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ABSTRACT. We completely describe the boundedness of the Volterra type operator Jg between
Hardy spaces in the unit ball of Cn. The proof of the one dimensional case used tools, such as the
strong factorization for Hardy spaces, that are not available in higher dimensions, and therefore
other techniques must be used. In particular, a generalized version of the description of Hardy
spaces in terms of the area function is needed.

1. INTRODUCTION AND MAIN RESULTS

Let Bn be the open unit ball in Cn. Denote by H(Bn) the space of all holomorphic functions
in Bn. For a function g ∈ H(Bn), define the operator

(1.1) Jgf(z) =

∫ 1

0

f(tz)Rg(tz)
dt

t
, z ∈ Bn

for f holomorphic in Bn. Here Rg denotes the radial derivative of g, that is,

Rg(z) =
n∑
k=1

zk
∂g

∂zk
(z), z = (z1, . . . , zn) ∈ Bn.

In the one dimensional case n = 1, the operator Jg was first considered in the setting of Hardy
spaces by Pommerenke [32] related to the study of certain properties of BMOA functions.
We want to mention here that a closely related operator was introduced earlier by Calderón
in [10]. After the pioneering works of Aleman, Siskakis and Cima [4, 6, 7] describing the
boundedness and compactness of the operator Jg in Hardy and Bergman spaces, the mentioned
operator became extremely popular, being studied in many spaces of analytic functions (see
[4, 5, 6, 7, 14, 29, 30] for example). As far as we know, the generalization of the operator Jg
acting on holomorphic functions in the unit ball of Cn (as defined here) was introduced by Z.
Hu [20]. A fundamental property of the operator Jg, that follows from an easy calculation with
(1.1), is the following basic formula involving the radial derivative R and the operator Jg:

(1.2) R(Jgf)(z) = f(z)Rg(z), z ∈ Bn.
The boundedness and compactness of Jg has been extensively studied in many spaces of holo-
morphic functions in the unit ball (see [39] and [40] for the corresponding study on Bergman and
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Bloch type spaces). However, the case of the Hardy spaces on the unit ball, that is, the study of
Jg : Hp(Bn)→ Hq(Bn) (that, in my opinion, is the most important case, and is the setting were
the operator Jg was originally studied) is missing, only the elementary case q = p = 2 (see [23])
and the case p < q (see [9]) has been done before. Our goal is to fill this gap, and we completely
describe the boundedness and compactness of Jg : Hp(Bn)→ Hq(Bn) for all 0 < p, q <∞.

For 0 < p <∞, the Hardy space Hp := Hp(Bn) consists of those holomorphic functions f in
Bn with

‖f‖pHp = sup
0<r<1

∫
Sn
|f(rζ)|p dσ(ζ) <∞,

where dσ is the surface measure on the unit sphere Sn := ∂Bn normalized so that σ(Sn) = 1.
We refer to the books [2], [33] and [42] for the theory of Hardy spaces in the unit ball.

The norm of the operator Jg : Hp → Hq is denoted by ‖Jg‖Hp→Hq and, when q = p its norm is
simply denoted by ‖Jg‖. Now we are ready to state our main results describing the boundedness
of Jg : Hp → Hq extending the one-dimensional results obtained by Aleman-Siskakis [6] (the
case q = p ≥ 1) and by Aleman-Cima [4] (the remainder cases).

Theorem 1.1. Let 0 < p < ∞ and g ∈ H(Bn). Then Jg is bounded on Hp if and only if
g ∈ BMOA. Moreover,

‖Jg‖ � ‖g‖BMOA.

Here, the notation A � B means that the two quantities are comparable. We want to mention
here that, in one dimension, a different proof (of some parts) of that in [7], [4] has been given
recently in [30] and [37]. In my opinion, the proof we will give here (of course valid also in one
dimension) is more simple and elegant than the ones presented before.

In order to state the case p < q we need to introduce the Lipschitz type spaces Λ(α). For
0 < α ≤ 1, we say that an analytic function g belongs to the Lipschitz type space Λ(α) if

‖g‖Λ(α) = sup
z∈Bn

(1− |z|2)1−α |Rg(z)| <∞.

This coincides [42, Chapter 7] with the space of holomorphic functions g in Bn with

|g(z)− g(w)| ≤ C|z − w|α, z, w ∈ Bn.

Theorem 1.2. Let 0 < p < q <∞, g ∈ H(Bn) and α = n(1
p
− 1

q
).

(a) If α ≤ 1 then Jg : Hp → Hq is bounded if and only if g ∈ Λ(α). Moreover,

‖Jg‖Hp→Hq � ‖g‖Λ(α).

(b) If α > 1, then Jg : Hp → Hq is bounded if and only if g is constant, that is, Jg ≡ 0.

After the finishing of the paper we realized that Theorem 1.2 has been also obtained recently
in [9]. For completeness and convenience of the reader, we offer our proof here. It remains to
deal with the other non diagonal case, result that is stated below.

Theorem 1.3. Let 0 < q < p <∞ and g ∈ H(Bn). Then Jg : Hp → Hq is bounded if and only
if g ∈ Hr, where 1

r
= 1

q
− 1

p
. Moreover, we have

‖g‖Hr � ‖Jg‖Hp→Hq .
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The proofs of the previous results in the one dimensional setting used, in a decisive way, tools
such as the strong factorization for Hardy spaces and some results of Aleksandrov and Peller [3]
that are not available in higher dimensions, so that the generalization to the unit ball of Cn is not
a routine that any machine can do, and new techniques and ideas must be developed. We also
want to notice that in the proofs of the previous theorems we can always assume that g(0) = 0
since Jg = Jg+c for any constant c.

The paper is organized as follows: in Section 2 we recall some well known results that will
be used in the proofs. Theorems 1.1, 1.2 and 1.3 are proved in Sections 3, 4 and 5 respec-
tively. Characterizations of the compactness of the integration operator Jg and membership in
the Schatten-Von Neumann ideals Sp(H2) are obtained in Section 6.

Throughout the paper, constants are often given without computing their exact values, and the
value of a constant C may change from one occurrence to the next. We also use the notation
a . b to indicate that there is a constant C > 0 with a ≤ Cb.

2. BACKGROUND

In this section we introduce some notation and recall some well known results that will be
used throughout the paper. For any two points z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn we
write

〈z, w〉 = z1w̄1 + · · ·+ znw̄n,

and |z| =
√
〈z, z〉 =

√
|z1|2 + · · ·+ |zn|2. Denote by dv the usual Lebesgue volume measure

on Bn, normalized so that the volume of Bn is one.

2.1. Invariant type derivatives. Let

∆ = 4
n∑
k=1

∂2

∂zk ∂z̄k
=

n∑
k=1

(
∂2

∂x2
k

+
∂2

∂y2
k

)
be the standard Laplace operator on Cn, where

∂

∂zk
=

1

2

(
∂

∂xk
− i ∂

∂yk

)
and

∂

∂z̄k
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
provided the use of the identification zk = xk + iyk for 1 ≤ k ≤ n is made. If f is a twice
differentiable function in Bn, the invariant Laplacian of f is defined as

(∆̃f)(z) = ∆(f ◦ ϕz)(0), z ∈ Bn,
where ϕz is the automorphism of Bn that interchanges the points 0 and z.

If f is a differentiable function in Bn, we use∇f to denote its real gradient. The (real) invariant
gradient of f is then defined as

∇̃f(z) = ∇(f ◦ ϕz)(0), z ∈ Bn.
When f is holomorphic on Bn it is typical to use also the complex gradient

∇hf(z) =

(
∂f

∂z1

(z), . . . ,
∂f

∂zn
(z)

)
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and call |∇hf(z)| the holomorphic gradient of f at z. Similarly, one defines ∇̃hf(z) = ∇h(f ◦
ϕz)(0), z ∈ Bn, and refer to the quantity |∇̃hf(z)| as the holomorphic invariant gradient of f at
z. This can not create any confusion, since for f holomorphic, one has |∇f(z)| = 2 |∇hf(z)|.

2.2. The invariant Green’s formula. It is a consequence of the invariant Green’s formula [42,
Theorem 1.25] that, if f is of class C2 on Bn then∫

Bn
∆̃f(z)G(z) dλn(z) =

∫
Sn
f(ζ) dσ(ζ)− f(0),

(see [31]) where G(z) is the invariant Green function of Bn given by

G(z) =
1

2n

∫ 1

|z|
(1− t2)n−1t−2n+1dt,

and

dλn(z) =
dv(z)

(1− |z|2)n+1

is the hyperbolic or invariant measure on Bn. The constant appearing in [31] is absorbed in the
normalized measure dv since the volume of Bn is exactly πn/n!.

2.3. Hardy-Stein type inequalities. It is a consequence of the Hardy-Stein identity for the ball
(see [42, Chapter 4] or [27]) that, if g(0) = 0, then for 0 < p <∞ one has

‖g‖pHp �
∫
Bn
|g(z)|p−2 |Rg(z)|2(1− |z|2) dv(z).

There are analogues of these inequalities using the gradient or the invariant gradient instead of the
radial derivative [42], [36]. For example, in terms of the gradient, one simply replaces Rg in the
above estimate by the real gradient∇g, and using the invariant gradient, one has the following:

‖g‖pHp �
∫
Bn
|g(z)|p−2 |∇̃g(z)|2(1− |z|2)n dλn(z).

Given a function f ∈ L1(Sn), the invariant Poisson integral of f , denoted by uf , is defined on
Bn as

uf (z) =

∫
Bn
f(ζ)

(1− |z|2)n

|1− 〈z, ζ〉|2n
dσ(ζ).

Note that the invariant Poisson kernel here is different from the associated Poisson kernel when
Bn is thought of as the unit ball in R2n, unless n = 1. The invariant Poisson integral uf is
M-harmonic on Bn, meaning that is annihilated by the invariant Laplacian, that is, ∆̃uf = 0 .
The version of the Hardy-Stein inequalities forM-harmonic functions (see [22] or [36]) is the
following: let 1 < p <∞ and f ∈ Lp(Sn). Then

‖f‖pLp(Sn) � |uf (0)|2 +

∫
Bn
|uf (z)|p−2|∇̃uf (z)|2 (1− |z|2)n dλn(z).

When p = 2 the previous estimates are usually referred as the Littlewood-Paley inequalities.
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2.4. Admissible maximal and area functions. For ζ ∈ Sn and α > 1 the admissible approach
region Γα(ζ) is defined as

Γ(ζ) = Γα(ζ) =
{
z ∈ Bn : |1− 〈z, ζ〉| < α

2
(1− |z|2)

}
.

If I(z) = {ζ ∈ Sn : z ∈ Γ(ζ)}, then σ(I(z)) � (1−|z|2)n, and it follows from Fubini’s theorem
that, for a positive function ϕ, and a finite positive measure ν, one has

(2.1)
∫
Bn
ϕ(z) dν(z) �

∫
Sn

(∫
Γ(ζ)

ϕ(z)
dν(z)

(1− |z|2)n

)
dσ(ζ).

This fact will be used repeatedly throughout the paper.

For α > 1 and f continuous on Bn, the admissible maximal function f ∗α is defined on Sn by

f ∗(ζ) = f ∗α(ζ) = sup
z∈Γα(ζ)

|f(z)|.

We need the following well known result on the Lp-boundedness of the admissible maximal
function that can be found in [33, Theorem 5.6.5] or [42, Theorem 4.24].

Theorem A. Let 0 < p <∞ and f ∈ H(Bn). Then

‖f ∗‖Lp(Sn) ≤ C‖f‖Hp .

Another function we need is the admissible area function Aαf defined on Sn by

Af(ζ) = Aαf(ζ) =

(∫
Γα(ζ)

|Rf(z)|2 (1− |z|2)1−ndv(z)

)1/2

.

The following result [1], [16] describing the functions in the Hardy space in terms of the admis-
sible area function, is the version for the unit ball of Cn of the famous Calderón area theorem
[10] who extended to all 0 < p <∞ the result proved for p > 1 by Marcinkiewicz and Zygmund
[26].

Theorem B. Let 0 < p < ∞ and g ∈ H(Bn). Then g ∈ Hp if and only if Ag ∈ Lp(Sn).
Moreover, if g(0) = 0 then

‖g‖Hp � ‖Ag‖Lp(Sn).

A generalized version of Theorem B is given in Theorem 5.3, with a proof that includes The-
orem B itself.

2.5. Embedding of Hardy spaces into Bergman spaces. For 0 < p < ∞ and α > −1, the
weighted Bergman space Apα(Bn) consists of those functions f holomorphic on Bn with

‖f‖Apα =

(∫
Bn
|f(z)|p dvα(z)

)1/p

<∞.

Here dvα(z) = cα (1 − |z|2)αdv(z), where cα is a positive constant chosen so that vα(Bn) = 1.
We will make use of the following result that appears in [42, Theorem 4.48].
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Theorem C. For 0 < p < q <∞ we have Hp ⊂ Aqα(Bn) with

α = nq
(1

p
− 1

q

)
− 1 =

nq

p
− (n+ 1).

Moreover, there exists a constant C > 0 such that ‖f‖Aqα ≤ C‖f‖Hp .

2.6. Carleson measures and BMOA. For ζ ∈ Sn and δ > 0 consider the sets

Bδ(ζ) =
{
z ∈ Bn : |1− 〈z, ζ〉| < δ

}
.

A positive Borel measure µ on Bn is said to be a Carleson measure if there exists a constant
C > 0 such that

µ
(
Bδ(ζ)

)
≤ Cδ n

for all ζ ∈ Sn and δ > 0. Obviously every Carleson measure is finite. Hörmander [19] extended
to several complex variables the famous Carleson measure theorem [11, 12] by proving that, for
0 < p < ∞, the embedding Id : Hp → Lp(µ) := Lp(Bn, dµ) is bounded if and only if µ is a
Carleson measure.

The space of analytic functions of bounded mean oscillationBMOA = BMOA(Bn) consists
of those functions f ∈ H1 with

‖f‖BMOA = |f(0)|+ sup
1

σ(Q)

∫
Q

|f(ζ)− fQ| dσ(ζ) <∞,

where fQ = 1
σ(Q)

∫
Q
f dσ is the mean of f over Q and the supremum is taken over the non-

isotropic metric balls Q = Q(ζ, δ) = {ξ ∈ Sn : |1 − 〈ζ, ξ〉| < δ} for all ζ ∈ Sn and δ > 0.
The next result [42, Chapter 5] gives an alternate description of BMOA in terms of Carleson
measures.

Theorem D. Let g ∈ H(Bn) and consider the measure µg defined by

dµg(z) = |Rg(z)|2(1− |z|2) dv(z).

Then g ∈ BMOA if and only if µg is a Carleson measure. Moreover, if g(0) = 0, for all
0 < p <∞ one has

(2.2) ‖g‖BMOA � sup
‖f‖Hp=1

(∫
Bn
|f(z)|p dµg(z)

)1/2

.

We also will need the following result essentially due to Luecking [25]. Since Luecking result
is stated for real Hardy spaces, for convenience of the reader, and in order to offer no doubt of
the validity of the result, we give a proof at the end of the paper.

Theorem E. Let 0 < s < p <∞ and let µ be a positive Borel measure on Bn. Then the identity
Id : Hp → Ls(µ) is bounded, if and only if, the function defined on Sn by

µ̃(ζ) =

∫
Γ(ζ)

(1− |z|2)−ndµ(z)

belongs to Lp/(p−s)(Sn). Moreover, one has ‖Id‖Hp→Ls(µ) � ‖µ̃‖1/s

Lp/(p−s)(Sn)
.
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3. PROOF OF THEOREM 1.1

Consider the measure µg defined by

dµg(z) = |Rg(z)|2(1− |z|2) dv(z).

The case p = 2 is particularly simple. Indeed, by the Littlewood-Paley inequalities and the basic
formula (1.2) one has

(3.1) ‖Jgf‖2
H2 �

∫
Bn
|f(z)|2 dµg(z) ≤ C‖f‖2

H2

if and only if g ∈ BMOA with ‖Jg‖ � ‖g‖BMOA due to (2.2). Now we are going to consider
the other cases.

3.1. Sufficiency. Suppose that g ∈ BMOA. We want to prove that

(3.2) ‖Jgf‖Hp ≤ C‖g‖BMOA · ‖f‖Hp .

By taking f in the ball algebra (the algebra of all holomorphic functions in Bn continuous up
to the boundary, a dense subset of Hp), and then using an standard approximation argument,
it is enough to establish (3.2) assuming that ‖Jgf‖Hp is already finite. For p ≥ 2, we use the
Hardy-Stein inequalities, the basic formula (1.2), Hölder’s inequality and then (2.2) to get

‖Jgf‖pHp �
∫
Bn
|Jgf(z)|p−2 |R(Jgf)(z)|2 (1− |z|2) dv(z)

=

∫
Bn
|Jgf(z)|p−2 |f(z)|2 |Rg(z)|2 (1− |z|2) dv(z)

≤
(∫

Bn
|Jgf(z)|pdµg(z)

) p−2
p
(∫

Bn
|f(z)|pdµg(z)

) 2
p

≤ C‖g‖2
BMOA · ‖Jgf‖

p−2
Hp · ‖f‖2

Hp .

Hence we obtain that

‖Jgf‖2
Hp ≤ C‖g‖2

BMOA · ‖f‖2
Hp ,

that is, the operator Jg is bounded on Hp with ‖Jg‖ ≤ C‖g‖BMOA.

For 0 < p < 2, we use the area function description of Hp (Theorem B), the basic identity
(1.2), Hölder’s inequality, the Lp-boundedness of the admissible maximal function (Theorem A),
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(2.1) and finally (2.2) to get

‖Jgf‖pHp � ‖A(Jgf)‖pLp(Sn)

=

∫
Sn

(∫
Γ(ζ)

|f(z)|2|Rg(z)|2(1− |z|2)1−ndv(z)

)p/2
dσ(ζ)

≤
∫
Sn

(f ∗(ζ))
(2−p)p

2

(∫
Γ(ζ)

|f(z)|p|Rg(z)|2(1− |z|2)1−ndv(z)

)p/2
dσ(ζ)

≤ ‖f ∗‖
p(2−p)

2

Lp(Sn)

(∫
Sn

∫
Γ(ζ)

|f(z)|p|Rg(z)|2(1− |z|2)1−ndv(z) dσ(ζ)

)p/2
≤ C‖f‖

p(2−p)
2

Hp

(∫
Bn
|f(z)|pdµg(z)

)p/2
≤ C‖g‖pBMOA · ‖f‖

p
Hp .

Thus Jg is bounded on Hp with ‖Jg‖ ≤ C‖g‖BMOA.

3.2. Necessity. We need first a lemma.

Lemma 3.1. Let g ∈ H(Bn) with g(0) = 0, 0 < q ≤ p < ∞, and suppose that Jg : Hp → Hq

is bounded. Let {rk} ⊂ (0, 1) with rk → 1, and consider the dilated functions gk(z) = g(rkz).
Then

sup
k
‖Jgk‖Hp→Hq . ‖Jg‖Hp→Hq .

Proof. Since the functions gk are in the ball algebra, it is obvious that Jgk : Hp → Hq is a
bounded linear operator. Since Jg is bounded, we have g ∈ Hq with ‖g‖Hq = ‖Jg1‖Hq ≤
‖Jg‖Hp→Hq . If f ∈ H∞, a dense subset of Hp, by Theorem B we have

‖Jgkf‖
q
Hq �

∫
Sn

(∫
Γ(ζ)

|f(z)|2 |Rgk(z)|2 (1− |z|2)1−ndv(z)

)q/2
dσ(ζ)

. ‖f‖q∞ · ‖gk‖
q
Hq ≤ ‖f‖q∞ · ‖g‖

q
Hq ≤ ‖f‖q∞ · ‖Jg‖

q
Hp→Hq .

Hence the result is a consequence of the uniform boundedness principle (valid also for quasi-
Banach spaces). �

Suppose now that Jg is bounded on Hp. We consider first the case p ≥ 2. In this case,
(2.1), Hölder’s inequality, the Lp-boundedness of the admissible maximal function and the area
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function characterization of Hp functions (Theorem B) gives∫
Bn
|f(z)|pdµg(z) �

∫
Sn

∫
Γ(ζ)

|f(z)|p |Rg(z)|2(1− |z|2)1−ndv(z) dσ(ζ)

≤
∫
Sn

(f ∗(ζ))p−2

∫
Γ(ζ)

|f(z)|2 |Rg(z)|2(1− |z|2)1−ndv(z) dσ(ζ)

≤ ‖f ∗‖p−2
Lp(Sn)

[∫
Sn

(∫
Γ(ζ)

|R(Jgf)(z)|2 (1− |z|2)1−ndv(z)

)p/2
dσ(ζ)

]2/p

≤ C‖f‖p−2
Hp · ‖Jgf‖2

Hp ≤ C‖Jg‖2 · ‖f‖2
Hp .

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1 and using (2.2), this shows that
g ∈ BMOA with ‖g‖BMOA ≤ C‖Jg‖.

Finally, it remains to deal with the case 0 < p < 2. By considering the dilated functions
gρ(z) = g(ρz), 0 < ρ < 1, it is enough to prove the inequality ‖g‖BMOA ≤ C‖Jg‖ assuming
that g is already in BMOA. Then a standard limiting argument using Lemma 3.1 will give the
result. To this end, consider a function f in the Hardy space Hp. The use of the Hardy-Stein
inequalities together with (1.2) yields

‖Jgf‖pHp �
∫
Bn
|Jgf(z)|p−2 |f(z)|2 dµg(z).

Now, using Hölder’s inequality, the previous estimate together with (2.2) and the boundedness
of Jg on Hp, we obtain∫

Bn
|f(z)|p dµg(z) ≤

(∫
Bn
|Jgf(z)|p dµg(z)

)1− p
2
(∫

Bn
|Jgf(z)|p−2 |f(z)|2 dµg(z)

)p/2
≤ C

(
‖g‖2

BMOA · ‖Jgf‖
p
Hp

)1− p
2 ‖Jgf‖p

2/2
Hp

≤ C‖g‖2−p
BMOA · ‖Jg‖

p · ‖f‖pHp .

Taking the supremum over all f with ‖f‖Hp = 1 and using (2.2) again gives

‖g‖2
BMOA ≤ C ‖g‖2−p

BMOA · ‖Jg‖
p.

This implies the desired estimate ‖g‖BMOA ≤ C‖Jg‖ completing the proof of the Theorem.

4. PROOF OF THEOREM 1.2

4.1. Necessity. Assume that Jg : Hp → Hq is bounded. The standard estimate for Hq functions
gives |R(Jgf)(z)| ≤ C(1−|z|2)−(n+q)/q ‖Jgf‖Hq . It follows from the fundamental identity (1.2)
that

|f(z)| |Rg(z)| ≤ C(1− |z|2)−(n+q)/q ‖Jg‖Hp→Hq · ‖f‖Hp .
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Taking the function f = fz with

fz(w) =
(1− |z|2)n/p

(1− 〈w, z〉)2n/p

that has Hp-norm 1 we get

(1− |z|2)−n/p |Rg(z)| ≤ C(1− |z|2)−(n+q)/q ‖Jg‖Hp→Hq .

That is, ‖g‖Λ(α) ≤ C‖Jg‖Hp→Hq with α = n(1
p
− 1

q
) as desired. This also proves part (b) since,

for α > 1, the condition (1 − |z|2)1−α|Rg(z)| ≤ C implies that |Rg(z)| → 0 as |z| → 1− and
hence g must be constant.

4.2. Sufficiency. Let α = n(1
p
− 1

q
), and assume that g ∈ Λ(α). We consider first the almost

trivial case q = 2. Here we use the Littlewood-Paley inequalities, the formula (1.2) and the
embedding of Hardy spaces into Bergman spaces to get

‖Jgf‖2
H2 �

∫
Bn
|f(z)|2 |Rg(z)|2 (1− |z|2) dv(z)

≤ ‖g‖2
Λ(α)

∫
Bn
|f(z)|2 (1− |z|2)2α−1 dv(z) ≤ C‖g‖2

Λ(α) · ‖f‖2
Hp ,

and this shows that Jg : Hp → H2 is bounded with ‖Jg‖Hp→H2 ≤ C‖g‖Λ(α).

Next we deal with the case q > 2. As noticed in the proof of Theorem 1.1 it is enough to
establish the inequality ‖Jgf‖Hq ≤ C‖g‖Λ(α) · ‖f‖Hp assuming that ‖Jgf‖Hq is already finite.
To this end, take a number s > q with s < (q−2)p

(p−2)
if p > 2 (this choice is possible, since for

p > 2 one has (q−2)p
(p−2)

> q due to the fact that p < q), and let γ = ns(1
p
− 1

q
). By the Hardy-Stein

inequalities, (1.2) and Hölder’s inequality we have

‖Jgf‖qHq �
∫
Bn
|Jgf(z)|q−2|f(z)|2 |Rg(z)|2(1− |z|2)dv(z)

≤ C ‖g‖2
Λ(α)

∫
Bn
|Jgf(z)|q−2|f(z)|2 (1− |z|2)2α−1 dv(z)

≤ C ‖g‖2
Λ(α) · ‖Jgf‖

q−2
Asγ−1

(∫
Bn
|f(z)|

2s
s−(q−2) (1− |z|2)β−1dv(z)

) s−(q−2)
s

(4.1)

with

β =
(2α− γ)s

s− (q − 2)
+ γ − 1.

Since s > q, the embedding of Hardy spaces into Bergman spaces (Theorem C) gives

(4.2) ‖Jgf‖Asγ−1
≤ C‖Jgf‖Hq .

Also, the choice made on the number s ensures that

sq :=
2s

s− (q − 2)
> p.
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Since β = nsq

(
1
p
− 1

sq

)
, by making another use of Theorem C, we have

(4.3)
∫
Bn
|f(z)|

2s
s−(q−2) (1− |z|2)β−1 dv(z) ≤ C‖f‖

2s
s−(q−2)

Hp .

Putting (4.2) and (4.3) into (4.1) yields

‖Jgf‖qHq ≤ C‖g‖2
Λ(α) · ‖Jgf‖

q−2
Hq · ‖f‖2

Hp ,

that is
‖Jgf‖Hq ≤ C‖g‖Λ(α) · ‖f‖Hp

proving that Jg : Hp → Hq is bounded with ‖Jg‖Hp→Hq ≤ C‖g‖Λ(α).

Finally, we consider the case 0 < q < 2. Let t = (2− q)p/q and observe that 2− t > p since
p < q. We use the area function description of Hardy spaces, (1.2) and Hölder’s inequality to
obtain

‖Jgf‖qHq � ‖A(Jgf)‖qLq(Sn)

=

∫
Sn

(∫
Γ(ζ)

|f(z)|2 |Rg(z)|2 (1− |z|2)1−ndv(z)

)q/2
dσ(ζ)

≤
∫
Sn
|f ∗(ζ)|tq/2

(∫
Γ(ζ)

|f(z)|2−t |Rg(z)|2 (1− |z|2)1−ndv(z)

)q/2
dσ(ζ)

≤ ‖f ∗‖(2−q)p/2
Lp(Sn)

(∫
Sn

∫
Γ(ζ)

|f(z)|2−t |Rg(z)|2 (1− |z|2)1−ndv(z) dσ(ζ)

)q/2
.

Now, the Lp-boundedness of the admissible maximal function (Theorem A) gives ‖f ∗‖Lp(Sn) ≤
C‖f‖Hp . Also, by (2.1) and the embedding of Hardy spaces into Bergman spaces (Theorem C)
we have ∫

Sn

∫
Γ(ζ)

|f(z)|2−t |Rg(z)|2 (1− |z|2)1−ndv(z)dσ(ζ)

�
∫
Bn
|f(z)|2−t |Rg(z)|2 (1− |z|2) dv(z)

≤ C‖g‖2
Λ(α)

∫
Bn
|f(z)|2−t(1− |z|2)2α−1dv(z)

≤ C‖g‖2
Λ(α) · ‖f‖2−t

Hp .

All together yields

‖Jgf‖qHq ≤ C‖g‖qΛ(α) · ‖f‖
(2−q)p/2+(2−t)q/2
Hp = C‖g‖qΛ(α) · ‖f‖

q
Hp

proving that Jg : Hp → Hq is bounded with ‖Jg‖Hp→Hq ≤ C‖g‖Λ(α) finishing the proof of the
Theorem.
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4.3. Duren’s theorem. The proof of Theorem 1.2 is closely related with Duren’s theorem [15]
describing the boundedness of the embedding Id : Hp → Lq(µ) for p < q (just look that several
terms of the form ‖f‖Lq(µg) appeared in the proof), and the original proof in one dimension used
Duren’s theorem. Surprisingly, the use of the embedding of Hardy spaces into Bergman spaces
makes the proof of Duren’s theorem almost trivial. For s > 0 a finite positive Borel measure on
Bn is called an s-Carleson measure if there exists a constant C > 0 such that µ(Bδ(ζ)) ≤ Cδ ns

for all ζ ∈ Sn and δ > 0. It is well known (see [41, Theorem 45]) that µ is an s-Carleson measure
if and only if

(4.4) sup
a∈Bn

∫
Bn

(
1− |a|2

|1− 〈a, z〉|2

)ns
dµ(z) <∞.

Theorem F ((Duren)). Let µ be a finite positive Borel measure on Bn and 0 < p < q <∞. Then
Id : Hp → Lq(Bn, dµ) is bounded if and only if µ is a q/p-Carleson measure.

Proof. By testing the inequality
∫
|f |qdµ ≤ C‖f‖qHp on the functions fa(z) = (1−|a|2)n/p/(1−

〈z, a〉)2n/p one gets (4.4) with s = q/p. Conversely, assume that µ is a q/p-Carleson measure.
The well known inequality

|f(z)|q .
∫
Bn

|f(w)|q

|1− 〈w, z〉|n+1+γ
dvγ(w)

with γ = 2nq/p−n−1 > −1 together with Fubini’s theorem, condition (4.4) and the embedding
of Hardy spaces into Bergman spaces gives∫

Bn
|f(z)|q dµ(z) ≤ C

∫
Bn
|f(w)|q

(∫
Bn

dµ(z)

|1− 〈w, z〉|2nq/p

)
dvγ(w)

≤ C

∫
Bn
|f(w)|q (1− |w|2)nq/p−n−1dv(z) ≤ C‖f‖qHp .

Theorem F is now proven. �

5. PROOF OF THEOREM 1.3

5.1. Sufficiency. This is the easy case. Suppose that g ∈ Hr. The area description of functions
in the Hardy space, Hölder’s inequality with exponent p/q > 1 and the Lp-boundedness of the
admissible maximal function gives

‖Jgf‖qHq �
∫
Sn

(∫
Γ(ζ)

|f(z)|2 |Rg(z)|2 (1− |z|2)1−ndv(z)

)q/2
dσ(ζ)

≤
∫
Sn

(f ∗(ζ))q
(∫

Γ(ζ)

|Rg(z)|2 (1− |z|2)1−n dv(z)

)q/2
dσ(ζ)

≤ ‖f ∗‖qLp(Sn) · ‖A(g)‖qLr(Sn) ≤ C‖f‖qHp · ‖g‖qHr ,

proving that Jg : Hp → Hq is bounded with ‖Jg‖Hp→Hq ≤ C‖g‖Hr .
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5.2. Necessity: first considerations. The proof of the converse implication Jg : Hp → Hq

bounded implies g ∈ Hr with r = pq/(p − q) is much more difficult. Here we will deal with
some easy cases as well as some remarks. First of all, the case q = 2 is particularly simple.
Indeed, by the Littlewood-Paley inequalities, (1.2) and Theorem E we have

‖Jgf‖2
H2 �

∫
Bn
|f(z)|2 |Rg(z)|2 (1− |z|2) dv(z) ≤ C‖f‖2

Hp

if and only if, the admissible area function Ag belongs to L2p/(p−2)(Sn). Moreover, one has
‖Jg‖Hp→H2 � ‖Ag‖L2p/(p−2)(Sn). Since r = 2p/(p− 2), an application of Theorem B gives

‖Jg‖Hp→H2 � ‖Ag‖L2p/(p−2)(Sn) � ‖g‖Hr .

A remark we must make here is that, as done in the proof of Theorem 1.1, it is enough to prove
the inequality ‖g‖Hr ≤ C‖Jg‖Hp→Hq assuming that g is already in the Hardy space Hr.

Taking this into account, the case r = mp for some positive integer m can be done as follows:
g ∈ Hr if and only if gm ∈ Hp, and since gm+1 = (m + 1)Jg(g

m), then with the notation
fm = gm, the Hardy-Stein inequalities together with the identity (1.2) gives

‖g‖rHr �
∫
Bn
|g(z)|r−2 |Rg(z)|2 (1− |z|2) dv(z)

=

∫
Bn
|g(z)|mp−2−2m |fm(z)|2 |Rg(z)|2 (1− |z|2) dv(z)

= C

∫
Bn
|Jgfm(z)|

mp−2−2m
m+1 |R(Jgfm)(z)|2 (1− |z|2) dv(z).

Since
mp− 2− 2m

m+ 1
=

mp

m+ 1
− 2 = q − 2,

another use of the Hardy-Stein inequalities yields

‖g‖rHr � ‖Jgfm‖qHq ≤ ‖Jg‖qHp→Hq · ‖fm‖qHp = ‖Jg‖qHp→Hq · ‖g‖rq/pHr .

Since r − rq/p = q, this clearly implies the desired inequality

‖g‖Hr ≤ C‖Jg‖Hp→Hq .

The general case can be done in a similar manner if one is able to prove the following: let
0 < q < p < ∞ and assume that Jg : Hp → Hq is bounded. Then for all 0 < q1 < q and
0 < p1 < p with

1

q1

− 1

p1

=
1

q
− 1

p
=

1

r

the operator Jg : Hp1 → Hq1 is also bounded with ‖Jg‖Hp1→Hq1 ≤ C‖Jg‖Hp→Hq . Assuming the
previous assertion being true, then one takes a positive integer m with p1 := r/m < p. Then, by
the case considered before, one gets

‖g‖Hr ≤ C‖Jg‖Hp1→Hq1 ≤ C‖Jg‖Hp→Hq .
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The proof of the previous claim in the one dimensional setting n = 1 follows from the factor-
ization of function in Hardy spaces. Indeed, given f ∈ Hp1(B1) factorize it as f = f1 · f2 with
f1 ∈ Hp(B1) and f2 ∈ H t(B1) such that ‖f1‖Hp · ‖f2‖Ht ≤ ‖f‖Hp1 . Here t is defined by
the relation 1/p1 = 1/p + 1/t. Then, by the area description of functions in the Hardy spaces,
Hölder’s inequality, and the boundedness of the admissible maximal function,

‖Jgf‖q1Hq1 �
∫
S1

(∫
Γ(ζ)

|f1(z)|2 |f2(z)|2 |g′(z)|2 dv(z)

)q1/2
dσ(ζ)

≤
∫
S1
|f ∗2 (ζ)|q1

(∫
Γ(ζ)

|(Jgf1)′(z)|2 dv(z)

)q1/2
dσ(ζ)

≤ ‖f ∗2‖
q1
Lt(S1) · ‖Jgf1‖q1Hq

≤ ‖Jg‖q1Hp→Hq · ‖f1‖q1Hp · ‖f2‖q1Ht ≤ ‖Jg‖q1Hp→Hq · ‖f‖q1Hp1 .

When n > 1 the factorization theorem is not at our disposal [18], and even that there are some
weak factorization results available for Hardy spaces Hp(Bn) for 0 < p ≤ 1 (see [13, 17]), we
couldn’t make effective use of them. Being unable to prove the assertion, at least directly, the
proof of the necessity in Theorem 1.3 will follow a different route. We mention here that, once
Theorem 1.3 is completely proved, then the previous claim is just a simple consequence of the
theorem itself.

5.3. Necessity: the case r > 2. We recall that the measure µg is defined as dµg(z) = |Rg(z)|2(1−
|z|2) dv(z). We need first the following simple observation.

Lemma 5.1. Let 0 < s < p <∞ and g ∈ H(Bn). Then∫
Bn
|f(z)|sdµg(z) ≤ C‖f‖sHp

if and only if g ∈ H
2p
p−s . Moreover, ‖Id‖Hp→Ls(µg) � ‖g‖2/s

H
2p
p−s

.

Proof. This is an immediate consequence of Theorem E and Theorem B. �

Observe that, for 0 < s < p, the number 2p/(p − s) is always strictly greater than 2, so that,
for the proof of the necessity in Theorem 1.3 we are only able to apply the previous Lemma in
the case r > 2. So, assume that Jg : Hp → Hq is bounded and r > 2. By Lemma 5.1, we have

(5.1) ‖g‖2
Hr � sup

‖f‖Hp=1

∫
Bn
|f(z)|sdµg(z)
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with s = p− 2(p− q)/q. We start first with the case q > 2. In that case, s > 2 and then, by (2.1)
and Hölder’s inequality∫

Bn
|f(z)|sdµg(z) �

∫
Sn

∫
Γ(ζ)

|f(z)|s |Rg(z)|2 (1− |z|2)1−ndv(z) dσ(ζ)

≤
∫
Sn
|f ∗(ζ)|s−2

(∫
Γ(ζ)

|f(z)|2 |Rg(z)|2 (1− |z|2)1−ndv(z)

)
dσ(ζ)

≤ ‖f ∗‖s−2
Lp(Sn) · ‖A(Jgf)‖2

Lq(Sn).

Therefore, using the Lp-boundedness of the admissible maximal function together with Theorem
B we have ∫

Bn
|f(z)|sdµg(z) ≤ C‖f‖s−2

Hp · ‖Jgf‖2
Hq ≤ C‖Jg‖2

Hp→Hq · ‖f‖sHp .

This together with (5.1) gives ‖g‖Hr ≤ C‖Jg‖Hp→Hq finishing the proof of this case.

Now assume that q < 2 and r > 2. Then 0 < s < 2. By Hölder’s inequality, the Hardy-Stein
inequalities and Lemma 5.1,

‖f‖sLs(µg) ≤
(∫

Bn
|Jgf(z)|

s(2−q)
2−s dµg(z)

) 2−s
2
(∫

Bn
|Jgf(z)|q−2|f(z)|2dµg(z)

) s
2

�
(∫

Bn
|Jgf(z)|

qs
p dµg(z)

) 2−s
2

‖Jgf‖
qs
2
Hq

.
(
‖g‖2

Hr · ‖Jgf‖qs/pHq

) 2−s
2 ‖Jg‖

qs
2
Hp→Hq · ‖f‖

qs
2
Hp

≤ ‖g‖2−s
Hr · ‖Jg‖sHp→Hq · ‖f‖sHp .

Therefore, using (5.1) we get

‖g‖2
Hr ≤ C‖g‖2−s

Hr · ‖Jg‖sHp→Hq ,

and this implies that ‖g‖Hr ≤ C‖Jg‖Hp→Hq as desired. This finishes the proof for r > 2.

5.4. Necessity: the case r ≤ 2. In order to obtain the remainder case, we must extend Lemma
5.1 in order to obtain a description of Hr functions in terms of Carleson type embeddings with
r ≤ 2. This is what we are doing next.

Lemma 5.2. Let g ∈ H(Bn), 0 < s < p <∞ and 0 < t < 1. Then∫
Bn
|f(z)|s |g(z)|2t−2 dµg(z) ≤ C‖f‖sHp

if and only if g ∈ H
2pt
p−s . Moreover, if µ̂g is the measure defined by dµ̂g(z) = |g(z)|2t−2 dµg(z),

then
‖Id‖Hp→Ls(µ̂g) � ‖g‖2t/s

H
2pt
p−s

.
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Proof. The proof is a direct consequence of Theorem E and Theorem 5.3 below, that generalizes
the description of Hardy spaces in terms of the area function. �

Theorem 5.3. Let g ∈ H(Bn) and 0 < p, t <∞. Then g ∈ Hpt if and only if

Ip,t(g) :=

∫
Sn

(∫
Γ(ζ)

|g(z)|2t−2 |Rg(z)|2(1− |z|2)1−ndv(z)

)p/2
dσ(ζ) <∞.

Moreover, if g(0) = 0, we have ‖g‖Hpt � Ip,t(g)1/pt.

Before going to the proof of Theorem 5.3, now we use Lemma 5.2 to obtain the necessity in
Theorem 1.3 for r ≤ 2. Since always one has q < r it is possible to choose 0 < t < 1 with
q < 2t < r. Let s = p− 2t (p−q)

q
. Then 0 < s < p and also 0 < s < 2. By Lemma 5.2,

(5.2) ‖g‖2t
Hr � sup

‖f‖Hp=1

∫
Bn
|f(z)|s|g(z)|2t−2 dµg(z).

For f ∈ Hp, by Hölder’s inequality, we have∫
Bn
|f(z)|s|g(z)|2t−2dµg(z) ≤

(∫
Bn
|Jgf(z)|

s(2−q)
2−s |g(z)|(2t−2)· 2

2−s dµg(z)

) 2−s
2

×
(∫

Bn
|Jgf(z)|q−2|f(z)|2dµg(z)

)s/2
.

(5.3)

Observe that s(2−q)
2−s < q if and only if s < q and this holds if q < 2t. Let

sq =
s(2− q)

2− s
; ts =

2t− s
2− s

.

We have 0 < sq < q and 0 < ts < 1. Then, by Lemma 5.2∫
Bn
|Jgf(z)|

s(2−q)
2−s |g(z)|(2t−2)· 2

2−s dµg(z) =

∫
Bn
|Jgf(z)|sq |g(z)|2ts−2 dµg(z)

≤ C‖g‖2ts
Hγ · ‖Jgf‖sqHq ,

with
γ =

2q · ts
q − sq

=
pq

p− q
= r.

Putting this into (5.3) and using the Hardy-Stein inequalities, we obtain∫
Bn
|f(z)|s|g(z)|2t−2 dµg(z) .

(
‖g‖2ts

Hr · ‖Jgf‖sqHq

)1−s/2 · ‖Jgf‖qs/2Hq

= ‖g‖2t−s
Hr · ‖Jgf‖sHq

≤ ‖g‖2t−s
Hr · ‖Jg‖sHp→Hq · ‖f‖sHp .

Taking the supremum over all f in Hp with ‖f‖Hp = 1 and using (5.2) we get

‖g‖2t
Hr . ‖g‖2t−s

Hr · ‖Jg‖sHp→Hq

that clearly implies the inequality ‖g‖Hr ≤ C‖Jg‖Hp→Hq finishing the proof of the Theorem.
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5.5. Proof of Theorem 5.3. The case t = 1 is just Theorem B but our proof also includes this
case. The case p = 2 is obvious due to (2.1) and the Hardy-Stein inequalities. To deal with the
other cases, as done before, using standard approximation arguments it is enough to establish the
corresponding inequalities assuming that both ‖g‖Hpt and Ip,t(g) are finite.

5.5.1. Step 1. For p > 2 we prove that

(5.4) ‖g‖ptHpt ≤ C Ip,t(g).

By the Hardy-Stein inequalities, (2.1), Hölder’s inequality and the Lp boundedness of the admis-
sible maximal function, we have

‖g‖ptHpt �
∫
Sn

(∫
Γ(ζ)

|g(z)|pt−2|Rg(z)|2 (1− |z|2)1−ndv(z)

)
dσ(ζ)

≤
∫
Sn
|g∗(ζ)|pt−2t

(∫
Γ(ζ)

|g(z)|2t−2|Rg(z)|2 (1− |z|2)1−ndv(z)

)
dσ(ζ)

≤ ‖g∗‖t(p−2)
Lpt(Sn) · Ip,t(g)2/p ≤ C ‖g‖pt−2t

Hpt · Ip,t(g)2/p,

and this clearly gives the inequality (5.4).

5.5.2. Step 2. We show that, for 0 < p < 2, one has

Ip,t(g) ≤ C ‖g‖ptHpt .

To prove the inequality, apply Hölder’s inequality, Theorem A, (2.1) and the Hardy-Stein in-
equalities to obtain

Ip,t(g) =

∫
Sn

(∫
Γ(ζ)

|g(z)|2t−2 |Rg(z)|2 (1− |z|2)1−ndv(z)

)p/2
dσ(ζ)

≤
∫
Sn
|g∗(ζ)|

(2−p)tp
2

(∫
Γ(ζ)

|g(z)|pt−2 |Rg(z)|2 (1− |z|2)1−ndv(z)

)p/2
dσ(ζ)

≤ ‖g∗‖pt(1−p/2)
Lpt(Sn)

(∫
Sn

∫
Γ(ζ)

|g(z)|pt−2 |Rg(z)|2 (1− |z|2)1−ndv(z) dσ(ζ)

)p/2
≤ C‖g‖ptHpt .

Notice that the same method shows that, if uϕ is the invariant Poisson integral of a function
ϕ ∈ Lpt(Sn), and p < 2 with pt > 1 then one has

(5.5)
∫
Sn

(∫
Γ(ζ)

|uϕ(z)|2t−2|∇̃uϕ(z)|2 dλn(z)

)p/2
dσ(ζ) ≤ C ‖ϕ‖ptLpt(Sn).

Indeed, we also have the Hardy-Stein inequalities for uϕ and the boundedness of the admissible
maximal function ‖u∗ϕ‖Lp(Sn) ≤ C‖ϕ‖Lp(Sn) for 1 < p <∞ (see [33, Theorem 5.4.10]).
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5.5.3. Step 3. For p > 2 we establish the inequality

Ip,t(g) ≤ C ‖g‖ptHpt .

We begin with the case p ≥ 4. The case 2 < p < 4 will be deduced later from this case. Since
|Rg(z)| ≤ |∇g(z)| ≤ (1− |z|2)−1 |∇̃g(z)| (see [42, Lemma 2.14]), it is enough to show that

(5.6) Jp,t(g) ≤ C ‖g‖ptHpt ,

where

Jp,t(g) :=

∫
Sn

(∫
Γ(ζ)

|g(z)|2t−2 |∇̃g(z)|2 dλn(z)

)p/2
dσ(ζ).

We follow an argument in [35, p. 282], but with the use of the invariant Green’s formula instead
of the classical one. By duality, we have

(5.7) Jp,t(g)2/p � sup

∫
Sn

(∫
Γ(ζ)

|g(z)|2t−2 |∇̃g(z)|2 dλn(z)

)
ϕ(ζ) dσ(ζ),

where the supremum runs over all positive functions ϕ in Lp/(p−2)(Sn) with ‖ϕ‖Lp/(p−2)(Sn) = 1.
Since 1− |z|2 is comparable to |1− 〈z, ζ〉| for z in Γ(ζ), we have∫

Sn

(∫
Γ(ζ)

|g(z)|2t−2 |∇̃g(z)|2 dλn(z)

)
ϕ(ζ) dσ(ζ)

�
∫
Sn

(∫
Γ(ζ)

|g(z)|2t−2 |∇̃g(z)|2 (1− |z|2)2n

|1− 〈z, ζ〉|2n
dλn(z)

)
ϕ(ζ) dσ(ζ)

≤
∫
Bn
|g(z)|2t−2 |∇̃g(z)|2 uϕ(z) (1− |z|2)n dλn(z).

(5.8)

where uϕ denotes the invariant Poisson integral of the function ϕ. An elementary calculation
shows that

∆̃(|g|2t)(z) = 4t2|g(z)|2t−2 |∇̃hg(z)|2 = t2|g(z)|2t−2 |∇̃g(z)|2, z ∈ Bn
where ∆̃ is the invariant Laplace operator. If t < 1 the last identity holds at the points z ∈ Bn
with g(z) 6= 0. Therefore, the last integral in (5.8) is equal to

1

t2

∫
Bn

∆̃(|g|2t)(z)uϕ(z) (1− |z|2)n dλn(z).

Using that uϕ isM-harmonic on Bn and the identity ∆̃(U ·V ) = U∆̃V +V ∆̃U +2〈∇̃U, ∇̃V 〉R,
where 〈·, ·〉R denotes the inner product in R2n, we see that the previous integral is dominated by

I1(g, ϕ) + I2(g, ϕ)

with
I1(g, ϕ) =

∫
Bn

∆̃(uϕ |g|2t)(z) (1− |z|2)n dλn(z)

and
I2(g, ϕ) =

∫
Bn
|∇̃(|g|2t)(z)| · |∇̃uϕ(z)| (1− |z|2)n dλn(z).



INTEGRATION OPERATORS ON HARDY SPACES 19

Since (1−|z|2)n . G(z), whereG is the invariant Green’s function, the term I1(g, ϕ) is estimated
using the invariant Green’s formula and Hölder’s inequality to obtain

(5.9) I1(g, ϕ) ≤ C

∫
Sn
|g(ζ)|2t ϕ(ζ) dσ(ζ) ≤ C ‖g‖2t

Hpt · ‖ϕ‖Lp/(p−2)(Sn).

Notice that there is no problem with the use of the invariant Green’s formula if t ≥ 1 because
in that case, the function |g|2t is of class C2. When 0 < t < 1 one uses standard approximation
arguments, for example replacing |g|2t by (|g|2 + ε)t and then letting ε→ 0.

In order to estimate the second term I2(g, ϕ), first we use that
∣∣∇̃(|g|2t)(z)

∣∣ � |g(z)|2t−1|∇̃g(z)|
to get

I2(g, ϕ) �
∫
Bn
|g(z)|2t−1 |∇̃g(z)| · |∇̃uϕ(z)| (1− |z|2)n dλn(z).

If p = 4, an application of Cauchy-Schwarz together with the Hardy-Stein inequalities yield

I2(g, ϕ) .

(∫
Bn
|g(z)|4t−2 |∇̃g(z)|2 (1− |z|2)n dλn(z)

) 1
2
(∫

Bn
|∇̃uϕ(z)|2 (1− |z|2)n dλn(z)

) 1
2

. ‖g‖2t
H4t · ‖ϕ‖L2(Sn).

Bearing in mind (5.7), (5.8) and (5.9), this gives J4,t(g)1/2 ≤ C‖g‖2t
H4t proving the desired result

when p = 4.

If p > 4 then 1 < p
p−2

< 2 and it has been already proved in (5.5) that

(5.10)
∫
Sn

(∫
Γ(ζ)

|∇̃uϕ(z)|2 dλn(z)

) p
2(p−2)

dσ(ζ) ≤ C ‖ϕ‖p/(p−2)

Lp/(p−2)(Sn)
.

By (2.1) and Hölder’s inequality we have

I2(g, ϕ) .
∫
Sn

(∫
Γ(ζ)

|g(z)|2t−1|∇̃g(z)| |∇̃uϕ(z)| dλn(z)

)
dσ(ζ)

≤
∫
Sn
|g∗(ζ)|t

(∫
Γ(ζ)

|g(z)|t−1|∇̃g(z)| |∇̃uϕ(z)| dλn(z)

)
dσ(ζ)

≤ ‖g∗‖tLpt(Sn) · I3(g, ϕ)(p−1)/p,

with

I3(g, ϕ) =

∫
Sn

(∫
Γ(ζ)

|g(z)|t−1|∇̃g(z)| |∇̃uϕ(z)| dλn(z)

)p/(p−1)

dσ(ζ).

An application of Theorem A gives

(5.11) I2(g, ϕ) ≤ C‖g‖tHpt · I3(g, ϕ)(p−1)/p.

Now, applying Cauchy-Schwarz inequality together with another use of Hölder’s inequality (now
with exponent p− 1 > 1) and the inequality (5.10) it follows that

I3(g, ϕ) ≤ Jp,t(g)1/(p−1) · ‖ϕ‖p/(p−1)

Lp/(p−2)(Sn)
.
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Putting this inequality into (5.11) we get

I2(g, ϕ) ≤ C‖g‖tHpt · Jp,t(g)1/p · ‖ϕ‖Lp/(p−2)(Sn).

Taking into account (5.7), (5.8) and (5.9), this gives

Jp,t(g)2/p . ‖g‖2t
Hpt + ‖g‖tHpt · Jp,t(g)1/p,

but, since p > 2, we have already proved in Step 1 that

‖g‖tHpt . Ip,t(g)1/p ≤ Jp,t(g)1/p.

Therefore we finally obtain

Jp,t(g)2/p ≤ C‖g‖tHpt · Jp,t(g)1/p,

and this clearly implies the inequality (5.6) finishing the proof of that case.

It remains to deal with the case 2 < p < 4. Since 2p > 4, the previous case gives

I2p,t/2(g) ≤ C‖g‖ptHpt .

Then, by Cauchy-Schwarz inequality and Theorem A, we have

Ip,t(g) ≤
∫
Sn
|g∗(ζ)|tp/2

(∫
Γ(ζ)

|g(z)|t−2 |Rg(z)|2 (1− |z|2)1−ndv(z)

)p/2
dσ(z)

≤ ‖g∗‖pt/2Lpt(Sn) · I2p,t/2(g)1/2 ≤ C‖g‖ptHpt .

5.5.4. Step 4. Finally, for 0 < p < 2, we show that

(5.12) ‖g‖ptHpt ≤ C Ip,t(g).

By the Hardy-Stein inequalities together with (2.1), we have

‖g‖ptHpt �
∫
Sn

(∫
Γ(ζ)

|g(z)|pt−2|Rg(z)|2 (1− |z|2)1−ndv(z)

)
dσ(ζ).

Then apply Hölder’s inequality with exponent 4/p and Cauchy-Schwarz to get

‖g‖ptHpt .
∫
Sn

(∫
Γ(ζ)

|g(z)|2t−2 |Rg(z)|2 dv(z)

(1− |z|2)n−1

) p
4
(∫

Γ(ζ)

|g(z)|
2tp
4−p−2 |Rg(z)|2 dv(z)

(1− |z|2)n−1

) 4−p
4

dσ(ζ)

≤ Ip,t(g)1/2 · I4−p, tp
4−p

(g)1/2.

By the case already proved (Step 3) we have

I4−p, tp
4−p

(g) ≤ C‖g‖ptHpt ,

and this clearly establishes (5.12) finishing the proof of the Theorem.
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5.5.5. Remarks. The same argument shows that, for a function g ∈ H(Bn) and 0 < p <∞, one
has g ∈ Hpt if and only if∫

Sn

(∫
Γ(ζ)

|g(z)|2t−2|∇̃g(z)|2 dλn(z)

)p/2
dσ(ζ) <∞.

Also, the same method shows that, if uϕ denotes the invariant Poisson integral of ϕ and p, t are
positive numbers with 1 < pt <∞, then ϕ belongs to Lpt(Sn) if and only if∫

Sn

(∫
Γ(ζ)

|uϕ(z)|2t−2|∇̃uϕ(z)|2 dλn(z)

)p/2
dσ(ζ) <∞.

6. COMPACTNESS AND MEMBERSHIP IN SCHATTEN CLASSES

6.1. Compactness. It is well known that a linear operator T : Hp → Hq is compact if and
only if ‖Tfk‖Hq → 0 for every bounded sequence {fk} in Hp converging to zero uniformly on
compact subsets of Bn. With all that has been done in the previous sections, it is now routine the
obtention of the corresponding descriptions about the compactness of the integration operator
Jg : Hp → Hq. We need first the following easy result.

Lemma 6.1. Let 0 < p, q < ∞. If α = n
(

1
p
− 1

q

)
< 1 then Jp : Hp → Hq is compact for any

holomorphic polynomial p(z).

Proof. Let {fk} be a bounded sequence in Hp converging to zero uniformly on compact subsets
of Bn, and fix 0 < ε < 1. Take 0 < r < 1 with 1 − r < ε and then choose k0 such that
sup|z|≤r |fk(z)| < ε for all k ≥ k0. Then, using Theorem B, one easily gets

‖Jpfk‖qHq � ‖A(Jpfk)‖qLq(Sn) . εq‖p‖qHq + ‖Rp‖q∞ · I(fk)

with

I(fk) =

∫
Sn

(∫
Γ(ζ)∩{|z|>r}

|fk(z)|2 (1− |z|2)1−ndv(z)

)q/2
dσ(ζ).

If α ≤ 0, that is, when q ≤ p, by Hölder’s inequality and Theorem A, we have

I(fk) ≤
∫
Sn
|f ∗k (ζ)|q

(∫
Γ(ζ)∩{|z|>r}

(1− |z|2)1−ndv(z)

)q/2
dσ(ζ)

� (1− r)q‖f ∗k‖
q
Lq(Sn) ≤ C εq‖fk‖qHp ≤ C εq.

If 0 < α < 1, then q > p and the standard estimate for Hp functions [42, Theorem 4.17] and
Theorem A gives

I(fk) ≤ ‖fk‖q−pHp

∫
Sn
|f ∗k (ζ)|p

(∫
Γ(ζ)∩{|z|>r}

(1− |z|2)−2α+1−ndv(z)

)q/2
dσ(ζ)

≤ C(1− r)q(1−α)‖f ∗k‖
p
Lp(Sn) ≤ C εq(1−α)‖fk‖pHp ≤ C εq(1−α).

This proves that Jp : Hp → Hq is compact when α < 1. �
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Now we are ready to state and prove the results on the compactness of Jg : Hp → Hq. Recall
that the space of holomorphic functions of vanishing mean oscillation VMOA is the closure of
the holomorphic polynomials in BMOA.

Theorem 6.2. Let 0 < p < ∞ and g ∈ H(Bn). Then Jg is compact on Hp if and only if
g ∈ VMOA.

Proof. If g is in VMOA then there are holomorphic polynomials pk with ‖g − pk‖BMOA → 0.
By Lemma 6.1, the operator Jpk is compact on Hp. From the estimate obtained in Theorem 1.1
it follows that

‖Jg − Jpk‖ = ‖Jg−pk‖ ≤ C‖g − pk‖BMOA → 0.

Hence Jg can be approximated by compact operators in the operator norm proving that Jg is
compact.

Conversely, suppose that Jg is compact on Hp. We want to show that g belongs to VMOA or,
equivalently, that ‖fk‖Lp(µg) → 0 for any sequence {fk} of functions in the Hardy space Hp with
sup ‖fk‖Hp ≤ C converging to zero uniformly on compact subsets of Bn [42, Chapter 5]. Since
Jg is compact, we have lim ‖Jgfk‖Hp = 0. If p = 2 the result is obvious from (3.1). For the
other values of p, notice that in the course of the proof of Theorem 1.1 the following inequalities
had been proved

‖fk‖pLp(µg) ≤ C‖fk‖p−2
Hp · ‖Jgfk‖2

Hp if p > 2,

and
‖fk‖pLp(µg) ≤ C‖g‖2−p

BMOA · ‖Jgfk‖
p
Hp if 0 < p < 2.

Since ‖fk‖Hp ≤ C and ‖Jgfk‖Hp → 0 this shows that lim ‖fk‖Lp(µg) = 0 proving that g is in
VMOA. �

Now, for 0 < α < 1, we need to introduce the little Lipschitz type space λ(α) that consists of
those functions g ∈ H(Bn) with

lim
|z|→1−

(1− |z|2)1−α |Rg(z)| = 0.

Theorem 6.3. Let 0 < p < q <∞, g ∈ H(Bn) and α = n
(

1
p
− 1

q

)
. If α < 1, then the operator

Jg : Hp → Hq is compact if and only if g ∈ λ(α). If α = 1, then Jg : Hp → Hq is compact if
and only if Jg ≡ 0.

Proof. One implication is a consequence of Lemma 6.1 together with the inequality ‖Jg‖Hp→Hq ≤
C‖g‖Λ(α) obtained in Theorem 1.2, since λ(α) is the closure of the holomorphic polynomials in
Λ(α) [42, Chapter 7]. The other implication follows from the estimate

|f(z)| |Rg(z)| ≤ C(1− |z|2)−(n+q)/q ‖Jgf‖Hq

obtained in the proof of Theorem 1.2. Indeed, if {ak} is any sequence of points in Bn with
|ak| → 1, consider the functions

fk(z) =
(1− |ak|2)n/p

(1− 〈z, ak〉)2n/p
, z ∈ Bn.
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The functions fk are unit vectors on Hp converging to zero uniformly on compact subsets of Bn.
Therefore, if Jg : Hp → Hq is compact, then ‖Jgfk‖Hq → 0 and it follows from the previous
estimate that

(1− |ak|2)1−α|Rg(ak)| = (1− |ak|2)(n+q)/q|fk(ak)| |Rg(ak)|
≤ C‖Jgfk‖Hq → 0,

proving that g belongs to λ(α) for α < 1. If α = 1 we have proved that |Rg(z)| → 0 as |z| → 1−,
and hence g must be constant. �

Theorem 6.4. Let 0 < q < p <∞ and g ∈ H(Bn). Then Jg : Hp → Hq is compact if and only
if it is bounded, if and only if g ∈ Hr with r = pq/(p− q).

Proof. Due to Theorem 1.3 it only remains to prove that Jg : Hp → Hq is compact whenever g
is in Hr. As before, since the holomorphic polynomials are dense in Hr, this follows from the
inequality ‖Jg‖Hp→Hq ≤ C‖g‖Hr in Theorem 1.3 and Lemma 6.1. �

6.2. Schatten classes. For 0 < p < ∞, a compact operator T acting on a separable Hilbert
space H belongs to the Schatten class Sp := Sp(H) if its sequence of singular numbers belongs
to the sequence space `p (the singular numbers are the square roots of the eigenvalues of the
positive operator T ∗T , where T ∗ is the Hilbert adjoint of T ). We refer to [43, Chapter 1] for a
brief account on Schatten classes.

Recall that H2 is a reproducing kernel Hilbert space with the reproducing kernel function
given by

Kz(w) =
1

(1− 〈w, z〉)n
, z, w ∈ Bn

with norm ‖Kz‖H2 =
√
Kz(z) = (1 − |z|2)−n/2. The normalized kernel functions are denoted

by kz = Kz/‖Kz‖H2 . We also need to introduce some “derivatives” of the kernel functions. For
z, w ∈ Bn and t > 0, define

Kt
z(w) =

1

(1− 〈w, z〉)n+t

and let ktz denote its normalization, that is, ktz = Kt
z/‖Kt

z‖H2 . Notice thatKt
z(w) = R−1,tKw(z),

where R−1,t is the unique continuous linear operator on H(Bn) satisfying

R−1,t

(
1

(1− 〈z, w〉)n

)
=

1

(1− 〈z, w〉)n+t

for all w ∈ Bn (see [43, Section 1.4]). The operator R−1,t is invertible and its inverse is denoted
by R−1,t. In particular, since f(z) = 〈f,Kz〉H2 whenever f ∈ H2, one has

(6.1) R−1,tf(z) = 〈f,Kt
z〉H2 , f ∈ H2(Bn).

In order to describe the membership of the integration operator Jg in the Schatten ideals
Sp(H

2) we also need the following result that can be of independent interest. A related result in
one dimension appears in [34].
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Lemma 6.5. Let T : H2(Bn)→ H2(Bn) be a positive operator. For t > 0 set

T̃ t(z) = 〈Tktz, ktz〉H2 , z ∈ Bn.

(a) Let 0 < p ≤ 1. If T̃ t ∈ Lp(Bn, dλn) then T is in Sp(H2).
(b) Let p ≥ 1. If T is in Sp(H2) then T̃ t ∈ Lp(Bn, dλn).

Proof. The positive operator T is in Sp if and only if T p is in the trace class S1(H2). Fix an
orthonormal basis {ek} of H2(Bn). Since T p is positive, it belongs to the trace class if and only
if ∑

k

〈T pek, ek〉H2 <∞.

Let S =
√
T p. Then

∑
k〈T pek, ek〉H2 =

∑
k ‖Sek‖2

H2 , and, by [42, Theorem 4.41], this is
comparable to ∑

k

‖R−1,tSek‖2
A2

2t−1
.

Now, by (6.1), Fubini’s theorem and Parseval’s identity, we have∑
k

‖R−1,tSek‖2
A2

2t−1
=
∑
k

∫
Bn
|R−1,tSek(z)|2 dv2t−1(z)

=
∑
k

∫
Bn

∣∣〈Sek, Kt
z〉H2

∣∣2 dv2t−1(z) =

∫
Bn

(∑
k

∣∣〈ek, SKt
z〉H2

∣∣2) dv2t−1(z)

=

∫
Bn
‖SKt

z‖2
H2 dv2t−1(z) =

∫
Bn
〈T pKt

z, K
t
z〉H2 dv2t−1(z)

=

∫
Bn
〈T pktz, ktz〉H2 ‖Kt

z‖2
H2 dv2t−1(z).

Putting all together and taking into account that ‖Kt
z‖2
H2(1 − |z|2)2t−1 is comparable to (1 −

|z|2)−(n+1), we have that T is in Sp if and only if∫
Bn
〈T pktz, ktz〉H2 dλn(z) <∞.

Now, both (a) and (b) are consequences of the inequalities (see [43, Proposition 1.31])

〈T pktz, ktz〉H2 ≤
[
〈Tktz, ktz〉H2

]p
= [T̃ t(z)]p, 0 < p ≤ 1

and
[T̃ t(z)]p =

[
〈Tktz, ktz〉H2

]p ≤ 〈T pktz, ktz〉H2 , p ≥ 1.

This finishes the proof of the lemma. �

Corollary 6.6. Let T : H2(Bn) → H be a bounded linear operator, where H is any separable
Hilbert space. Let t > 0 and consider the function Ft(z) = ‖Tktz‖H . If p ≥ 2 and T is in Sp
then Ft ∈ Lp(Bn, dλn). If 0 < p ≤ 2 and Ft ∈ Lp(Bn, dλn), then T belongs to Sp.

Proof. The result is an immediate consequence of Lemma 6.5 since, by definition, T : H2 → H
is in Sp if the positive operator T ∗T belongs to Sp/2(H2). �
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We need the following well known integral estimate that can be found, for example, in [42,
Theorem 1.12].

Lemma A. Let t > −1 and s > 0. There is a positive constant C such that∫
Bn

(1− |w|2)t dv(w)

|1− 〈z, w〉|n+1+t+s
≤ C (1− |z|2)−s

for all z ∈ Bn.

Now we are ready for the description of the membership in Sp(H2) of the integration operator
Jg.

Theorem 6.7. Let g ∈ H(Bn). Then
(a) For n < p <∞, Jg belongs to Sp(H2) if and only if g ∈ Bp, that is,

(6.2)
∫
Bn
|Rg(z)|p (1− |z|2)p dλn(z) <∞.

(b) If 0 < p ≤ n then Jg is in Sp(H2) if and only if g is constant.

Proof. Since Bp ⊂ VMOA, if g ∈ Bp then, by Theorem 6.2, Jg is compact and therefore, for
p ≥ 2, it belongs to Sp if and only if

∑
n ‖Jgek‖

p
H2 ≤ C < ∞ for all orthonormal sets {ek} of

H2 [43, Theorem 1.33]. Due to (3.1) we have

(6.3) ‖Jgek‖pH2 �
(∫

Bn
|ek(z)|2 |Rg(z)|2 (1− |z|2) dv(z)

)p/2
.

Now, since f ∈ H2 if and only if R−1,1f ∈ A2
1(Bn) ⊂ A2

1+γ(Bn), by using the reproducing
formula for the Bergman space A2

1+γ(Bn) to the function R−1,1ek one gets

|ek(z)| =
∣∣R−1,1(R−1,1ek)(z)

∣∣ . ∫
Bn

|R−1,1ek(w)|
|1− 〈z, w〉|n+1+γ

(1− |w|2)1+γ dv(w)

with γ > 0 chosen big enough so that all successive applications of Lemma A are going to be
correct. Take 0 < ε < 1 with εp < 2n and apply Cauchy-Schwarz together with Lemma A to
obtain

|ek(z)|2 . (1− |z|2)−ε
∫
Bn

|R−1,1ek(w)|2

|1− 〈z, w〉|n+1+2γ
(1− |w|2)2+2γ+ε dv(w).

Putting this into (6.3), using Fubini’s theorem, Hölder’s inequality with exponent p/2, and taking
into account that ‖R−1,1ek‖A2

1
. ‖ek‖H2 , we obtain

‖Jgek‖pH2 .

(∫
Bn
|R−1,1ek(w)|2Kg(w) (1− |w|2)2+2γ+εdv(w)

)p/2
.
∫
Bn
|R−1,1ek(w)|2Kg(w)p/2 (1− |w|2)1+

(1+2γ+ε)p
2 dv(w)

with

Kg(w) :=

∫
Bn

|Rg(z)|2 (1− |z|2)1−ε dv(z)

|1− 〈z, w〉|n+1+2γ
.
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Now, summing on k and using that∑
k

|R−1,1ek(w)|2 . ‖K1
w‖2

H2 . (1− |w|2)−n−2,

we arrive at ∑
k

‖Jgek‖pH2 .
∫
Bn
Kg(w)p/2 (1− |w|2)−n−1+

(1+2γ+ε)p
2 dv(w).

By Hölder’s inequality and Lemma A we have

Kg(w)p/2 ≤
(∫

Bn

|Rg(z)|p (1− |z|2)p+t dλn(z)

|1− 〈z, w〉|n+1+2γ

)
(1− |w|2)n+1−t− (1+ε)p

2
−γ(p−2)

with 0 < 2t < 2n− εp. This, together with Fubini’s theorem and another application of Lemma
A finally gives∑

k

‖Jgek‖pH2 .
∫
Bn
|Rg(z)|p (1− |z|2)p+t

(∫
Bn

(1− |w|2)2γ−tdv(w)

|1− 〈z, w〉|n+1+2γ

)
dλn(z)

.
∫
Bn
|Rg(z)|p (1− |z|2)p dλn(z)

proving that Jg belongs to Sp(H2). This finishes the proof of the sufficiency in part (a) when
n ≥ 2.

Conversely, assume that Jg belongs to the Schatten class Sp(H2) and p ≥ 2. By Corollary 6.6,
the function F (z) = ‖Jgk1

z‖H2 is in Lp(Bn, dλn), and by (3.1), this is equivalent to

(6.4)
∫
Bn

(∫
Bn

|Rg(w)|2 (1− |w|2)

|1− 〈w, z〉|2n+2
dv(w)

)p/2
(1− |z|2)p(n+2)/2 dλn(z) <∞.

Now the well known estimate

|Rg(z)|2 ≤ C(1− |z|2)n
∫
Bn

|Rg(w)|2 (1− |w|2)

|1− 〈w, z〉|2n+2
dv(w)

shows that (6.2) holds. The proof of the Theorem for n ≥ 2 is now completed since for p = n
the condition (6.2) implies that g must be constant, and Sp(H2) ⊂ Sn(H2) for p < n.

This result is a typical example of when the one dimensional case presents more difficulties,
mainly because there is more work to do when n = 1 since the case 1 ≤ p < 2 is still not
proved. By Corollary 6.6, the condition (6.4) is a sufficient condition for Jg to be in Sp(H2)
when p < 2, but this condition is easily implied by (6.2) due to Hölder’s inequality and Lemma
A. The necessity of (6.2) when 1 ≤ p < 2 can be done as follows: if Jg is in Sp(H2) then admits
the decomposition Jgf =

∑
k λk〈f, ek〉H2ek, where {λk} are the singular numbers of Jg and

{ek} is an orthonormal set in H2. By testing the previous formula on reproducing kernels and
taking radial derivatives one gets Kz(w)Rg(w) =

∑
k λk ek(z)Rek(w). Differentiating then in

z and taking w = z one obtains

RKz(z)Rg(z) =
∑
k

λk |Rek(z)|2.
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A calculation gives RKz(z) = |z|2 (1− |z|2)−2. Then∫
B1

|Rg(z)|p (1− |z|2)p dλ1(z) ≤
∫
B1

(∑
k

|λk| |Rek(z)|2
)p

|z|−2p (1− |z|2)3p dλ1(z).

Now, Hölder’s inequality yields(∑
k

|λk| |Rek(z)|2
)p

≤

(∑
k

|λk|p |Rek(z)|2
)(∑

k

|Rek(z)|2
)p−1

≤

(∑
k

|λk|p |Rek(z)|2
)
‖RKz‖2p−2

H2 ,

and, since ‖RKz‖2
H2 . |z|2 (1− |z|2)−3, we finally obtain∫

B1

|Rg(z)|p (1− |z|2)p dλ1(z) ≤
∑
k

|λk|p
∫
B1

|Rek(z)|2 (1− |z|2) |z|−2 dv(z)

.
∑
k

|λk|p <∞

proving that (6.2) holds. Again, if p = 1 then (6.2) implies that g must be a constant completing
the proof of the theorem. �

The proof of the case n = 1 of Theorem 6.7 given in [6] relies on the observation that J∗gJg
is essentially the Toeplitz type operator Qµg with dµg(z) = |Rg(z)|2 (1 − |z|2) dv(z), and then
appealing to a result of Luecking [24] that describes, when n = 1, the membership in the Schatten
classes Sp(H2) of the Toeplitz type operator Qµ for a positive Borel measure µ on Bn, defined as

Qµf(z) =

∫
Bn

f(w)

(1− 〈z, w〉)n
dµ(w), z ∈ Bn.

As far as I know, it seems that the operatorQµ has not been studied in the setting of Hardy spaces
in the unit ball. Here I am going to make some comments on the boundedness, compactness and
membership in the Schatten ideals of the operator Qµ acting on H2(Bn), but since this is not the
main topic of the paper we will not enter into the details. By using the identity

〈Qµf, g〉H2 =

∫
Bn
f(w) g(w) dµ(w)

it is easy to prove that Qµ is bounded on H2 if and only if µ is a Carleson measure, and that
the compactness is characterized by µ being a vanishing Carleson measure. Concerning the
membership of Qµ in the Schatten classes, Lemma 6.5 can be of some help in order to prove
some parts of the analogue of Luecking’s result for n > 1.
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7. PROOF OF THEOREM E

7.1. Sufficiency. Assume first that the function µ̃ belongs to Lp/(p−s)(Sn), and let f ∈ Hp.
Then, by (2.1), Hölder’s inequality with exponent p/s > 1 and Theorem A, we obtain∫

Bn
|f(z)|s dµ(z) �

∫
Sn

∫
Γ(ζ)

|f(z)|s(1− |z|2)−n dµ(z) dσ(ζ)

≤
∫
Sn
|f ∗(ζ)|s

∫
Γ(ζ)

(1− |z|2)−n dµ(z) dσ(ζ)

≤ C‖f‖sHp · ‖µ̃‖Lp/(p−s)(Sn).

7.2. A version for Poisson integrals. Next we state and prove a version of Theorem E for
invariant Poisson integrals uϕ of functions ϕ in Lp(Sn) that can be of independent interest.

Theorem 7.1. Let 1 < p < ∞, 0 < s < p and let µ be a finite positive Borel measure on Bn.
Then ∫

Bn
|uϕ(z)|sdµ(z) ≤ Kµ ‖ϕ‖sLp(Sn)

if and only if µ̃ ∈ Lp/(p−s)(Sn). Moreover, ‖µ̃‖Lp/(p−s) � Kµ.

Proof. The sufficiency of the condition µ̃ ∈ Lp/(p−s)(Sn) follows from the previous argument
taking into account that ‖u∗ϕ‖Lq(Sn) ≤ C‖ϕ‖Lq(Sn) for q > 1. The proof of the necessity can be
done as follows. Since p/(p− s) > 1, then by duality,

‖µ̃‖Lp/(p−s)(Sn) = sup
ϕ

∫
Sn
µ̃(ζ)ϕ(ζ) dσ(ζ),

where the supremum is taken over all positive ϕ in Lp/s(Sn) with norm one. Using the definition
of µ̃, that (1 − |z|2) � |1 − 〈z, ζ〉| for z ∈ Γ(ζ), and interchanging the order of integration we
arrive at∫

Sn
µ̃(ζ)ϕ(ζ) dσ(ζ) �

∫
Bn

∫
I(z)

ϕ(ζ) (1− |z|2)n

|1− 〈z, ζ〉|2n
dσ(ζ) dµ(z) ≤

∫
Bn
uϕ(z)dµ(z).

If s = 1, this gives ‖µ̃‖Lp/(p−s)(Sn) ≤ C Kµ. If 0 < s < 1 let f = ϕ1/s ∈ Lp(Sn). By Hölder’s
inequality one has uϕ(z) ≤ uf (z)s. Hence∫

Sn
µ̃(ζ)ϕ(ζ) dσ(ζ) .

∫
Bn
uf (z)s dµ(z) ≤ Kµ ‖f‖sLp(Sn) = Kµ ‖ϕ‖Lp/s(Sn).

Finally, consider the case s > 1. Take t > 1 with t < (p − 1)/(s − 1), and let t′ denote the
conjugate exponent of t. By Hölder’s inequality, uϕ(z) ≤ uf (z)1/t′ · ug(z)1/t, with f = ϕ1/s ∈
Lp(Sn), g = ϕσ/s ∈ Lp/σ(Sn) and σ = 1 + (s− 1)t. Another application of Hölder’s inequality
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yields ∫
Sn
µ̃(ζ)ϕ(ζ) dσ(ζ) ≤

∫
Bn
uf (z)1/t′ · ug(z)1/t dµ(z)

≤
(∫

Bn
uf (z)sdµ(z)

) 1
t′s
(∫

Bn
ug(z)s/σdµ(z)

) σ
ts

.

By our assumption, we have∫
Bn
uf (z)sdµ(z) ≤ Kµ‖f‖sLp(Sn) = Kµ‖ϕ‖Lp/s(Sn).

On the other hand, the choice of t makes p/σ > 1 and therefore, assuming that µ has compact
support on Bn, the proof of the sufficiency part gives∫

Bn
ug(z)s/σdµ(z) . ‖µ̃‖Lp/(p−s)(Sn) · ‖g‖

s/σ

Lp/σ(Sn)
= ‖µ̃‖Lp/(p−s)(Sn) · ‖ϕ‖Lp/s(Sn).

All together yields∫
Sn
µ̃(ζ)ϕ(ζ) dσ(ζ) . K1/t′s

µ · ‖µ̃‖σ/ts
Lp/(p−s)(Sn)

· ‖ϕ‖Lp/s(Sn)

proving that ‖µ̃‖Lp/(p−s)(Sn) ≤ C Kµ. This gives the result when µ has compact support on Bn.
The result for arbitrary µ follows from this by an easy limit argument. �

7.3. The tent spaces T p(Z). A sequence of points {zj} ⊂ Bn is said to be separated if there
exists δ > 0 such that β(zi, zj) ≥ δ for all i and j with i 6= j, where β(z, w) denotes the Bergman
metric on Bn. This implies that there is r > 0 such that the Bergman metric balls Dj = {z ∈
Bn : β(z, zj) < r} are pairwise disjoints. Taking into account that v(Dj) � (1 − |zj|2)n+1, is
then an easy consequence of Lemma A that, if {zj} is a separated sequence in Bn, for t > n one
has

(7.1)
∑
j

(1− |zj|2)t

|1− 〈z, zj〉|t+ε
≤ C(1− |z|2)−ε, z ∈ Bn.

For 0 < p < ∞ and a fixed separated sequence Z = {zj} ⊂ Bn, let T p(Z) consist of those
sequences λ = {λj} of complex numbers with

‖λ‖pT p =

∫
Sn

( ∑
zj∈Γ(ζ)

|λj|2
)p/2

dσ(ζ) <∞.

The following result can be thought as the holomorphic analogue of Lemma 3 in Luecking’s
paper [25].

Proposition 7.2. Let Z = {zj} be a separated sequence in Bn and let 0 < p < ∞. If b >
nmax(1, 2/p), then the operator TZ : T p(Z)→ Hp defined by

TZ({λj}) =
∑
j

λj
(1− |zj|2)b

(1− 〈z, zj〉)b
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is bounded.

Proof. Let λ = {λj} ∈ T p(Z) and set g(z) = TZ(λ)(z). By [1] it is enough to prove that
‖Ak(g)‖Lp(Sn) ≤ C‖λ‖T p(Z) for some positive integer k, where

Ak(g)(ζ) =

(∫
Γ(ζ)

|Rkg(z)|2 (1− |z|2)2k dλn(z)

)1/2

.

Easy computations involving radial derivatives together with Cauchy-Schwarz implies

|Rn+1g(z)|2 .

(∑
j

|λj|
(1− |zj|2)b

|1− 〈z, zj〉|b+n+1

)2

≤

(∑
j

|λj|2
(1− |zj|2)b

|1− 〈z, zj〉|b+n+1

)(∑
j

(1− |zj|2)b

|1− 〈z, zj〉|b+n+1

)
.

This together with (7.1) gives(
An+1(g)(ζ)

)2
.
∑
j

|λj|2(1− |zj|2)b
∫

Γ(ζ)

dv(z)

|1− 〈z, zj〉|b+n+1

.
∑
j

|λj|2
(1− |zj|2)b

|1− 〈ζ, zj〉|b
.

In the last estimate it has been used that, since (1− |z|2) � |1− 〈z, ζ〉| for z ∈ Γ(ζ), then due to
[28, Lemma 2.5] one has∫

Γ(ζ)

dv(z)

|1− 〈z, zj〉|b+n+1
�
∫

Γ(ζ)

(1− |z|2)b+1dv(z)

|1− 〈z, ζ〉|b+n+1|1− 〈z, zj〉|b+1

. |1− 〈ζ, zj〉|−b.

Therefore,

‖An+1g‖pLp(Sn) .
∫
Sn

(∑
j

|λj|2
(1− |zj|2)b

|1− 〈ζ, zj〉|b

)p/2

dσ(ζ)

and the proof is finished after the use of the estimate, valid for s > 0 and b > nmax(1, 1/s),∫
Sn

(∫
Bn

( 1− |z|2

|1− 〈z, ζ〉|

)b
dµ(z)

)s
dσ(ζ) ≤ C

∫
Sn
µ(Γ(ζ))s dσ(ζ),

with µ being a positive measure on Bn. This estimate is the analogue of Proposition 1 in Lueck-
ing’s paper [25] and is proved in the same way (see [8, 21] for example). �
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7.4. Necessity. We follow the argument of Luecking [25]. According to [38], for each positive

integer k ≥ 20, there are points {ζjk}m(k)
j=1 ⊂ Sn such that Sn =

m(k)⋃
j=1

Q(ζjk, 2
−k) and

(7.2) Q
(
ζik,

1

9
2−k
)
∩Q

(
ζjk,

1

9
2−k
)

= ∅ if i 6= j.

Recall that Q(ζ, δ) = {ξ ∈ Sn : |1 − 〈ζ, ξ〉| < δ}. We denote by Nk the collection of all non-
isotropic balls Q(ζjk, 2

−k), 1 ≤ j ≤ m(k), and let N =
⋃
Nk. Also, any point ζ ∈ Sn belongs

to at most N balls in Nk, where N depends only on the dimension. If Q = Q(ζ, δ) we use the
notation Q̂ = Bδ(ζ) = {z ∈ Bn : |1 − 〈z, ζ〉| < δ}. As in [25], it is enough to show that the
function

ζ 7→ sup

{
µ(Q̂)

σ(Q)
: Q ∈ N , ζ ∈ Q

}
belongs to Lp/(p−s)(Sn). Thus, we may assume that µ̃ is the above supremum. For each positive
integer m, let Em denote the collection of all “maximal” balls Q ∈ N with µ(Q̂) > 2mσ(Q), and
set E =

⋃
Em. The construction of Em goes as follows: for a fixed k0, let Gm0 be the collection

of all balls Q ∈ Nk0 with µ(Q̂) > 2mσ(Q). Once Gm`−1 is constructed, then Gm` consists of
those balls Q ∈ Nk0+` satisfying µ(Q̂) > 2mσ(Q) such that Q is not contained in any ball in⋃`−1
i=0 Gmi , and then Em =

⋃
i≥0 Gmi . With this construction, is clear that Em+1 ⊂ Em, where

Em =
⋃
Q∈Em Q. Also, if Q1 = Q(ζ1, δ1) and Q2 = Q(ζ2, δ2) are two distinct balls in Em, then

Q
(
ζ1,

1

81
δ1

)
∩Q

(
ζ2,

1

81
δ2

)
= ∅.

If Q1 and Q2 are in the same generation, this follows from (7.2); and if they belong to different
generations and the previous intersection is not empty, then one ball is strictly included in the
other and therefore would not have been picked.

If Q = Q(ζ, δ) ∈ E , let zQ = (1 − c(α)δ) ζ with c(α) =
(
81 · 4α)−1. Recall that α is the

aperture of the admissible approach regions. It is not hard to verify that Z = {zQ : Q ∈ E} is a
separated sequence. By taking µ with compact support on Bn, we may assume that Z is a finite
sequence.

Now, for b > nmax(1, 2/p) and λ = {λQ : Q ∈ E} ∈ T p(Z), consider the function

ft(z) =
∑
Q∈E

λQ rQ(t)
(1− |zQ|2)b

(1− 〈z, zQ〉)b
, z ∈ Bn, 0 < t < 1,

where rQ(t) is a sequence of Rademacher functions. Using our assumption, Proposition 7.2,
integrating on t and applying Khinchine’s inequality we get∫

Bn

(∑
Q∈E

|λQ|2 FQ(z)2b
)s/2

dµ(z) ≤ C‖Id‖sHp→Ls(µ) · ‖λ‖sT p
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with FQ(z) = (1 − |zQ|2)/|1 − 〈z, zQ〉| that satisfies FQ(z) ≥ C > 0 for z ∈ Q̂. Set Êm =⋃
Q∈Em Q̂, and for Q ∈ Gm` let

G(Q) = Q̂ \ Q̂ ∩ Êm+1 \
⋃{

Q̂ ∩ Q̂′ : Q′ ∈ Gmi , i > `
}
.

It is obvious that G(Q1) ∩ G(Q2) = ∅ if Q1 and Q2 belong to distinct Em, and this continues to
hold if they are in different generations of the same Em. Thus, any point z ∈ Bn belongs to at
most N sets G(Q) with N depending only on the dimension. It follows that(∑

Q∈E

|λQ|2 χQ̂(z)
)s/2
≥ C

∑
Q∈E

|λQ|s χG(Q)(z),

with C = min(1, N
s−2
2 ). Therefore, we obtain

(7.3)
∑
Q∈E

|λQ|s µ(G(Q)) ≤ C‖Id‖sHp→Ls(µ) · ‖λ‖sT p .

We will apply this inequality to an appropriate sequence of numbers {λQ}. Put r = p/(p − s)
and set λQ = 2

m
s

(r−1) if Q ∈ Em. Notice that∑
Q∈Em

µ
(
G(Q)

)
≥ µ

( ⋃
Q∈Em

G(Q)
)

= µ
(
Êm \ Êm+1

)
.

Then ∑
Q∈E

|λQ|s µ(G(Q)) =
∑
m

2m(r−1)
∑
Q∈Em

µ
(
G(Q)

)
≥
∑
m

2m(r−1)
(
µ(Êm)− µ(Êm+1)

)
.

By a typical covering lemma of Vitali type (see [35, p. 9]), there is a sequence Fm of pairwise
disjoint balls Q ∈ Em with σ(Em) ≤ C

∑
Q∈Fm σ(Q) (here the constant C depends only on the

dimension). This implies

µ(Êm) = µ
( ⋃
Q∈Em

Q̂
)
≥ µ

( ⋃
Q∈Fm

Q̂
)

=
∑
Q∈Fm

µ(Q̂)

≥ 2m
∑
Q∈Fm

σ(Q) ≥ C2mσ(Em).

Now, summing by parts we obtain∑
Q∈E

|λQ|s µ(G(Q)) ≥
∑
m

(
2m(r−1) − 2(m−1)(r−1)

)
µ(Êm)

≥ C
∑
m

2mr σ(Em) ≥ C ‖µ̃‖rLr(Sn),
(7.4)

where the last estimate is due to the fact that µ̃(ζ) � 2m for ζ ∈ Em \ Em+1. On the other
hand, using that d(z, w) = |1− 〈z, w〉|1/2 satisfies the triangle inequality [33, Proposition 5.1.2]
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together with the choice made on the points zQ, we see that zQ ∈ Γ(ζ) implies that ζ ∈ Q̃, where
Q̃ = Q(ξ, 1

81
δ) if Q = Q(ξ, δ). We know that Q̃1 ∩ Q̃2 = ∅ if Q1 and Q2 are in Em. Therefore,

‖λ‖pT p =

∫
Sn

( ∑
zQ∈Γ(ζ)

|λQ|2
)p/2

dσ(ζ) ≤
∫
Sn

(∑
Q∈E

|λQ|2χQ̃(ζ)
)p/2

dσ(ζ)

≤
∫
Sn

(∑
m

2
2m
s

(r−1)χ
Em

(ζ)
)p/2

dσ(ζ).

Finally, a summation by parts gives

‖λ‖pT p ≤ C

∫
Sn

(∑
m

2
2m
s

(r−1)χ
Em\Em+1

(ζ)
)p/2

dσ(ζ)

= C
∑
m

2
mp
s

(r−1)σ(Em \ Em+1) ≤ C‖µ̃‖rLr(Sn).
(7.5)

Putting the two previous estimates (7.4) and (7.5) into (7.3) gives

‖µ̃‖rLr(Sn) ≤ C‖Id‖sHp→Ls(µ) · ‖µ̃‖
rs/p
Lr(Sn)

that gives ‖µ̃‖Lr(Sn) ≤ C‖Id‖sHp→Ls(µ) for µ with compact support on Bn. The result for an
arbitrary measure µ follows from this by an standard limit argument. This completes the proof
of Theorem E.
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[9] K. Avetisyan and S. Stevic, Extended Cesàro operators between different Hardy spaces, Appl. Math. Comput.

207 (2009), 346–350.
[10] A. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. USA 53 (1965), 1092–1099.
[11] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.
[12] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. 76 (1962),

547–559.
[13] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann.

of Math. 103 (1976), 611–635.



34 JORDI PAU

[14] O. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer. Math. Soc. 140 (2012), 4247–
4257.

[15] P. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143-146.
[16] C. Fefferman and E. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137–193.
[17] J. Garnett and R. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math.

J. 45 (1978), 815–845.
[18] M. Gowda, Nonfactorization theorems in weighted Bergman and Hardy spaces on the unit ball of Cn, Trans.

Amer. Math. Soc. 277 (1983), 203–212.
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