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Abstract. Tendency surveys are the main source of agents’ expectations. The main aim of this study is 
twofold. First, we propose a new method to quantify survey-based expectations by means of symbolic 
regression (SR) via genetic programming. Second, we combine the main SR-generated indicators to 
estimate the evolution of GDP, obtaining the best results in the Czech Republic and Hungary. Finally, 
we assess the impact of the 2008 financial crisis, finding an improvement in the capacity of agents’ 
expectations in most Central and Eastern European economies to anticipate economic growth after the 
crisis. 
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1. Introduction 

 

Agents’ expectations about the state of the economy play a major role in economic 

time series modelling. Business and consumer surveys provide detailed information about 

agents’ expectations. Survey-based expectations present several advantages over 

experimental expectations. First, they are based on the knowledge of the respondents 

operating in the market. Second, they are available ahead of the publication of quantitative 

official data. Third, they provide detailed information about a wide range of variables. 

Tendency surveys ask respondents whether they expect a certain variable to increase, to 

remain constant or to decrease. Survey results are published as aggregated data. The 

individual replies can be aggregated as percentages of the respondents in each category, 

or re-scaled by means of a grading procedure. In both cases, the qualitative nature of 

survey results has led to quantify agents’ responses making use of survey indicators. 

The most commonly used indicator to present survey results is the balance statistic. 

By assuming that the expected percentage change in a variable remains constant over time 

for all agents, Anderson (1951) defined the balance statistic as the subtraction between 

the percentage of agents reporting an increase and the percentage of those reporting a 

decrease. As the balance statistic does not take into account the percentage of respondents 

expecting a variable to remain constant, Claveria (2010) proposed a variation of the 

balance statistic that accounts for this percentage of respondents by weighting it by the 

proportion of respondents expecting a variable to rise or fall. The weighted balance allows 

discriminating between two equal values of the balance statistic depending on the 

percentage of respondents expecting a variable to remain constant. By matching 

individual responses with firm-by-firm outcomes, Müller (2010) finds evidence that the 

median of the “no change” category is equal to zero. Visco (1984) and Papadia (1983) 

calculate balances for surveys with more than three answering categories. 

The balance statistic has been widely used in applied economics, both as the 

regressors in quantitative forecasts models (Guizzardi and Stacchini, 2015; Martinsen et 

al., 2014; Ghonghadze and Lux, 2012; Robinzonov, 2012; Lui et al., 2011a,b; Schmeling 

and Schrimpf, 2011; Franses et al., 2011; Klein and Özmucur, 2010; Graff, 2010; Claveria 

and Datzira, 2010; Claveria et al., 2007; Abberger, 2007; Mitchell et al., 2005a; Hansson 

et al., 2005; Mittnik and Zadrozny, 2005; Batchelor and Dua, 1998; Kauppi et al., 1996; 

Parigi and Schlitzer, 1995; Bergström, 1995; Rahiala and Teräsvirta, 1993; Biart and 
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Praet, 1987), and also to test economic hypothesis (Girardi, 2014; Jean-Baptiste, 2012, 

Zárate et al., 2012; Schmeling and Schrimpf, 2011; Jonsson and Österholm, 2011, 2012; 

Paloviita, 2006; Pesaran and Weale, 2006; Lemmens et al., 2005, 2008; Pehkonen, 1992; 

Ivaldi, 1992; Batchelor and Dua, 1992; Ilmakunnas, 1989; Pesaran, 1987, 1985, 1984). 

The balance statistic can be regarded as a qualitative measure of the average changes 

expected in the variable. As a result, numerous methods to transform balances into a 

quantitative measure of agents’ expectations have been proposed in the literature. The 

output of these quantification procedures is a proxy of unobservable expectations, and 

therefore they inevitably entail a measurement error (Lee, 1994).  

The first approach for quantifying survey expectations proposed by Theil (1952) is 

based on the assumption that respondents report a variable to go up or down if the mean 

of their subjective probability distribution lies above or below a threshold level or 

indifference interval. This method is known as the probability approach. Carlson and 

Parkin (1975) suggested using a normal distribution together with symmetric and constant 

threshold parameters, both across respondents and over time. The proposed extensions of 

the Carlson-Parkin framework are mainly focused on relaxing some of its assumptions. 

See Lahiri and Zhao (2015), Vermeulen (2014), Pesaran and Weale (2006), Driver and 

Urga (2004), and Nardo (2003) for an appraisal of the different quantification methods. 

This study presents a novel method to quantify survey data on expectations based on 

evolutionary computation and symbolic regression (SR). A SR-based approach allows to 

identify non-linear dependencies between expectations about different economic 

variables in large datasets. We estimate the SR model by means of genetic programming 

(GP), which through Darwinian competition selects the fittest models of interaction 

between agents' expectations. The main objective of this research is to propose a method 

to empirically model agents’ expectations so as to generate predictions of the evolution 

of the economy. With this aim, we make use of survey data from the World Economic 

Survey (WES) carried out by the CESIfo Institute for Economic Research in co-operation 

with the International Chamber of Commerce. 

The relationship between changes in expectations and economic growth has been 

widely investigated (Mokinski et al., 2015; Dees at al., 2013; Leduc and Sill, 2013; Lui, 

Mitchell and Weale, 2011a,b; Zanin, 2010; Claveria et al., 2007; Abberger, 2007; Nolte 

and Pohlmeier, 2007; Mitchell et al., 2005a,b), but never before by means of SR. By 

combining a SR approach with GP, we are able to identify the optimal combinations of a 

wide range of survey variables that best fits the actual evolution of the gross domestic 
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product (GDP) in a set of countries of the Organisation for Economic Co-operation and 

Development (OECD). 

SR is an empirical modelling approach especially suitable when the model structure 

is unknown or changes over time. While conventional regression analysis is based on a 

certain model specification that optimizes the coefficients in the model, SR does not rely 

on a specific a priori determined model structure. SR can optimize the model structure 

and the coefficients simultaneously. SR finds an appropriate model from a space of all 

possible expressions defined by a set of given operations and functions. The only 

assumption made in SR is that the response surface can be described by an algebraic 

expression. The application of GP (Koza, 1992) in SR has allowed to apply empirical 

modelling in a wide range of applications.  

GP can be considered as an extension of genetic algorithms (GAs) based on variable-

length trees instead of fixed-sized individuals. GP belongs to the class of evolutionary 

algorithms (EAs), which were introduced by Holland (1975) and fostered by evolutionary 

programming (Fogel et al., 1966). Zelinka (2015) provides an overview of EAs. See Fogel 

(2006) and Goldberg (1989) for applications and a comprehensive overview.  

Empirical modelling via SR with GP is increasingly attracting interest from different 

areas due to its wide applicability (Cai et al., 2006; Yao and Lin, 2009, Vladislavleva et 

al., 2010; Can and Heavey, 2011; Barmpalexis et al., 2011; Ceperic et al., 2014; Sarradj 

and Geyer, 2014). Nevertheless, the applications in economics are still few. Kotanchek et 

al. (2010) identify models between large public datasets and GDP per capita. Kronberger 

et al. (2011) use SR to identify variable interactions in a large dataset of economic 

indicators to estimate US inflation. Kľúčik (2012) uses GP in the estimation of total 

exports and imports to Slovakia via SR. Wei (2013) proposes a hybrid model to forecast 

the stock index in Taiwan. Yang et al. (2015) propose a data-driven approach that uses 

SR to forecast oil production. 

We aim to break new ground by implementing SR via GP in modelling agents’ 

expectations. This approach allows us to quantify survey expectations and generate 

estimates of GDP growth. 

The structure of the paper is as follows. Section 2 reviews the literature on the 

quantification of survey expectations. Section 3 presents our methodological approach. 

In Section 4 an overview of the experiment is given. Section 5 describes the data. In 

Section 6 we present the empirical results. Finally, a brief summary together with the 

conclusions are given in Section 7. 
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2. Literature review on the quantification of survey-based expectations 

 

Business and consumer surveys, also known as tendency surveys, are characterized 

by asking agents about whether they expect a variable to rise, to fall, or to remain 

unchanged. The qualitative nature of agents’ responses has led to quantify survey 

indicators. Anderson (1952) was the first to formalise the relationship between actual 

changes in a variable and respondents’ expectations by regressing the actual average 

percentage change of an aggregate variable tY , on the percentage of respondents expecting 

a variable to rise and fall, denoted by tR  and tF  respectively. This regression approach 

was latter extended by Pesaran (1984) by allowing the model for an asymmetrical 

relationship between the actual average percentage change of an aggregate variable ty  

and the change for agent i ( ity ) in periods of growth. 

The most common approach for quantifying survey expectations is assuming that 

respondents report a variable to go up or down if the mean of their subjective probability 

distribution lies above or below a threshold level (indifference interval). This theoretical 

framework was proposed by Theil (1952), and denoted as the probability approach. 

Carlson and Parkin (1975) developed the method by using a normal distribution. Several 

authors have used alternative distributions (Batchelor, 1982; Visco, 1984; Foster and 

Gregory, 1987). Mitchell (2002), Berk (1999), Balcombe (1996) and Fishe and Lahiri 

(1981) have found evidence that normal distributions provide as accurate expectations as 

other stable distributions. The Carlson-Parkin method assumed a constant and symmetric 

indifference interval across respondents and over time.  

Pesaran (1987), Bennett (1984), Batchelor (1981, 1982), and Defris and Williams 

(1979) noted some of the restrictions of the Carlson-Parkin framework. Abberger (2007) 

uses probit analysis to estimate a quantitative threshold for employment expectations that 

allows to differentiate between a decrease and an increase in actual employment. Several 

refinements of the probabilistic approach have been proposed in order to reduce the 

measurement error introduced by restrictive assumptions (Lahiri and Zhao, 2015; 

Breitung and Schmeling, 2013; Łyziak, 2013; Müller, 2010; Mitchell, Mouraditis and 

Weale, 2007; Claveria et al., 2003, 2006; Mitchell, Smith and Weale, 2002, 2005; Löffler, 

1999; Berk, 1999; Smith and McAleer, 1995; Dasgupta and Lahiri, 1992; Kariya, 1990; 

Batchelor and Orr, 1988; Seitz, 1988; Batchelor, 1986; Toyoda, 1979). 
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By making the threshold dependent on time-varying quantitative variables, Batchelor 

(1986), and Berk (1999) developed a variant of the Carlson-Parkin procedure. Seitz 

(1988) used Cooley and Prescott’s (1976) time-varying parameter (TVP) model, in which 

the parameter vector was subject to permanent and temporary shocks. Claveria et al 

(2006) presented a more general model based on a state-space representation that allows 

for asymmetric and dynamic response thresholds generated by a first-order Markov 

process. 

A certain amount of literature has focused on individual expectations. Mitchell, Smith 

and Weale (2002) developed an indicator based on firm-level responses. By comparing 

the individual responses with firm-by-firm realisations, Müller (2010) develops a variant 

of the Carlson-Parkin method with asymmetric and time invariant thresholds. The author 

introduces the “conditional absolute null” property, which is based on the empirical 

finding that the median of realized quantitative values corresponding to the “no change” 

category is zero. The main advantage of this new procedure is that it solves the zero 

response problem and that provides variance estimates closer to the sample variances. As 

opposed to the results obtained by Lui et al. (2011a), Müller (2009) finds that business 

expectations provide useful information. For an an appraisal of individual firm data on 

expectations see Zimmermann (1997). 

Recent studies for Central and Eastern countries are those of Sorić, Škrabić, and 

Čižmešija (2013) who assess the predictive properties of the composite indicators of the 

business and consumer surveys of the European Commission for the EU. The authors 

compare the forecasting performance of old EU members states vs. the new  members 

states by means of panel vector autoregressive models, finding no significant differences 

in both groups. These results somehow contrast to those obtained by Łyziak and 

Mackiewicz-Łyziak (2014) who in a using a panel data analysis find that the weight of 

future inflation in the formation of expectations in transition economies was smaller, 

which could in part be attributed to the higher volatility inflation rates in those countries. 

In a recent study, Lahiri and Zhao (2015) propose a generalization of the Carlson-

Parkin method that allows time-varying and heterogeneous thresholds. The authors 

examine the quality of quantified expectations by comparing them to quantitative 

realizations at the firm-level, finding that allowing for cross-sectional heterogeneity and 

asymmetric and time-varying thresholds significant improvements are obtained, 

particularly during periods of uncertainty, with high levels of disagreement between 

respondents. 
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As stated by Lee (1994), the differences between the actual values of a variable and 

quantified expectations may arise from three different sources: measurement or 

conversion error due to the use of quantification methods, expectational error due to the 

agents’ limited ability to predict the movements of the actual variable, and sampling 

errors. Since survey-based expectations are approximations of unobservable expectations, 

they inevitably entail a measurement error. 

Monte Carlo simulations allow to distinguish between these three sources of error. 

Nevertheless, there have been few attempts in the literature to compare quantification 

methods in a simulation context. Common (1985) and Nardo and Cabeza-Gutés (1999) 

analyse different quantification methods focusing on rational expectation testing rather 

than on their forecasting ability. Nardo (2003) and Claveria et al. (2006) assess the 

forecasting performance of different quantification methods in simulation experiments. 

By means of simulation-based expectations, Terai (2009) and Löffler (1999) estimate the 

measurement error introduced by the probabilistic method. 

 

3. Methodology – Symbolic regression via evolutionary computation 

 

3.1. Symbolic Regression 

 

SR attempts to find relationships biding together variables of a given dataset. It is a 

regression method where no model is assumed beforehand. The solution is based on 

discrete optimization, searching for the most fitting algebraic expression to the data (in 

the space of all possible expressions). Koza (1992) proposed the application of GP to 

implement SR. There are different strategies for solving a SR. GP is the most common 

approach due to its versatility. SR is particularly indicated when there is little 

information available about the process under consideration. 

The wide applicability of this approach is attracting researchers from different areas 

(Sarradj and Geyer, 2014; Ceperic, Bako and Baric, 2014; Barmpalexis et al., 2011; Wu, 

Chou and Su, 2008; Cai et al., 2006;). SR plays an increasingly important role in many 

engineering applications, such as signal processing (Yao and Lin, 2009), industrial data 

analysis (Vladislavleva et al., 2010), and experimental design of manufacturing systems 

(Can and Heavey, 2011). 

The first application of SR via GP in economics is that of Koza (1992), who uses 

hierarchical genetic algorithms to analyse the non-linear “exchange equation” relating the 
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price level, gross national product, money supply, and velocity of money. The author 

finds the relationship between quarterly values of the price level in the US (from 1959 to 

1988) and the three other elements of the equation. Since then, there have been only a few 

applications to economics. Álvarez-Díaz and Álvarez (2005) make use of GP to generate 

predictions of exchange rates of the yen and the pound to the US dollar. 

Kotanchek et al. (2010) detect outliers and identify models in large public datasets. 

The authors use SR via Pareto GP to identify records which are systematically under-or 

over-predicted by diverse ensembles of (thousands of) global non-linear symbolic 

regression models. Both approaches applied to the CountryData produce insights into 

outlier vs. prototypes division among world countries and about driving economic 

properties predicting gross domestic product (GDP) per capita.  

Kronberger et al. (2011) use SR to identify variable interactions in a large dataset of 

economic indicators to estimate US CPI inflation. Kľúčik (2012) uses GP in the 

estimation of foreign trade (total exports and imports to Slovakia) via SR. Acosta-

González et al. (2012) apply GP to select the best econometric model for explaining the 

severity of the 2008 crisis. 

More recently, Wei (2013) proposes a hybrid model that uses an adaptive expectation 

GA to optimize an adaptive network-based fuzzy inference system (ANFIS) to forecast 

stock price trends (the stock index in Taiwan). Yang et al. (2015) propose a data-driven 

approach that uses SR to forecast oil production. Hao et al. (2015) develop a GA-based 

learning approach to analyse survey data related to customer satisfaction with online 

travel agencies websites. Chen et al. (2015) also use an adaptive GA (AGA) to hybridize 

a SVR model. The authors find that the proposed AGA seasonal SVR outperforms AGA-

SVR and BPNN models to forecast holiday daily tourist flows to a site in China 

(Mountain Huangshan).  

 

3.2. Genetic Programming 

 

GP belongs to the broader class of evolutionary algorithms (EAs). EAs can be 

classified in genetic algorithms (GAs) (Holland, 1975) and GP (Cramer, 1985). While 

basic GAs use the fixed length binary string representation to code potential solutions of 

a problem, not allowing the model structure to vary during the evolution, GP uses a 

more general representation scheme, using tree-structured, variable length 

representations suitable to nonlinear modelling. A recent economic application of GAs 
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is that of Acosta-González and Fernández (2014), who use a GA to forecast the 

financial failure of firms. 

GP can be considered as an extension of GAs. GP was introduced by Cramer 

(1985). The works of Koza (1992, 1995) enabled to apply them to other areas such as 

AI and machine learning. Koza (1992) first proposed the use of GP to find a regression 

tree defining analytical functions that best fit the data. The author suggest that finding 

the functional form of the models that best fits observed empirical data (instead of 

selecting the model a priori as in conventional modelling) can be regarded as searching 

for the computer program which produces the desired output for given inputs (that best 

fits the observed data). The author proposes finding the best single computer program 

(the solution to the problem) by applying a Darwinian competition based on the 

principle of survival and reproduction of the fittest. 

GP is an evolutionary method that imitates aspects of biological evolution to find a 

computer program that solves a given problem through gradual evolutionary changes 

(Koza, 1992). In GP, populations of computer programs are bred using Darwinian 

competition and genetic operations. The competition is based on the principle of 

survival and reproduction of the fittest. By means of genetic operators (crossover and 

mutation) the structure is evolved and optimized for making it more appropriate for 

model approximation. Computer programs are mated so as to create potentially more fit 

new offspring programs. The best single individual program produced by this process 

after many generations may be a satisfactory solution to the problem. Dabhi and 

Chaudhary (2015) and O’Neil et al. (2010) review the main issues related to GP. 

New improved versions of GP have been proposed in the literature. Ferreria (2001) 

introduced gene expression programming (GEP). Peng et al. (2014) propose an 

improved gene expression programming (GEP) algorithm especially suitable for dealing 

with SR problems. GEP is developed by Ferreira (2001). Zelinka (2005) introduces 

analytical programming, and shows its ability to synthesize suitable solutions 

(programs) in SR. Gandomi and Roke (2015) compare the forecasting performance of 

ANN models to that of GEP techniques. Poli et al. (2010) review the state of the art in 

GP. 

This approach is particularly indicated to find patterns in large data sets, where little 

or no information is known about the system. GP is capable to evolve the structure of 

the models in combination with the parameters of the model. In our case, the use of GP 

is justified by the fact that if there is an arbitrary functional relationship between a large 
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data set of variables, which are ordinal variables from surveys, and a macroeconomic 

objective measure, which is the GDP. This way, we are able to find the “fittest” 

combinations of surveys variables that are more adequate to track the evolution of the 

economy. 

 

4. Experimental setup 

 

In this study we present a new quantification procedure of economic expectations in 

the form of survey indicators, such as the balance or the CESIfo indicators. This new 

method is based on SR via GP. This flexible approach finds optimal combinations of 

responses or survey variables that describe a quantitative variable used as a yardstick, in 

our case the year-on-year growth of the GDP. In the present study we use agent’s 

expectations from the CESIfo WES and GDP data retrieved from the OECD web 

(https://data.oecd.org/gdp/quarterly-gdp.htm#indicator-chart). 

The main objective of the experiment is twofold. On the one hand, we aim to 

quantify agents’ expectations expressed in the form of survey indicators by means of SR 

approach. Given the functional expression, we obtain building blocks, which can be 

regarded as parts of the formula, and that are defined as simple combinations of input 

variables by means of basic functions. We have extracted building blocks for the top 20 

functions returned by the GP algorithm for 28 countries of the OECD, focusing the 

analysis on ten Central and Eastern European economies, for which we combine the 

most fitted empirical models to generate forecasts of economic growth. 

The application of GP requires is based on the following steps:  

1. The selection of the independent variables. In our case the 12 variables of the WES 

presented on Table 1. 

2. The set of functions to be used. We have restricted the experiment to the mean, the 

maximum, the minimum, the ratio, and the logarithm. 

3. The definition of a fitness measure that reflects to what extent the individual 

function reproduces the data used for the regression. As an error metric we have 

applied the root mean squared error (RMSE). 

4. The setting of the parameters that control the run, and deciding what termination 

criterion to be used. We have chosen a population of 1000, and have limited the 

maximum number of generations to 150. 
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As a result, the best individual functions from all generations are selected. In this 

study we have implemented a fully configurable simple EA set up using the open source 

Distributed Evolutionary Algorithms Package (DEAP) framework implemented in 

Python. 

 

5. Data 

 

The WES is carried out quarterly by the CESIfo Institute for Economic Research. The 

survey questionnaire focuses on qualitative information. Respondents are asked to assess 

their country’s general situation and expectations regarding important economic 

indicators (overall economy, foreign trade, inflation, interest rates, share prices, etc.). The 

individual replies are combined for each country without weighting. The grading 

procedure consists in giving a grade of 9 to positive replies, a grade of 5 to indifferent 

replies, and a grade of 1 to negative replies. The survey results are published as aggregated 

data. The aggregation procedure is based on country classifications. Within each country 

group or region, the country results are weighted according to the share of the specific 

country’s exports and imports in total world trade (CESifo World Economic Survey, 

2011). For a detailed analysis of WES data see Henzel and Wollmershäuser (2005), Stangl 

(2007, 2008) and Hutson et al. (2014). Table 1 shows all the variables used in this study. 

We conduct the experiment from the second quarter of 2000 to the first quarter of 2014. 

 
Table 1. World Economic Survey – Expectations 

Variable Expectation 

GSON Present economic situation - overall economy 

GSCN Present economic situation - capital expenditures 

GSPN Present economic situation - private consumption 

GSOP Economic situation last year - overall economy 

GSCP Economic situation last year - capital expenditures 

GSPP Economic situation last year - private consumption 

GSOF Economic situation next 6 months - overall economy 

GSCF Economic situation next 6 months - capital expenditures 

GSPF Economic situation next 6 months - private consumption 

TVEX Foreign trade volume next 6 months - exports 

TVIM Foreign trade volume next 6 months - imports 

TBAL Trade balance next 6 months 
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The Economic Climate Index (ECI) is an aggregate indicator obtained as the 

arithmetic mean of assessments of the general economic situation and the expectations 

for the economic situation in the next six months. As a rule, the trend in the Ifo ECI 

correlates closely with the actual business-cycle trend measured in annual growth rates 

of real GDP. Franses et al. (2011) compare experts forecasts with pure model forecasts. 

Robinzonov et al. (2012) use the Ifo Business Climate and other aggregate indicators 

from surveys as exogenous variable for industrial production forecasting. In Table 2 we 

present a descriptive analysis of the ECI for the ten Central and Eastern European 

economies evaluated in this study: Bulgaria, Croatia, Czech Republic, Estonia, Hungary, 

Latvia, Lithuania, Poland, Romania, Slovak Republic. 

 
Table 2. Descriptive statistics ECI (2000:Q2– 2014:Q1) 

 mean 
standard 
deviation 

variation 
coefficient (%)

minimum maximum 

Bulgaria 5.45 1.09 19.9 2.60 7.70 

Croatia 4.41 1.11 25.1 2.00 6.50 

Czech Republic 5.75 1.11 19.3 3.40 7.60 

Estonia 6.05 1.33 21.9 2.10 8.50 

Hungary 4.83 1.11 23.0 2.80 7.80 

Latvia 5.48 1.33 24.3 2.30 7.80 

Lithuania 6.15 1.40 22.7 1.50 8.00 

Poland 5.67 1.23 21.6 3.50 7.70 

Romania 4.85 1.38 28.4 2.00 7.40 

Slovak Republic 5.76 1.14 19.9 2.90 7.90 

 
 

6. Results 

 

In this section we present the results of how all these survey variables interact to 

approximate the evolution of the GDP in ten Central and Eastern European countries. 

First, we visually compare the evolution of the proposed SR-generated indicator to that 

of the ECI (Fig. 1) and the GDP (Fig. 2). Second, we analyse the forecasting performance 

of the quantified expectations in ten Central and Eastern European countries by 

comparing them to a naïve model used as a benchmark to compute the mean absolute 

scaled error (MASE). Results of this comparison are presented in Table 3. 
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Fig. 1. Evolution of Ifo Economic Climate indicator vs. proposed survey-based economic indicator 
Bulgaria Croatia 

Czech Republic Estonia 

Hungary Latvia 

Lithuania Poland 

Romania Slovak Republic 

 
 

 

1. Note: Compiled by the author. The grey line represents the evolution of the Ifo Economic Climate indicator in each country. 
The black line represents the evolution of the proposed SR-based economic indicator via SR. 



 14

Fig. 2. Evolution of year-on-year GDP growth rates vs. proposed survey-based economic indicator 
Bulgaria Croatia 

Czech Republic Estonia 

Hungary Latvia 

Lithuania Poland 

Romania Slovak Republic 

 
 

 

2. Note: Compiled by the author. The dotted line represents the year-on-year growth rate of GDP in each country. The black line 
represents the evolution of the proposed survey-based economic indicator via SR. 
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On Fig. 1 we can see that the proposed SR-generated indicator and the CESIfo ECI 

both show a similar pattern of evolution. The main difference resides in the scale. This is 

especially evident during the 2008 financial crisis, when the quantified expectations’ 

downward reaction is of greater magnitude. With the aim of assessing the ability of the 

proposed proxy of agents’ expectations to approximate GDP growth, in Fig. 2 we 

compare the evolution of the quantified expectations via SR to the evolution of the year-

on-year growth rates of GDP in the ten Central and Eastern European economies 

analysed.  

Regarding the differences across the analysed economies, while in most countries 

agents’ expectations seem to advance turning points, especially regarding the 2008 

financial crisis, in Bulgaria, Hungary, Latvia and the Slovak Republic the opposite holds. 

As a rule, SR-quantified expectations seem to correlate closely with the actual oscillations 

of GDP. These results are in line with those of Lahiri and Zhao (2015), who note the 

potential gains in forecast accuracy of quantified expectations under more relaxed 

assumptions. 

In Table 3 we compare the forecast accuracy of the quantified expectations used as a 

proxy for GDP growth between the different economies using the naïve method as a 

benchmark. In order to do so we use the Mean Absolute Scaled Error (MASE) proposed 

by Hyndman and Koehler (2006). This measure of forecast accuracy scales the errors by 

the in-sample MAE obtained with a random walk. As official data are published with a 

delay of more than a quarter with respect to survey data, we use two-step ahead naïve 

forecasts as a benchmark. This measure is independent of the scale of the data, and it does 

not suffer from some of the problems presented by other relative measures of forecast 

accuracy such as the relative MAE (Hyndman and Koehler, 2006).  

Additionally, this statistic is easy to interpret: values larger than one are indicative 

that the quantified agents’ expectations are worse than the average forecast computed in-

sample with the benchmark model. SR-quantified expectations show the best forecasting 

performance in the Czech Republic and Hungary, where SR-based estimates outperform 

the naïve model used as a benchmark. 

Given that the 2008 financial crisis influenced the forecasting accuracy of survey-

based measures of economic expectations (Łyziak and Mackiewicz-Łyziak, 2014), we re-

compute the MASE differentiating between the pre-crisis sub-period (2000-2007), the 

crisis (2007-2010), and the post-crisis sub-period (Table 4). 
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Table 3. Forecast accuracy by country – 10 Eastern European countries 
 MASE  MASE 

Bulgaria 1.060 Latvia 1.230 

Croatia 3.590 Lithuania 2.221 

Czech Republic 0.991 Poland 1.130 

Estonia 1.068 Romania 1.065 

Hungary 0.913 Slovak Republic 1.019 

Notes: * MASE stands for the Mean Absolute Scaled Error. Below one values (in bold) indicate better 
predictions than the average two-step forecast computed in-sample with the Naïve method. 

 

Table 4. Forecast accuracy by country – 10 Eastern European countries 
MASE Pre-crisis Crisis Post-crisis 

Bulgaria 1.032 1.354 0.757 

Croatia 3.273 4.931 2.596 

Czech Republic 1.124 0.736 1.029 

Estonia 0.933 1.550 0.758 

Hungary 0.869 1.092 0.782 

Latvia 1.338 1.548 0.617 

Lithuania 1.885 2.668 2.371 

Poland 0.885 1.604 1.056 

Romania 1.093 1.231 0.802 

Slovak Republic 0.815 1.773 0.513 

Notes: * See Notes of Table 3. 
 

The results in Table 4 show that forecast accuracy of survey-based expectations 

significantly worsened during the crisis in all countries except the Czech Republic. 

Agents’ expectations were more accurate in the post-crisis years than in the pre-crisis 

years in all countries except in Lithuania and Poland. These results are in line with those 

of Łyziak and Mackiewicz-Łyziak (2014), who also found that the 2008 financial crisis 

period has led to a decrease in expectational errors in transition economies. In the last 

sub-period, SR-quantified expectations outperform the naïve model in six out of the ten 

countries. At the opposite end, in Croatia and Lithuania, agents’ expectations quantified 

by means of SR via GP are less able to anticipate the year-on-year growth rates of GDP. 

This result could be explained in part by the high dispersion observed in the ECI 

(Lithuania presents the highest rang, and Croatia the second highest variation coefficient). 

Additionally, in the case of Lithuania, mean square errors values were very high, 

indicating that forecast errors are highly concentrated in a few periods. 
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7. Summary and conclusions 

 

Economic expectations have become essential to assess the current state of the 

economy. Survey expectations are a primary source of agents’ economic expectations. 

However, qualitative expectations are usually quantified in order to forecast 

macroeconomic aggregates or to test economic hypothesis. In this study we propose an 

empirical approach to the quantification of qualitative survey responses. This data-driven 

method of modelling survey-based agents’ expectations avoids making assumptions 

about the subjective probability distribution of respondents. 

With this aim, we use symbolic regression via genetic programming to derive a set of 

mathematical functional forms that link survey expectations of the World Economic 

Survey and economic growth. By linearly combining these expressions, we generate 

estimates of GP growth in ten Central and Eastern European economies. Finally, we 

analyse the impact of the 2008 financial crisis on agents’ expectations, by assessing the 

capacity of survey-based expectations to anticipate future economic growth, finding that 

the crisis period has led to an improvement in the forecasting performance of agents’ 

expectations in Central and Eastern European economies. 

We find that the SR-quantified expectations correlate closely with the actual 

oscillations of the economic activity and with the CESIfo Economic Climate Index. This 

result shows that this assumption-free approach to quantify survey expectations on the 

direction of change may provide gains in forecast accuracy. Since empirical modelling 

with symbolic regression via genetic programming allows selecting the fittest models of 

interaction between agents' expectations and the official quantitative series they refer to, 

this approach may prove very useful both for researchers and practitioners. 

Despite the usefulness of the proposed framework for forecasting and for quantifying 

survey-based expectations, this study is not without limitations. One aspect that has not 

been addressed is the use of this approach to search for the optimal proxy indicator of the 

quantitative variable used as a yardstick. Another issue left for future research is the use 

of this new set of quantified expectations to test economic hypothesis, which would 

provide new insight into the formation of expectations or the behaviour of the Phillips 

curve. 



 18

Extending the analysis to the rest of the countries of the World Economic Survey 

would allow to analyse differences across countries worldwide. It would also be of 

interest to replicate the experiment using micro data. A comparison with other 

questionnaires would allow to analyse whether the obtained functional forms are 

extensive to different survey data. Another question to be considered in further research 

is whether the implementation of alternative evolutionary algorithms may improve the 

forecasting performance of symbolic regression-based quantified expectations. 
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