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Abstract

We aimed to obtain insights on the nature of a collection of isolates presumptively identified as atypical Streptococcus
pneumoniae recovered from invasive and non-invasive infections in Spain. One-hundred and thirty-two isolates were
characterized by: optochin susceptibility in ambient and CO2-enriched atmosphere; bile solubility; PCR-based assays
targeting pneumococcal genes lytA, ply, pspA, cpsA, Spn9802, aliB-like ORF2, and a specific 16S rRNA region; multilocus
sequence analysis; and antimicrobial susceptibility. By multilocus sequence analysis, 61 isolates were S. pseudopneumoniae,
34 were pneumococci, 13 were S. mitis, and 24 remained unclassified as non-pneumococci. Among S. pseudopneumoniae
isolates, 51 (83.6%) were collected from respiratory tract samples; eight isolates were obtained from sterile sources. High
frequency of non-susceptibility to penicillin (60.7%) and erythromycin (42.6%) was found. Only 50.8% of the S.
pseudopneumoniae isolates displayed the typical optochin phenotype originally described for this species. None harbored
the cpsA gene or the pneumococcal typical lytA restriction fragment length polymorphism. The Spn9802 and the specific
16S rRNA regions were detected among the majority of the S. pseudopneumoniae isolates (n = 59 and n = 49, respectively).
The ply and pspA genes were rarely found. A high genetic diversity was found and 59 profiles were identified. Among the S.
pneumoniae, 23 were capsulated and 11 were non-typeable. Three non-typeable isolates, associated to international non-
capsulated lineages, were recovered from invasive disease sources. In conclusion, half of the atypical pneumococcal clinical
isolates were, in fact, S. pseudopneumoniae and one-fourth were other streptococci. We identified S. pseudopneumoniae and
non-typeable pneumococci as cause of disease in Spain including invasive disease.
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Introduction

Streptococcus pneumoniae (pneumococcus) is an important human

pathogen worldwide responsible for systemic diseases such as

meningitis, pneumonia, and bacteraemia. [1,2] Culture-based

identification methods usually rely on colony morphology,

optochin susceptibility, bile solubility, and agglutination by the

Quellung reaction. [3] However, exceptions have been described

and include pneumococci that are optochin-resistant, [4,5] bile-

insoluble, [6] and do not have a specific agglutination in the

Quellung reaction due to lack of capsule. [7,8] This latter group is

generally called non-typeable pneumococci and is often found in

colonization. [7,9] Although sporadically, non-typeable pneumo-

cocci have also been associated with disease such as conjunctivitis

(including large outbreaks), [10,11] acute otitis media, [12] acute

exacerbations in patients with chronic obstructive pulmonary

disease (COPD), [13] and more recently in invasive disease. [14].

Pneumococcal isolates displaying odd properties in the assays

described above have been collectively named atypical pneumo-

cocci and are often difficult to identify. On the other hand,

sporadic isolates of closely-related species that have one or more

properties typically associated with pneumococci have been

described. [9,15,16].

In 2004, Arbique and colleagues identified some of these

atypical pneumococci as a new species – Streptococcus pseudopneumo-

niae. [17] Although similar to pneumococci, they were character-
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ized by being bile insoluble and optochin-resistant when incubated

under a 5% CO2 atmosphere but optochin–susceptible when

incubated under ambient atmosphere. S. pseudopneumoniae have

been identified among colonizing children and respiratory

samples. [15,18] Although, their clinical relevance has not been

clearly established, S. pseudopneumoniae have been associated with

COPD, [19] and its disease potential has been demonstrated in

mice models of peritonitis and sepsis. [20].

As biochemical tests are often insufficient to distinguish atypical

S. pneumoniae from S. pseudopneumoniae or other closely related

streptococci several molecular assays have been proposed. The

construction of phylogenetic trees using six concatenated multi-

locus sequence typing (MLST) alleles, called Multilocus Sequence

Analysis (MLSA), is considered a good approach to differentiate S.

pneumoniae from closely related species. [15,21] In addition, several

other assays have been developed most of which are PCR-based

and target specific pneumococcal virulence factors, such as

autolysin A (lytA), pneumolysin (ply), pneumococcal surface protein

A (pspA), or the capsular polysaccharide biosynthesis gene A (cpsA).

[6,15] Unknown putative genes, specific intergenic DNA sequenc-

es, or specific regions of the 16S rRNA, have also been proposed

to be pneumococcal species-specific. [22,23] However, the

occurrence of Streptococcus mitis isolates harbouring genes encoding

S. pneumoniae virulence factors has been reported and whether the

genetic assays recently proposed universally distinguish pneumo-

cocci from the closely related species remains to be seen.

[15,24,25,26,27].

In this study, we aimed to characterize a large collection of

invasive and non-invasive disease isolates obtained in Spain, which

had been identified as atypical pneumococci. We have combined

MLSA with a panel of phenotypic and molecular assays in order to

gain insights on the nature of such isolates.

Materials and Methods

Ethics Statement
This study and publication of the results were approved by the

‘‘Comité Ètic d’Investigació Clı́nica del Hospital Universitari de

Bellvitge’’ and written or oral informed consent was considered

not necessary, because data were analyzed anonymously.

Bacterial Isolates
A total of 132 clinical isolates classified as non-(sero)typeable or

atypical pneumococci collected at two Spanish laboratories were

included in the study. There were no duplicates within or between

the two sets studied.

The first set comprised 56 isolates collected at the Spanish

Reference Pneumococcal Laboratory (Centro Nacional de Micro-

biologia, ISCIII, Madrid, Spain), which receives pneumococcal

disease isolates from 190 hospitals throughout the entire country.

The isolates were obtained between 2004 and 2009, and were

mostly (44 out of 56) from non-sterile sites. This set represented

7.7% (56 out of 728) of the total non-(sero)typeable or atypical

pneumococci S. pneumoniae isolated during that period which, in

turn, corresponded to 4.6% of all pneumococcal isolates identified

in the same period. This set included: i) 44 specimens with atypical

pneumococcal identification [optochin resistant in CO2 atmo-

sphere, bile negative, and AccuprobeTM positive (Gen-Probe, San

Diego, California)] of which 43 had been isolated from non-sterile

sites; and ii) 12 non-typeable pneumococci (optochin susceptible in

CO2 atmosphere, and showing no agglutination in the Quellung

reaction), of which eight were invasive isolates.

The second set comprised 76 isolates collected at the tertiary

adult Hospital Universitari de Bellvitge (Barcelona, Spain)

obtained between 1991 and 2009 and were mostly (63 out of 76)

from non-sterile sites. This set represented 43.9% (76 out of 173) of

the total non-(sero)typeable or atypical pneumococci S. pneumoniae

isolated during that period which, in turn, corresponded to 5.1%

of all pneumococcal isolates identified in the same period. This

collection also include two groups of isolates: i) 35 specimens with

atypical pneumococcal identification [reduced optochin suscepti-

bility in CO2 atmosphere, positive SlidexH pneumo-Kit aglutina-

tion test (bioMérieux, Marcy-l’Etoile, France)] of which 30 had

been isolated from non-sterile sites; and ii) 41 non-typeable

pneumococci (optochin susceptible in CO2 atmosphere and

showing no agglutination in the Quellung reaction), of which

eight were invasive isolates.

In the total collection invasive isolates were obtained from blood

(n = 11), bronchoalveolar lavage (n = 7), transthoracic needle

aspiration (n = 1), cerebrospinal fluid (n = 1), bronchoscopic-

protected catheter brush (n = 1) and ascitic fluid (n = 1). Non-

invasive isolates were obtained from sputum (n = 75), bronchial

aspiration (n = 23), conjunctiva swab (n = 4), and others (n = 8).

Optochin Susceptibility
Optochin susceptibility was tested by disk diffusion, using

commercially available optochin disks (5 mg; 6 mm; Oxoid,

Hampshire, England) applied onto blood agar plates (trypticase

soy agar supplemented with 5% sheep blood), which had been

inoculated with a 0.5 McFarland standard suspension of the

culture to be tested. Plates (two per isolate) were incubated in

parallel overnight at 37uC in a 5% CO2 and ambient atmosphere

as described by Arbique et al. to differentiate S. pneumoniae from S.

pseudopneumoniae. [17] Isolates were considered to be resistant to

optochin if they displayed inhibition zones smaller than 14 mm.

[17].

Bile Solubility Test
The bile solubility assay was performed according to standard

procedures described by Rouff et al. [3].

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility against penicillin, cefotaxime,

erythromycin, clindamycin, cotrimoxazole, tetracycline, ciproflox-

acin, levofloxacin and chloramphenicol was performed by disk-

diffusion and microdilution method, following the recommenda-

tions and definitions of the Clinical and Laboratory Standards

Institute (CLSI). [28] In particular, for penicillin, pneumococcal

oral penicillin V breakpoints were used (S:#0.06, I:0.12-1, R:$2);

for cefotaxime, pneumococcal meningeal breakpoints were used

(S:#0.5, I:1, R:$2). For ciprofloxacin, an MIC$4 mg/L was

considered resistant.

Capsular Typing
For pneumocccal capsular detection, isolates were serotyped by

the Quellung reaction, and/or by a PCR-based assay following the

protocols described by the CDC. [29,30] Isolates for which a

capsule could not be assigned were probed against Omniserum

(Statens Serum Institute, Copenhagen, Denmark), a serum that

contains antibodies to all known pneumococcal types.

Multiplex PCR for Detection of lytA, cpsA and aliB-like
ORF2

A multiplex PCR assay was used to distinguish S. pneumoniae

from closely related species as previously described. [9] This

multiplex PCR detects internal fragments of cpsA (a conserved

pneumococcal capsular polysaccharide gene); lytA (the major

S. pseudopneumoniae and Non-Typeable Pneumococci
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pneumococcal autolysin); aliB-like ORF2 (a gene described as

frequently present in the capsular region of non-capsulated

pneumococci); [8] and 16S rRNA (positive internal control).

PCR Screening for Additional Putative Specific
Pneumococcal Signatures - pspA, Spn9802 and 16S rRNA

Screening for the presence of pspA (the gene that encodes for the

pneumococcal surface protein A), Spn9802 (a genetic region which

encodes for a protein of unknown function that has initially been

described as a specific target for S. pneumoniae), and a 16S rRNA

allele that has been described as pneumococcal-specific, was done

as described. [22,23,31].

lytA RFLP Signatures
The lytA gene was amplified by PCR and RFLP signatures

characteristic of typical pneumococcal lytA or atypical (non-

pneumococcal) lytA were determined by digesting the amplification

product with BsaAI and separating the fragments by agarose gel

electrophoresis, as published. [16].

ply and mly PCR Detection and RFLP Signatures
The presence of ply (encoding pneumolysin, a cholesterol-

dependent pneumococcal citolysin) or mly (a ply homologue

identified in some S. mitis isolates), [32] was screened by digesting

the amplification product with BsaAI and separating the fragments

by agarose gel electrophoresis, as published. [15].

Multilocus Sequence Typing (MLST)
The amplification of internal fragments of seven housekeeping

genes (aroE, gdh, gki, recP, spi, xpt, and ddl) and allele assignment

were carried out essentially as described in the international

pneumococcal MLST database. [33] Sequencing was performed

at Macrogen, Inc. (Seoul, Korea) and the sequencing analysis was

conducted with DNAStar (Lasergene). For non-pneumococcal

isolates allele assignment was done internally using arbitrary

numbers following the same principles of the published MLST

schemes. The eBURST algorithm [34] was used for determining

the population structure of the S. pseudopneumoniae isolates. Two

strains were considered in the same clonal complex when at least

four of the six alleles were identical (the ddl allele was not

systematically determined for these isolates and was thus excluded

from the analysis). Nucleotide sequences were submitted to the

GenBank database (submission grp 3980184) and are also

available from the corresponding author.

Multilocus Sequence Analysis (MLSA)
Phylogenetic analysis using MLST data was done by concat-

enating the sequences of all MLST loci except ddl to obtain one

single sequence of 2,758 bp. [21] MLST allele sequences of S.

pneumoniae, S. mitis, S. pseudopneumoniae, and S. oralis previously

described were used as controls. [15,35,36,37] Phylogenetic and

molecular evolutionary analyses were conducted using MEGA

version 4 as previously described. [15,38].

Results and Discussion

To obtain insights on the nature and characteristics of 132

Spanish isolates presumptively identified as atypical pneumococci

recovered from invasive and non-invasive disease sources, we

performed several phenotypic and genotypic assays.

For species assignment MLSA was performed as described

previously using the study isolates as well as the collections

previously described by Chi et al. and Simões et al. [15,35] For 22

isolates one or more MLST alleles could not be obtained despite

repeated attempts using various primers and several different

amplification conditions. For this reason, these isolates were not

fully characterized. For the 110 remaining isolates MLSA was

performed and identified 61 isolates as S. pseudopneumoniae, 34 as S.

pneumoniae, and 13 as S. mitis; within the S. pneumoniae branch two

outliers closer to the root of the tree were noted and these

remained unidentified (Figure 1). Isolates which are clearly closely

related to S. pneumoniae but for which species assignment is not

obvious have also been described by others. [39].

Overall, the 22 invasive isolates were identified as 12 S.

pneumoniae, 8 S. pseudopneumoniae, 1 S. mitis, and 1 unidentified

isolate. The 110 non-invasive disease isolates were identified as 53

S. pseudopneumoniae, 22 S. pneumoniae, 12 S. mitis, and 23 unidentified

isolates. In all groups sporadic alleles associated in the MLST

database with typical pneumococci were noted (Table S1). The

phenotypic and genotypic characteristics of each group of isolates

are summarized in Table 1 and are discussed below.

S. pseudopneumoniae
A total of 61 S. pseudopneumoniae were identified by MLSA and

were further analyzed. The clinical sources of the S. pseudopneu-

moniae isolates were: sputum (n = 32), bronchial aspirate (n = 17),

bronchoalveolar lavage (n = 4), blood (n = 2), conjunctiva (n = 2),

nasal swab (n = 1), bronchoscopic-protected catheter brush (n = 1),

pharyngeal swab (n = 1), and ascitic fluid (n = 1). The majority

(88.5%) of the S. pseudopneumoniae were isolated from adults, and

the male gender was predominant (68.9%) (data not shown).

Antimicrobial non-susceptibility rates were high against peni-

cillin (60.7%) and erythromycin (42.6%), as shown in Table 2.

Among the 26 macrolide-resistant isolates, the MLSB phenotype

and the M phenotype were equally distributed. Only nine S.

pseudopneumoniae isolates were fully susceptible to all antimicrobials

tested. High macrolide-resistance rates have been described

among isolates recovered from respiratory samples from New

Zealand, [40] and France. [18] Fluoroquinolone resistant isolates

have also been described. [41] The high antimicrobial resistance

rates together with the confirmation of the ability of this

microorganism to cause invasive diseases raises this pathogen as

a real clinical concern.

The 61 S. pseudopneumoniae isolates displayed heterogeneous

profiles regarding several of the phenotypic and genotypic

characterization assays that were performed (Table 1). In

particular, 16.4% of the isolates were susceptible to optochin in

a 5%CO2-enriched atmosphere and 63.9% were susceptible in

ambient atmosphere. Only 50.8% of the S. pseudopneumoniae isolates

displayed the typical phenotype originally described for this species

(optochin-resistant in CO2 but susceptible in O2 atmosphere).

Also, 36.1% of the isolates were bile soluble. Although these

biochemical traditional identification tests are the first step for

phenotypic identification of S. pseudopneumoniae, in the present study

we observed that these characteristics were frequently diverse

among the isolates of this species, as previously shown. [42].

Screening for genetic markers described by others as species-

specific for S. pneumoniae – specific 16S-rRNA, Spn9802, pspA and

ply - revealed their presence in some S. pseudopneumoniae isolates in

contrast with previous publications. [22,23,43] No S. pseudopneu-

moniae isolates harbored the pneumococcal lytA nor the cpsA

capsular gene. The aliB-like ORF2 was present in all isolates. The

lack of cpsA was in line with previous observations that suggest S.

pseudopneumoniae lacks a pneumococcus-like capsule. [44].

A high clonal diversity was found as 59 allelic profiles were

detected by MLST (Figure 2 and Table S1). By e-BURST seven

clonal groups were identified and each contained only two allelic

S. pseudopneumoniae and Non-Typeable Pneumococci
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profiles. On two occasions, pairs of isolates were found to have the

same allelic profile. No association between isolates sharing a same

allelic profile or being in the same clonal group was obvious.

S. pneumoniae
Out of 34 S. pneumoniae identified in this collection, 23 isolates

previously identified as non-(sero)typeable pneumococci were in

fact capsulated when reanalyzed; the other 11 were confirmed as

non-typeable. Several explanations could be put forward to justify

why isolates previously identified as atypical pneumococcal were

found to be capsulated upon reanalysis. For example, differences

in the quality of the antisera, lack of capsular production due to

passage of isolates on agar plates, and human error.

The clinical sources of the capsulated isolates were sputum

(n = 14), bronchoalveolar lavage (n = 2), blood (n = 5), transtho-

racic needle aspiration (n = 1), and umbilical swab (n = 1). The

majority were isolated from adults (87.5%), and the male gender

was predominant (75.0%). The clinical sources of the non-

capsulated isolates were blood (n = 4), sputum (n = 4), conjunctival

Figure 1. Genetic relationships of the strains determined by MLSA. The symbols indicate: grey triangle, non-invasive disease strains; black
circle, invasive disease strains; white square, strains described in other studies. [15,17,35,36,37].
doi:10.1371/journal.pone.0057047.g001

S. pseudopneumoniae and Non-Typeable Pneumococci

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e57047



swab (n = 2), and nasal swab (n = 1). The majority (90%) were

isolated from adults, and 40% were males (data not shown).

Among the capsulated isolates, the most frequent serotypes were

38 and 6B (3 isolates each, Table 3). Interestingly, these serotypes

were also frequently misidentified as atypical pneumococci in a

recent study from the USA. [45] This observation may indicate

that some representatives of these serotypes may be hard to

visualize by the Quellung reaction, leading to misidentification, or

that these serotypes may contain unknown different subtypes.

Multiresistance (non-susceptibility to three or more classes of

antimicrobials) was found among 11 isolates (3 were from invasive

disease) and was associated to NT (n = 4), and serotypes 6B (n = 3),

19F (n = 2), 19A (n = 1), and 33F (n = 1) (Table 3). Three of the

eleven NT isolates were multiresistant. A high frequency of

multiresistance among non-typeable strains has been observed in

other studies. [7,9].

Regarding the classical presumptive identification of pneumo-

cocci based on optochin susceptibility in CO2 atmosphere and bile

solubility, many exceptions were found among this group of

isolates: 20 were optochin resistant and one was bile insoluble.

Although rare, these exceptional phenotypes were previously

reported in other studies. [46].

Table 1. Phenotypic and genotypic characterization of MLSA typeable isolates.

MLSA classification (%)

S. pseudopneumoniae (n = 61) S. pneumonia S. mitis (n = 13)

typeable (n = 23) nontypeable (n = 11)

Phenotypic characterization

optochin susceptibility ($14 mm)

5% CO2 10 (16.4) 8 (34.8) 6 (54.6) 4 (30.8)

ambient atmosphere 39a (63.9) 21 (91.3) 6b (54.6) 8c (61.5)

bile solubility 22 (36.1) 22 (95.7) 11 (100) 2 (15.4)

Genotypic characterization

PCR-based

pneumococcal lytA 0 (0) 23 (100) 11 (100) 0 (0)

pneumococcal specific 16S-rRNA 49 (80.3) 23 (100) 11 (100) 2 (15.4)

Spn9802 59 (96.7) 23 (100) 8 (72.7) 8 (61.5)

pspA 1 (1.6) 21 (91.3) 10 (90.9) 7 (53.8)

cpsA 0 (0.0) 17 (73.9) 2 (18.2) 0 (0)

aliB-like ORF2 61 (100.0) 7 (30.4) 9 (81.8) 12 (92.3)

RFLP signatures

pneumococcal lytA/atypical lytA 0 (0)/61 (100) 23 (100) 9 (81.8)/2 (18.2) 0/11(84.6)d

ply/mly 7 (11.5)/54 (88.5) 23 (100)/0 (0) 11 (100)/0 2 (15.4)/7 (53.8)e

a11 strains did not grow in an ambient atmosphere, among the 39 isolates susceptible to optochin in ambient atmosphere, 31 were resistant in CO2.
b3 strains did not grow in ambient atmosphere.
c2 strains did not grow in ambient atmosphere.
d2 strains were not screened.
e2 strains did not amplify, 2 yielded a mixed pattern.
doi:10.1371/journal.pone.0057047.t001

Table 2. Antimicrobial susceptibility of 61 S. pseudopneumoniae clinical isolates.

Antibiotic MIC (mg/L) No. non-susceptible isolates (%)

Range MIC50 MIC90

Penicillin #0.03–2 #0.03 0.5 37 (60.7%)

Cefotaxime #0.03–1 #0.12 0.25 2 (3.3%)

Erythromycin #0.12–$128 #0.12 $32 26 (42.6%)

Clindamycin #0.12–$128 #0.12 $0.5 13 (21.3%)

Cotrimoxazole #0.5/9.5–$2/38 #0.5/9.5 $2/38 24 (39.3%)

Tetracycline #0.12–64 #0.25 4 18 (29.5%)

Ciprofloxacin #0.12–32 #1 #1 6 (9.8%)

Levofloxacin #0.12–$16 #1 #1 3 (4.9%)

Chloramphenicol #2–4 #2 #2 0 (0%)

doi:10.1371/journal.pone.0057047.t002

S. pseudopneumoniae and Non-Typeable Pneumococci
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Genotypic analysis showed the ubiquitous presence of pneu-

mococcal lytA, specific16S-rRNA, and ply. Spn9802 was present in

all but three non-typeable isolates contrasting with previous

publications that suggested that this ORF was ubiquitous in

pneumococcus. [22,23].

The lytA-typical pneumococcal RFLP signature was identified in

all but two isolates. The two exceptions were associated with a

novel signature also distinct from the characteristic atypical

pattern associated with non-pneumococcal isolates. The molecular

basis of this novel signature is currently being investigated.

The capsular gene cpsA was present in most capsulated isolates

with the exception of those of serotypes 25A and 38 in agreement

with published literature. [9,47] Instead, isolates of serotype 25A

and 38 had aliB-likeORF2 as described, [9] which was also

detected in single isolates of serotype 35A. Among non-typeable

isolates, nine had aliB-like ORF2 and two had cpsA. A possible

explanation for this latter observation is that the isolates may have

lost the capacity to produce a capsule in vitro [14] due to alterations

in the capsular genes. [48].

MLST analysis of the S. pneumoniae isolates showed that close to

one-third (32.4%) had novel allelic profiles. Of interest, six of the

nine allelic profiles identified among the non-typeable pneumo-

coccal isolates were previously identified in other countries and

were also associated to non-serotypeability. The international

PMEN lineages USANT-ST448 and NorwayNT-ST344 accounted

for five isolates, three having been recovered from invasive disease.

Non-typeable pneumococci were previously found not only among

colonization, but also as causative agents of acute otitis media and

conjunctivitis. [7,9,11,12,14] The association of MLST lineages

exclusive of non-capsulated isolates to invasive disease has only

been described recently. [14] These observations suggest that, in

spite of their sporadic occurrence, non-typeable pneumococci

have a higher clinical impact than previously thought as they have

been associated with a varied spectrum of infections including

invasive disease.

S. mitis
Although the 13 S. mitis isolates were phenotypically and

genotypically heterogeneous, lytA analyses (in addition to MLSA)

consistently suggested they were not pneumococci. Of interest, and

as observed for some S. pseudopneumoniae isolates, a few of the S. mitis

harboured genetic markers – Spn9802, pspA and ply - previously

associated to pneumococci. The occurrence of S. mitis isolates

harbouring genes encoding S. pneumoniae virulence factors has been

described, [15,26] and led to the suggestion that identification of

this group of bacteria by a single identification marker may not be

possible as horizontal gene transfer between them can occur.

[24,27].

Regarding antimicrobial susceptibility, 84.6% were non-suscep-

tible to penicilin and 69.2% were multidrug resistant. Most of the

isolates (12/13) were recovered from non-invasive disease;

however, one isolate was recovered from bronchoalveolar lavage.

S. mitis isolates have been previously associated with disease,

[36,49,50] and high levels of antimicrobial resistance. [15,51].

Non-classified Isolates
Close to one-fifth of the isolates (18.2%) remained non-

classified. Although MLSA associated to the MLST S. pneumoniae

scheme works well to identify atypical isolates, we were unable to

apply it to 24 isolates due to lack of amplification of some DNA

fragments with the combinations of primers that are routinely used

for S. pneumoniae. For these isolates, alternative primers, MLSA

schemes or assays would have been needed. [52] Of note, only one

isolate was recovered from invasive disease.

Figure 2. Representation of the S. pseudopneumoniae population by eBURST analysis. Each point represents a different allele combination.
Solid lines, single-locus variants; dashed circles, invasive disease isolates; larger circles indicate two isolates with the same allele combination.
doi:10.1371/journal.pone.0057047.g002
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Conclusions
In summary, among disease isolates classified as atypical

pneumococci, close to half (46.2%) were S. pseudopneumoniae, and

only a quarter were pneumococci (17.4% were capsulated and

8.3% were non-typeable). In addition, 9.8% were S. mitis and the

rest were non-pneumococci that remained unidentified. In

agreement with other studies, we found that many of the currently

proposed methodologies to distinguish pneumococci from closely-

related species are not species-specific. Furthermore, S. pseudopneu-

moniae that failed to have the optochin phenotypes described by

Arbique et al. were also identified.

We found that S. pseudopneumoniae have low clonality and that

antimicrobial resistance is well-disseminated is this species. Our

study stresses the clinical role of S. pseudopneumoniae and non-

typeable pneumococci since they have the capacity to cause

invasive disease and the high antimicrobial resistance rates are of

concern.

Supporting Information

Table S1 MLST allelic profiles of non-pneumococcal
isolates. Invasive strains are indicated in bold. Most alleles are

divergent from all the alleles described at the S. pneumoniae MLST

database as of July 26, 2012. The allele number of the closest

match is indicated; similarity (in %) is indicated in parenthesis.

ND, not determined.

(DOCX)

Table 3. Properties of S. pneumoniae clinical isolates.

Serotypes
Sequence typea

(no. of isolates) MLST allelic profile Antimicrobial non-susceptibility patternb Observationsc

6B 90 (1) 5-6-1-2-6-3-4 PEN, TET, ERY, CLI, CTX Spain6B-ST90

94 (1) 5-6-1-2-6-3-54 PEN, TET, CHL, ERY, CLI, SXT, CIP Spain6B-ST90 SLV

8270 (1) 32-28-1-1-15-52-15 TET, ERY, CLI

38 393 (2) 10-43-41-18-13-49-6 Susceptible

8278 (1) 10-61-41-18-13-49-6 Susceptible

13 70 (1) 2-13-1-4-6-12-1 Susceptible

8271 (1) 7-13-368-4-6-1-20 Susceptible

19F 89 (1) 5-5-7-7-8-5-1 PEN, TET, CHL, SXT

8275 (1) 5-5-7-7-8-5-538 PEN, TET, CHL, ERY, CLI, CTX, SXT

25A 393 (1) 10-43-41-18-13-49-6 Susceptible

8274 (1) 10-43-41-18-13-37-6 PEN, SXT

3 180 (1) 7-15-2-10-6-1-22 Susceptible Netherlands3-ST180

4 247 (1) 16-13-4-5-6-10-14 Susceptible

7F 2178 (1) 10-20-14-1-6-20-29 TET Denmark12F-ST218 SLV

10A 8272 (1) 5-13-4-4-6-1-20 Susceptible

17A 8277 (1) 5-365-2-16-6-3-245 Susceptible

18C 191 (1) 8-9-2-1-6-1-17 Susceptible Netherlands7F-ST191

19A 81 (1) 4-4-2-4-4-1-1 PEN, TET, CHL, ERY, CLI, CTX, SXT, CIP, LEV Spain23F-ST81

20 8269 (1) 15-364-8-18-15-1-31 Susceptible

22F 2104 (1) 2-16-1-4-6-1-1 Susceptible

33F 1012 (1) 2-5-29-18-42-3-18 TET, ERY, CLI

35A 1273 (1) 10-12-4-12-9-28-18 Susceptible

NT 448 (2) 8-5-2-27-2-11-71 Susceptible USANT-ST448

508 (2) 13-8-65-1-60-16-6 Susceptible

66 (1) 2-8-2-4-6-1-1 PEN, TET, SXT, CIP, LEV

72 (1) 2-13-2-4-9-4-1 Susceptible

344 (1) 8-37-9-29-2-12-53 PEN, TET, ERY, SXT NorwayNT-ST344

942 (1) 8-10-15-27-2-28-4 PEN, SXT

8268 (1) 8-10-84-1-2-14-4 Susceptible

8273 (1) 8-37-2-27-2-11-53 Susceptible USANT-ST448 DLV

8276 (1) 8-178-9-29-2-12-15 PEN, TET, ERY, CLI, SXT NorwayNT-ST344 DLV

aNovel STs and alleles found in this study are represented in bold.
bPEN, penicillin; CTX, cefotaxime; ERY, erythromycin; CLI, clindamycin; TET, tetracycline; CHL, chloramphenicol, SXT, trimethoprim-sulfamethoxazole non-susceptible;
CIP, ciprofloxacin; LEV, levofloxacin.
cInternational clones of PMEN; SLV, Single Locus Variant; DLV, Double Locus Variant.
doi:10.1371/journal.pone.0057047.t003
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pneumococcal surface protein A (PspA) among prevalent clones in Spain. BMC

Microbiol 9: 80.

32. Jefferies JM, Johnston CH, Kirkham LA, Cowan GJ, Ross KS, et al. (2007)

Presence of nonhemolytic pneumolysin in serotypes of Streptococcus pneumoniae

associated with disease outbreaks. J Infect Dis 196: 936–944.

33. Available: http://spneumoniae.mlst.net/.Accessed 2012 November 5.

34. Available: http://eburst.mlst.net/.Accessed 2012 November 5.

35. Chi F, Nolte O, Bergmann C, Ip M, Hakenbeck R (2007) Crossing the barrier:

evolution and spread of a major class of mosaic pbp2x in Streptococcus pneumoniae,
S. mitis and S. oralis. Int J Med Microbiol 297: 503–512.

36. Balsalobre L, Hernandez-Madrid A, Llull D, Martin-Galiano AJ, Garcia E, et al.

(2006) Molecular characterization of disease-associated streptococci of the mitis
group that are optochin susceptible. J Clin Microbiol 44: 4163–4171.

37. Shahinas D, Tamber GS, Arya G, Wong A, Lau R, et al. (2011) Whole-genome

sequence of Streptococcus pseudopneumoniae isolate IS7493. J Bacteriol 193: 6102–
6103.

38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary

Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.

39. Scholz CF, Poulsen K, Kilian M (2012) Novel molecular method for
identification of Streptococcus pneumoniae applicable to clinical microbiology and

16S rRNA sequence-based microbiome studies. J Clin Microbiol 50: 1968–
1973.

40. Keith ER, Podmore RG, Anderson TP, Murdoch DR (2006) Characteristics of

Streptococcus pseudopneumoniae isolated from purulent sputum samples. J Clin
Microbiol 44: 923–927.

41. Balsalobre L, Ortega M, de la Campa AG (2012) Characterization of

recombinant fluoroquinolone-resistant pneumococcus-like isolates. Antimicrob
Agents Chemother.

42. Wessels E, Schelfaut JJ, Bernards AT, Claas EC (2012) Evaluation of several

biochemical and molecular techniques for identification of Streptococcus pneumoniae

and Streptococcus pseudopneumoniae and their detection in respiratory samples. J Clin

Microbiol 50: 1171–1177.

43. Abdeldaim G, Herrmann B, Molling P, Holmberg H, Blomberg J, et al. (2010)
Usefulness of real-time PCR for lytA, ply, and Spn9802 on plasma samples for the

diagnosis of pneumococcal pneumonia. Clin Microbiol Infect 16: 1135–1141.

44. Park HK, Lee SJ, Yoon JW, Shin JW, Shin HS, et al. (2010) Identification of the
cpsA gene as a specific marker for the discrimination of Streptococcus pneumoniae

from viridans group streptococci. J Med Microbiol 59: 1146–1152.

45. Ing J, Mason EO, Kaplan SL, Lamberth LB, Revell PA, et al. (2012)
Characterization of nontypeable and atypical Streptococcus pneumoniae pediatric

isolates from 1994 to 2010. J Clin Microbiol 50: 1326–1330.
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