf2 = (I − Pα)Mf2 is compact. To show
that Hf1 is compact, let {gn} be a bounded sequence in A2

α that converges to
0 uniformly on compact subsets of D. Given any ε > 0, there exists 0 < r < 1
such that

(1− |z|2)|∂f1(z)| < ε, |z| > r,

and we can choose a positive integer n0 with

|gn(z)| < ε, |z| ≤ r, n ≥ n0.

From the proof of Theorem 2 it follows that

‖Hf1gn‖2α ≤ C
∫
D

(
(1− |z|2)|∂f1(z)|

)2

|gn(z)|2 dAα(z)

≤ C ε
∥∥(1− |z|2)|∂f1(z)|

∥∥2

∞ + Cε‖gn‖2α
≤ Cε

for all n ≥ n0. This proves that limn ‖Hf1gn‖α = 0, so Hf1 is compact from
A2
α into L2(D, dAα) finishing the proof of the theorem. �

The following result characterizes the membership of the Hankel opera-
tor Hf in the Schatten classes Sp for p ≥ 1. Recall that dλ(z) = (1− |z|2)−2

is the hyperbolic measure on D.

Theorem 4. Let p ≥ 1 and f ∈ L2(D, dAα) such that Hf is bounded on A2
α.

The following conditions are equivalent:
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(a) Hf belongs to Sp.
(b) For any (or some) r > 0, the function

z 7→

(∫
D(z,r)

|Hfkz(w)|2 dAα(w)

)1/2

belongs to Lp(D, dλ).
(c) For any (or some) r > 0, the function Fr defined in Theorem 2 belongs

to Lp(D, dλ).
(d) f admits a decomposition f = f1 + f2, where for any (or some) r > 0

the function

Hr(z) =

(
1

|D(z, r)|α

∫
D(z,r)

∣∣(1− |z|2) ∂f1(z)
∣∣2 dAα(z)

)1/2

belongs to Lp(D, dλ), and the function Gr defined in Theorem 2 also
belongs to Lp(D, dλ).

Remark: For p ≥ 2, condition (b) can be replaced by the condition

(b2) The function z 7→ ‖Hfkz‖α belongs to Lp(D, dλ),

and (d) can also be replaced by the condition

(d2) f admits a decomposition f = f1+f2, where the function (1−|z|2) ∂f1(z)
belongs to Lp(D, dλ) and for any (or some) r > 0 the function Gr defined
in Theorem 2 also belongs to Lp(D, dλ).

Proof. Apart from the implication (d) implies (a), all the other implications
are known (see [10] or [17, Theorem 8.36]). So, suppose that (d) holds, that is,
f = f1 + f2, where the functions Hr and Gr both belong to Lp(D, dλ). Since
for any g ∈ H∞ one has ‖Hf2g‖α ≤ ‖f2g‖α and ‖Hf1g‖α ≤ C‖hg‖α with

h(z) = (1 − |z|2) ∂f1(z), it suffices to show that the multiplication operator
Mψ : A2

α → L2(D, dAα) belongs to Sp for ψ = f2 or ψ = h. This is equivalent
to M∗ψMψ being in Sp/2, and since M∗ψMψ = T|ψ|2 where Tϕ denotes the

Toeplitz operator with symbol ϕ, by Theorem 7.18 of [17] the conditions
in (d) are exactly what is needed to have both T|f2|2 and T|h|2 belong to
Sp/2. Thus the corresponding multiplication operators Mf2 and Mh are in Sp
finishing the proof of the theorem.

�

5. Little Hankel operators

LetA2
α be the space of conjugate analytic functions inA2

α. For f ∈ L2(D, dAα),

the little Hankel operator hf : A2
α → A2

α is defined by the formula

hfg(z) =

∫
D

f(w) g(w)

(1− z̄w)2+α
dAα(w).
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The operator hf is unbounded in general. However, hf is bounded if f is
bounded, and we clearly have ‖hf‖ ≤ ‖f‖∞. In the study of little Hankel
operators, it turns out that it is more convenient to study hf̄ instead of hf .
Throughout this section, let Vα be the integral operator defined by

Vαf(z) = 〈k̄z, hf kz〉α = (1− |z|2)2+α

∫
D

f(w)

(1− w̄z)4+2α
dAα(w).

Recall that kz are the normalized reproducing kernels of A2
α. For a given

function f ∈ L2(D, dAα), one has the identity hf̄ = hcαVαf for some positive
constant cα depending only on α, in the sense that hf̄g = hcαVαfg for all

g ∈ H∞, which is dense in A2
α (see [17, Chapter 8]). The properties of Vαf can

be used in order to obtain descriptions of the boundedness, compactness and
membership in Schatten classes of the little Hankel operator hf̄ . In fact, it is

proved in [5] and [14] that hf̄ is bounded on A2
α if and only if Vαf ∈ L∞(D),

and the compactness is characterized by the condition Vαf ∈ C0(D). The
corresponding description for the membership in the Schatten classes Sp with
p ≥ 1 is also obtained, and it is our aim to give a “more elementary” proof
of that result, especially for the case 1 ≤ p < 2. Note that the proof we give
below works also in the setting of the unit ball of CN , or other domains Ω in
CN .

Theorem 5. Let f ∈ L2(D, dAα) and 1 ≤ p < ∞. Then hf belongs to Sp if

and only if Vαf is in Lp(D, dλ).

Proof. Suppose that hf is in the Schatten class Sp. Since |Vαf(z)| ≤ ‖hfkz‖α,

the case p ≥ 2 follows from the well known fact that ‖hfkz‖α ∈ Lp(D, dλ) is
a necessary condition for hf being in Sp if p ≥ 2. What is curious is that the
case 1 ≤ p < 2 can be proved in a similar way. Indeed, one has

hf Kz(w) =
∑
n

λn en(z) fn(w),

where {λn} are the singular values of hf , and {en}, {fn} are orthonormal

sets of A2
α and A2

α respectively. Thus

〈hf̄kz, kz〉α = ‖Kz‖−2
α 〈hf̄Kz,Kz〉α

= ‖Kz‖−2
α

∑
n

λn en(z) 〈fn,Kz〉α

= ‖Kz‖−2
α

∑
n

λn en(z) fn(z).

Since 1 ≤ p < 2, using Hölder’s inequality and (2.1), we obtain

|Vαf(z)|p ≤ ‖Kz‖−2p
α

(∑
n

|λn|p |en(z)|2−p |fn(z)|p
)(∑

n

|en(z)|2
)p−1

≤

(∑
n

|λn|p |en(z)|2−p |fn(z)|p
)
‖Kz‖−2

α ,
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and this, together with another use of Hölder’s inequality, gives

∫
D
|Vαf(z)|p dλ(z) ≤

∑
n

|λn|p
∫
D
|en(z)|2−p |fn(z)|p dAα(z)

≤
∑
n

|λn|p ‖en‖2−pα ‖fn‖pα

=
∑
n

|λn|p = ‖hf̄‖
p
Sp
.

This proves the necessity in the case 1 ≤ p < 2.

Suppose now that Vαf is in Lp(D, dλ). Since Vαf(z) = (1 − |z|2)2+αh(z)
with h analytic on D, this implies that h ∈ Apβ with β = (2 + α)p− 2. Since

any function in Apβ satisfies the growth condition

lim
|z|→1−

(1− |z|2)(2+β)/p h(z) = 0,

it follows that Vαf ∈ C0(D) proving that hf̄ is compact. Next we proceed to
show that hf̄ is in Sp. Since hf̄ = hVαf , it suffices to prove that hϕ belongs

to Sp whenever ϕ ∈ Lp(D, dλ). To see this, it is enough to prove that

∑
n

|〈hϕen, fn〉α|p <∞

for all orthonormal sets {en} and {fn} of A2
α. But notice that, by Fubini’s

theorem

〈hϕen, fn〉α =

∫
D

(hϕen)(z) fn(z) dAα(z)

=

∫
D

(∫
D

ϕ(w) en(w)

(1− z̄w)2+α
dAα(w)

)
fn(z) dAα(z)

=

∫
D
ϕ(w) en(w)

(∫
D

fn(z)

(1− z̄w)2+α
dAα(z)

)
dAα(w)

=

∫
D
ϕ(w) en(w) fn(w) dAα(w).

Therefore, since

∑
n

|en(w)| |fn(w)| ≤

(∑
n

|en(w)|2
)1/2(∑

n

|fn(w)|2
)1/2

≤ ‖Kw‖2α
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we finally obtain∑
n

|〈hϕen, fn〉α|p ≤
∑
n

(∫
D
|ϕ(w)| |en(w)| |fn(w)| dAα(w)

)p
≤
∑
n

∫
D
|ϕ(w)|p |en(w)| |fn(w)| dAα(w)

≤
∫
D
|ϕ(w)|p ‖Kw‖2α dAα(w)

≤ C
∫
D
|ϕ(w)|p dλ(w).

This completes the proof of the theorem. �

6. Further remarks and questions

6.1. Hankel operators on Apα with p > 1

For p > 0 and α > −1, let Apα be the space of all analytic functions f on D
with

‖f‖p,α =

(∫
D
|f(z)|p dAα(z)

)1/p

<∞.

Since for p > 1, the Bergman projection Pα is bounded from Lp(D, dAα) to
Apα, using the density of H∞ in Apα, for symbols f ∈ Lp(D, dAα), we can
define the (big) Hankel operator on Apα as

Hfg(z) = (I − Pα)(fg) =

∫
D

f(z)− f(w)

(1− w̄z)2+α
g(w) dAα(w), g ∈ H∞.

For conjugate analytic symbols, it is known (see, for example, [16]) that
Hf̄ is bounded on Apα if and only if f belongs to the Bloch space, and the
compactness of Hf̄ is characterized by f being in the little Bloch space. In
[16], it is also obtained a characterization of the simultaneous boundedness
(and compactness) of the operators Hf and Hf̄ in Apα in the setting of the
unit ball. For general symbols f ∈ Lp(D, dAα), the boundedness of the Hankel
operator Hf on Apα can be characterized as follows.

Theorem 6. Let 1 < p < ∞, α > −1 and f ∈ Lp(D, dAα). The following
conditions are equivalent:

(a) Hf is bounded on Apα.
(b) sup

z∈D
distLp(D,dAα)(f ◦ ϕz, Apα) <∞.

(c) For any (or some) r > 0, the function Fr defined by

Fr(z)
p = inf

{
1

|D(z, r)|α

∫
D(z,r)

|f − h|p dAα : h ∈ Apα

}
is bounded on D.
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(d) f admits a decomposition f = f1 + f2, where f1 ∈ C1(D) satisfies
(1 − |z|2) ∂f1(z) ∈ L∞(D), and f2 has the property that for any (or
some) r > 0 the function Gr defined by

Gr(z)
p =

1

|D(z, r)|α

∫
D(z,r)

|f2(w)|p dAα(w)

is bounded on D.

The case −1 < α < 1/(p − 1) was proved by Luecking in [10]. Also
observe that for p = 2, condition (b) in the previous theorem coincides with
condition (b) in Theorem 2, since ‖Hfkz‖α = ‖f ◦ ϕz − Pα(f ◦ ϕz)‖α, where
ϕz(w) = z−w

1−z̄w . The proof of Theorem 6 follows the same argument as in

Theorem 2. As before, only the implication (d) implies (a) must be proved,
since the others implications are well known. If (d) holds and g ∈ H∞, then
using Proposition 2.4 there is a solution u of the equation ∂u = g∂f1 with
‖u‖p,α ≤ C‖g‖p,α. Since any such solution must be of the form u = f1g+h for
some h ∈ Apα, the boundedness of the Bergman projection Pα : Lp(D, dAα)→
Apα for p > 1 gives

‖Hf1g‖p,α ≤ ‖Hf1g − u‖p,α + ‖u‖p,α = ‖Pα(f1g + h)‖p,α + ‖u‖p,α
≤ (1 + ‖Pα‖) ‖u‖p,α.

This shows that Hf1 is bounded, and the proof of the boundedness of Hf2

follows the same lines as in Theorem 2. Similarly, one can obtain the corre-
sponding result for compactness of the Hankel operator.

6.2. The two-sided ideal problem

One can also consider a two-sided ideal problem, namely, for a function
f ∈ L2(D, dAα) describe, in terms of properties of f , the simultaneous mem-
bership of Hf and Hf̄ in Sp (this is equivalent to the membership of Hf in Sp
when f is real valued). In the case that p ≥ 2, K. Zhu obtained in [15] the fol-
lowing description: Hf and Hf̄ are in Sp if and only if MOα(f) ∈ Lp(D, dλ),

where dλ(z) = (1− |z|2)−2 dA(z) is the hyperbolic measure, and

MOα(f)(z) =
(
Bα(|f |2)(z)−

∣∣Bαf(z)|2
)1/2

.

For the unweighted case α = 0, in [12] J. Xia proved that the same condition
MO(f) ∈ Lp(D, dλ) still describes the simultaneous membership of Hf and
Hf̄ in Sp when 1 < p < 2. Note that for 0 < p ≤ 2/(2 + α), the condition
MOα(f) ∈ Lp(dλ) implies f being constant, so the natural conjecture for
the weighted case is that the condition MOα(f) ∈ Lp(dλ) will also be the
correct condition for the case 2/(2 + α) < p < 2. For this case one can use
the method of J. Xia, but since it uses the duality between the Sp classes, it
can only be used to obtain results for p ≥ 1, and this will still give the gap
2/(2+α) < p < 1 for the case α > 0. Therefore, it seems that new techniques
are needed here.
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