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FREE INTERPOLATION
BY NONVANISHING ANALYTIC FUNCTIONS

KONSTANTIN DYAKONOV AND ARTUR NICOLAU

Abstract. We are concerned with interpolation problems in H∞ where the
values prescribed and the function to be found are both zero-free. More pre-
cisely, given a sequence {zj} in the unit disk, we ask whether there exists a
nontrivial minorant {εj} (i.e., a sequence of positive numbers bounded by 1
and tending to 0) such that every interpolation problem f(zj) = aj has a non-
vanishing solution f ∈ H∞ whenever 1 ≥ |aj | ≥ εj for all j. The sequences
{zj} with this property are completely characterized. Namely, we identify
them as “thin” sequences, a class that arose earlier in Wolff’s work on free
interpolation in H∞ ∩ VMO.

1. Introduction and results

Let H∞ stand for the algebra of all bounded analytic functions on the disk
D := {z ∈ C : |z| < 1}. A sequence {zj} ⊂ D is called an interpolating sequence
(for H∞) if each interpolation problem

(1.1) f(zj) = aj (j = 1, 2, ...),

with an arbitrary data sequence {aj} ∈ �∞, has a solution f ∈ H∞. By a classical
theorem of Carleson (see [4], Chapter VII), {zj} is an interpolating sequence if and
only if

(1.2) inf
j

∏
k: k �=j

∣∣∣∣ zj − zk

1 − z̄jzk

∣∣∣∣ > 0.

In this paper, we investigate the possibility – or its failure – to interpolate non-
vanishing data sequences {aj} ∈ �∞ (i.e., the ones satisfying aj �= 0 for all j) by
nonvanishing (i.e., zero-free) functions f ∈ H∞.

Let us begin with a few observations. First of all, if the (bounded) values {aj}
are “large” in the sense that

(1.3) inf
j
|aj | > 0,

Received by the editors October 11, 2004 and, in revised form, October 1, 2005.
2000 Mathematics Subject Classification. Primary 46J15, 30D50, 30H05.
Key words and phrases. Nonvanishing analytic functions, thin interpolating sequences.
Both authors were supported by the European Community’s Human Potential Program under

contract HPRN-CT-2000-00116 (Analysis and Operators). The first author was also supported
by DGICYT Grant MTM2005-08984-C02-02, CIRIT Grant 2005-SGR-00611, Grant 02-01-00267
from the Russian Foundation for Fundamental Research, and by the Ramón y Cajal program
(Spain). The second author was supported by DGICYT Grant MTM2005-00544 and CIRIT
Grant 2005-SGR-00774.

c©2007 American Mathematical Society

4449

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4450 KONSTANTIN DYAKONOV AND ARTUR NICOLAU

then it is certainly possible to find a nonvanishing – and even invertible – function
f ∈ H∞ solving (1.1), whenever {zj} is an interpolating sequence. To this end, it
suffices to put f = eg, where g ∈ H∞ interpolates the bounded values log aj at zj

(the logarithms being suitably defined).
Actually, (1.3) is also necessary in order that for each interpolating sequence

{zj} there exists a nonvanishing solution f ∈ H∞ to (1.1). To see why, note that
if f ∈ H∞ has no zeros in D, then 1/f is in the Nevanlinna class

N :=
{

g : g analytic in D, sup
0<r<1

∫
∂D

log+ |g(rζ)| |dζ| < ∞
}

(cf. [4], Chapter II, Section 5). Hence

log+ 1
|f(z)| = O

(
1

1 − |z|

)
, z ∈ D,

and we arrive at the necessary condition

(1.4) log+ 1
|aj |

= O

(
1

1 − |zj |

)
.

Now if infj |aj | = 0, then we can find a subsequence {ajk
} with |ajk

| < exp(−3k).
This done, (1.4) will fail for any interpolating sequence {zj} satisfying 1 − |zjk

| =
2−k.

On the other hand, if (1.1) is required to have a nonvanishing H∞-solution for
each nonvanishing data sequence {aj} ∈ �∞, then {zj} must be a finite set (so,
again, we are left with the trivial case). Indeed, for any infinite sequence {zj} ⊂ D,
there are nonzero aj ’s that violate (1.4).

These observations probably answer the most naive questions that come to mind,
and they give us an idea of what the right question might be. First of all, we know
that only “small” data sequences (i.e., the ones with infj |aj | = 0) are of interest.
Besides, we have seen that the admissible decay rate for {aj} must depend on {zj}.
Also, of course, we would like to deal with a “free interpolation” problem, which
means that the aj ’s to be interpolated should be described in terms of their moduli
only. This said, the following notion of a “nonvanishing interpolation sequence”
comes out in a fairly natural way.

Definition 1.1. (a) A sequence {εj} ⊂ R will be called a minorant if 0 < εj < 1
for all j and if limj→∞ εj = 0.

(b) A sequence {zj} ⊂ D is said to be a nonvanishing interpolation sequence (an
NVI-sequence, for short) if there exists a minorant {εj} such that every interpolation
problem (1.1) with

(1.5) 1 ≥ |aj | ≥ εj (j = 1, 2, . . . )

has a nonvanishing solution f ∈ H∞. Furthermore, we say in this case that the
minorant {εj} is associated with {zj} (or that {εj} is a minorant for {zj}).

It is clear that the NVI-sequences are contained among the (usual) interpolating
sequences. Indeed, given an arbitrary data sequence {bj} with supj |bj | ≤ 1, the
numbers aj := 1

3 (2 + bj) satisfy 1 ≥ |aj | ≥ 1
3 ; hence (1.5) holds for all but finitely

many j’s whenever {εj} is a minorant for {zj}. Now if f ∈ H∞ is a solution of
(1.1), then g := 3f − 2 is in H∞ and interpolates bj at zj .

At the same time, it turns out that NVI-sequences are, in a sense, “thinner”
than generic interpolating sequences. While the exact meaning of this is given by
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Theorem 1.3 below, a preliminary result to that effect can be quickly derived from
Harnack’s inequality. In fact, if f ∈ H∞ is a nonvanishing solution to (1.1), then
u(z) := log(‖f‖∞/|f(z)|) is a positive harmonic function on D. Now Harnack’s
inequality, in its invariant form, yields

1 − ρ(z, w)
1 + ρ(z, w)

≤ u(z)
u(w)

≤ 1 + ρ(z, w)
1 − ρ(z, w)

(z, w ∈ D),

where ρ(z, w) := |z −w|/|1− z̄w| is the pseudohyperbolic distance between the two
points. Consequently,

(1.6)
1 − ρ(zj , zk)
1 + ρ(zj , zk)

≤ log(‖f‖∞/|aj |)
log(‖f‖∞/|ak|)

≤ 1 + ρ(zj , zk)
1 − ρ(zj , zk)

for all j and k. Using (1.6), we shall now verify that

(1.7) inf
k: k �=j

ρ(zj , zk) → 1 as j → ∞

whenever {zj} is an NVI-sequence. Indeed, assuming the contrary, we can find an
infinite set of indices J ⊂ N and a constant c < 1 so that for each j ∈ J there is
a k = k(j) with ρ(zj , zk) < c. Replacing J by a suitable subset thereof, we may
further assume that k(j) /∈ J for all j ∈ J . Given a minorant {εj} associated with
{zj}, define

aj :=

{
εj if j ∈ J ,

1 otherwise,

and let f ∈ H∞ be a nonvanishing function solving (1.1). Applying the right-hand
inequality in (1.6) with j ∈ J and k = k(j), we now get

log(‖f‖∞/εj)
log ‖f‖∞

≤ 1 + c

1 − c
, j ∈ J .

This contradicts the fact that εj → 0, and (1.7) is thereby established.
It turns out that the “right” thinness condition we need is stronger than (1.7).

We proceed by introducing (or rather recalling) the appropriate notion of a thin
sequence.

Definition 1.2. A sequence {zj} ⊂ D is called thin if

lim
j→∞

∏
k: k �=j

∣∣∣∣ zj − zk

1 − z̄jzk

∣∣∣∣ = 1.

We are now in a position to state our main result.

Theorem 1.3. A sequence {zj} ⊂ D is an NVI-sequence if and only if it is thin.

We further recall the notation N for the Nevanlinna class, and we remark that
the family {1/f}, where f ranges over the nonvanishing H∞-functions, coincides
with the set

{g ∈ N : inf
z∈D

|g(z)| > 0}.

Consequently, the preceding result admits an immediate restatement in terms of
the Nevanlinna class.
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Proposition 1.4. Given a sequence {zj} ⊂ D, the following are equivalent:
(1) One can find a sequence {Mj} ⊂ (1,∞) with limj→∞ Mj = ∞ and a number

δ > 0 so that every interpolation problem

g(zj) = bj with 1 ≤ |bj | ≤ Mj (j = 1, 2, . . . )

has a solution g ∈ N satisfying |g(z)| ≥ δ for all z ∈ D.
(2) {zj} is thin.

It is worth mentioning here that free interpolating sequences for the Nevanlinna
class have been studied in [6].

It has been noticed that “thinness” of a sequence {zj} enables one to interpolate
with functions that “oscillate little”. A remark to that effect can be found in
[10], p. 552, where the above observation is traced back to Jones’ paper [7]. The
phenomenon also manifests itself clearly in Wolff’s work [11] on the algebra QA :=
H∞ ∩ VMO. Among other things, it was proved in [11] that thin sequences are
precisely the ones for which every interpolation problem (1.1), with {aj} ∈ �∞, has
a solution f ∈ QA; see also [10] for an extension of this to general Douglas algebras.
Our current results can be viewed as another illustration of the same principle. For
example, Proposition 1.4 basically tells us that on thin sequences {zj} one can
interpolate large values by functions in N that never become too small (and hence
do not oscillate too much).

Now we go on to discuss some further restatements of the two equivalent condi-
tions in Theorem 1.3. Having arisen in the course of the proof, these restatements
are (hopefully) interesting in their own right; we have listed them in Theorem 1.5
and Proposition 1.6 below.

Theorem 1.5. Given an interpolating sequence {zj} ⊂ D, the following are equiv-
alent:

(i) {zj} is thin.
(ii) There is a sequence {mj} ⊂ (0, 1) with limj→∞ mj = 1 such that every

(Nevanlinna–Pick) interpolation problem

F (zj) = wj with |wj | ≤ mj (j = 1, 2, . . . )

has a solution F ∈ H∞ with ‖F‖∞ ≤ 1.
(iii) {zj} is an NVI-sequence.
(iv) There is a sequence {Mj} ⊂ (0,∞) with limj→∞ Mj = ∞ such that every

interpolation problem

U(zj) = uj with 0 ≤ uj ≤ Mj (j = 1, 2, . . . )

can be solved with a harmonic function U : D → R satisfying inf{U(z) : z ∈ D} >
−∞.

It is well known that if {zj} is an interpolating sequence, then every interpolation
problem (1.1) with supj |aj | ≤ 1 admits a solution f ∈ H∞ satisfying ‖f‖∞ ≤ C,
where C = C({zj}) is a suitable constant. It is not so clear why such an estimate
should exist in the context of “nonvanishing interpolation”, where the principles
of linear analysis no longer apply. However, for NVI-sequences {zj}, we do have
some control over the norms of interpolating functions, provided that the minorant
{εj} is chosen appropriately. The resulting (formally stronger) version of the NVI-
property is dealt with in the proposition below, along with a similar refinement of
property (iv) in Theorem 1.5.
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Proposition 1.6. For an interpolating sequence {zj} ⊂ D, each of the following is
equivalent to (any of) the conditions (i)–(iv) in Theorem 1.5:

(v) There exist a positive constant M = M({zj}) and a minorant {εj} such
that, whenever (1.5) holds, the interpolation problem f(zj) = aj (j = 1, 2, . . . ) has
a nonvanishing solution f ∈ H∞ with ‖f‖∞ ≤ M .

(vi) There is a sequence {Nj} ⊂ (1,∞) with limj→∞ Nj = ∞ such that every
interpolation problem

V (zj) = vj with 1 ≤ vj ≤ Nj (j = 1, 2, . . . )

can be solved with a positive harmonic function V on D.

We now point out several consequences of the (i) =⇒ (ii) part of Theorem 1.5.
First we remark that the interpolating function in (ii), as constructed in the proof
below, will actually be a Blaschke product with thin zero sequence. (This fact,
though not really needed for our purposes, can be verified along the lines of Earl
[3], whose method we borrow.) Therefore, our result extends an earlier theorem
from [9], where interpolating – and thin – Blaschke products solving Nevanlinna–
Pick problems were shown to exist under more restrictive hypotheses.

Another by-product of (the same part of) Theorem 1.5 is a new, simpler, proof
of the following result on asymptotic interpolation that was recently obtained by
Gorkin and Mortini; cf. Theorem 2.3 in [5].

Corollary 1.7. Given a thin sequence {zj} ⊂ D and a data sequence {aj} ∈ �∞

with supj |aj | ≤ 1, one can find a function F ∈ H∞ with ‖F‖∞ ≤ 1 for which
F (zj) − aj → 0.

To derive this from Theorem 1.5, put wj = rjaj/|aj |, where rj = min(|aj |, mj)
and the numbers mj are the same as in condition (ii) above. Since |wj | ≤ mj and
wj − aj → 0, the (i) =⇒ (ii) part of the theorem ensures that the Nevanlinna–Pick
problem

F (zj) = wj (j = 1, 2, . . . ), ‖F‖∞ ≤ 1,

has a solution F ∈ H∞, and this F will satisfy the conclusion of Corollary 1.7.
Using the terminology of [5], Corollary 1.7 can be rephrased by saying that every

thin sequence is an asymptotic interpolating sequence of type 1. (The converse is
also established in [5].) The proof given in [5] involves maximal ideals and depends
heavily on earlier work of Wolff; our method is more elementary.

As a final application of Theorem 1.5, we briefly discuss interpolation by analytic
functions that take values in a prescribed hyperbolic domain Ω ⊂ C, possibly
unbounded. (A hyperbolic domain Ω in C is, by definition, one whose complement
C \ Ω contains at least two points.) For such a domain, let w0 ∈ Ω be any of its
points, and let Φ : D → Ω be the analytic universal covering map with

(1.8) Φ(0) = w0 and Φ′(0) > 0.

The pseudohyperbolic distance in Ω is then defined by

ρΩ(w1, w2) := inf
{
ρ(z1, z2) : z1 ∈ Φ−1(w1), z2 ∈ Φ−1(w2)

}
.

Corollary 1.8. Suppose {zj} ⊂ D is a thin sequence, Ω is a hyperbolic domain in
C, and w0 ∈ Ω. Then there is a sequence {mj} ⊂ (0, 1) with limj→∞ mj = 1 such
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that every interpolation problem

G(zj) = wj with wj ∈ Ω, ρΩ(w0, wj) < mj (j = 1, 2, . . . )

can be solved with an analytic function G : D → Ω.

This, again, is readily deduced from the “Nevanlinna–Pick part” of Theorem 1.5.
Indeed, let mj be the same as in statement (ii) of the theorem, and let Φ : D → Ω
be the universal covering map normalized by (1.8), as above. We know that, for
each fixed j ≥ 1, there are points ζ0, ζj in D satisfying Φ(ζ0) = w0, Φ(ζj) = wj

and ρ(ζ0, ζj) < mj . In fact, we can take ζ0 = 0. (Otherwise, note that there is a
conformal automorphism τ : D → D with τ (ζ0) = 0, Φ ◦ τ = Φ and replace the
points ζ0, ζj by their τ -images.) Thus we have |ζj | = ρ(0, ζj) < mj , and Theorem
1.5 provides us with an analytic function F : D → D satisfying F (zj) = ζj for all
j ≥ 1. The function G = Φ ◦ F now has the required properties, and the result
follows.

In particular, letting Ω = D \ {0}, we arrive at an amusing mixture of the
nonvanishing interpolation problem and the Nevanlinna–Pick problem. In this case,
the universal covering map (corresponding to the choice w0 = 1/e) is given by
Φ(z) = exp[(z − 1)/(z + 1)], so the distance ρΩ(·, ·) is easily computable, and
Corollary 1.8 provides an explicit solvability criterion.

Going back to Theorem 1.3, one might wish to obtain a more quantitative version
thereof by characterizing the minorants {εj} associated with a fixed NVI-sequence
{zj}. Equivalently, given a sequence {εj} ⊂ (0, 1) with limj→∞ εj = 0, one might
look for a characterization of those NVI-sequences {zj} for which {εj} serves as
a minorant. In fact, our proof of Theorem 1.3 (or rather of its extended version,
Theorem 1.5) does yield some estimates of the quantities εj and 1 − δj , where

(1.9) δj :=
∏

k: k �=j

∣∣∣∣ zj − zk

1 − z̄jzk

∣∣∣∣ ,

in terms of each other. However, there is a gap between the estimates coming
from the “if” and “only if” parts of the proof (i.e., from the proofs of implications
(i) =⇒ (iii) and (iii) =⇒ (i) in Theorem 1.5). We now restrict ourselves to a specific
class of minorants, which enables us to state the quantitative result in an “if and
only if” form.

Theorem 1.9. Let {zj} be an NVI-sequence in D. The following are equivalent:
(a) For every α > 0, the sequence {exp(−jα)} is a minorant for {zj}.
(b) For every β > 0, we have

1 − inf
k: k �=j

ρ(zj , zk) = O
(
j−β

)
as j → ∞.

Unlike the qualitative results above, Theorem 1.9 will be established via the
classical Nevanlinna–Pick theorem by checking that a certain matrix is positive
definite. A similar technique was recently used by Koosis [8] in connection with
Carleson’s interpolation theorem.

The rest of the paper mainly deals with the proofs. These are preceded by
some preparatory lemmas and followed by a list of open questions that puzzle us.
The lemmas are collected in Section 2, the proofs of our main results are given in
Sections 3 and 4, and the questions are posed in Section 5.

The authors thank Joaquim Bruna for helpful discussions.
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2. Some lemmas

We begin by introducing some (standard) notation.
Let I be an arc of the unit circle T := ∂D. We write m(I) for the normalized

length of I (so that m(T) = 1) and, given a number N ≥ 1, we let NI denote the
arc J ⊂ T which has the same midpoint as I and satisfies m(J) = Nm(I). (In
case Nm(I) ≥ 1, it is understood that NI = T.) Further, S(I) will stand for the
“Carleson box” with base I; that is,

S(I) :=
{

z ∈ D \ {0} :
z

|z| ∈ I, |z| > 1 − m(I)
}

.

Finally, to a point z ∈ D \ {0} we associate the arc Iz with midpoint z/|z| and
length m(Iz) = 1 − |z|; and if z = 0, then we set Iz = T.

The following characterization of thin sequences is due to Sundberg and Wolff.
It can be obtained by combining Lemma 7.1 on p. 578 of [10] with the concluding
paragraph on p. 580 that follows the lemma’s proof. The underlying Douglas algebra
B that figures in [10] is here taken to be H∞ + C.

Lemma 2.1. A sequence of distinct points {zj} ⊂ D is thin if and only if, for every
N ≥ 1,

lim
j→∞

(1 − |zj |)−1
∑

k∈K(N,j)

(1 − |zk|) = 0,

where K(N, j) is the set of those k ∈ N \ {j} for which zk ∈ S(NIzj
).

The next lemma is also borrowed from [10] (see Lemma 5.4 on p. 573 of that
paper; put B = H∞ + C to arrive at the version below).

Lemma 2.2. Suppose {zj} ⊂ D is a thin sequence. Then there are numbers τj ∈
(0, 1), γj ∈ (0, 1) with τj → 1 and γj → 1 such that whenever {ζj} is a sequence in
D satisfying

ρ(ζj , zj) < τj (j = 1, 2, . . . ),

it follows that ∏
k: k �=j

ρ(ζj , ζk) ≥ γj (j = 1, 2, . . . ).

The following result is an adaptation of J. P. Earl’s key lemma on which his
interpolation method is based; see Lemma 4 in [3] or Lemma 5.4 in [4], Chapter
VII.

Lemma 2.3. Given n ∈ N, suppose z1, . . . , zn are distinct points in D and τ1, . . . , τn

are numbers in (0, 1) such that the disks

∆j := {ζ ∈ D : ρ(ζ, zj) ≤ τj} (j = 1, . . . , n)

are pairwise disjoint. Further, put

(2.1) µ
(n)
j := inf

⎧⎨
⎩

∏
1≤k≤n, k �=j

ρ(zj , ζk) : ζ1 ∈ ∆1, . . . , ζn ∈ ∆n

⎫⎬
⎭

and assume that w1, . . . , wn are complex numbers with

(2.2) |wj | ≤ τjµ
(n)
j (j = 1, . . . , n).
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Then there are points ζ1 ∈ ∆1, . . . , ζn ∈ ∆n such that the Blaschke product

Bζ1,...,ζn
(z) :=

n∏
k=1

z − ζk

1 − ζ̄kz
· 1 − ζ̄k

1 − ζk

satisfies
Bζ1,...,ζn

(zj) = wj (j = 1, . . . , n).

The only difference between Earl’s original version and ours, as stated above, is
that in [3] the noneuclidean radii τj of the disks involved are all equal to a single
constant τ . However, Earl’s proof works in our situation as well, once obvious
adjustments are made.

Lemma 2.4. Let z ∈ D, M > 0, and let V be a positive harmonic function on D.
Suppose z1, . . . , zm are points lying in S(Iz) with the properties that

(2.3) V (zk) ≥ M (k = 1, . . . , m)

and

(2.4) δ := min
1≤k≤m

∏
l: l �=k

ρ(zk, zl) > 0.

Then

V (z) ≥ c(δ)
M

1 − |z|

m∑
k=1

(1 − |zk|),

where c(δ) is a positive constant depending only on δ.

Proof. Replacing V by V ◦ τ , where τ is the conformal automorphism of the disk
which interchanges z and 0, we may assume that z = 0. Also, there is no loss of
generality in assuming that V is continuous on D ∪ T.

For each n = 0, 1, 2, . . . , let us partition the circle T into 2n dyadic arcs

In,k =
{
eiθ : 2π(k − 1)2−n ≤ θ < 2πk · 2−n

}
(k = 1, . . . , 2n).

This done, consider the Carleson boxes Qn,k := S(In,k); these will be referred to
as “dyadic squares”. Further, let T (Qn,k) denote the “top half” of Qn,k, that is,

T (Qn,k) =
{
z ∈ Qn,k : |z| ≤ 1 − 2−n−1

}
.

Now we use a stopping time argument. Namely, among the squares Qn,k we select
the maximal ones, say Qj , whose top halves hit the set Z := {z1, . . . , zm}. Thus we
obtain finitely many dyadic squares Q1, . . . , QN , each of which satisfies T (Qj)∩Z �=
∅ and is contained in no larger dyadic square Q with T (Q) ∩Z �= ∅. We then have
Z ⊂ Q1 ∪ · · · ∪ QN . Also, writing Ij for the base (i.e., radial projection) of Qj ,
we observe that the arcs Ij are pairwise disjoint, as are the squares Qj themselves.
Furthermore, (2.4) implies the Carleson measure estimate∑

zl∈Qj

(1 − |zl|) ≤ C(δ) · m(Ij) (j = 1, . . . , N),

where C(δ) is a constant depending only on δ. Summing over j, we deduce from
the preceding inequality that

(2.5)
m∑

l=1

(1 − |zl|) ≤ C(δ)
N∑

j=1

m(Ij).
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By construction, T (Qj) contains a point of Z; renumbering the points, if neces-
sary, we may call this point zj . Now let Lj be the closed “top side” of Qj , defined
by

Lj :=
{
(1 − m(Ij))eiθ : eiθ ∈ clos Ij

}
,

and consider the domain Ω := D \
⋃N

j=1 Lj . We claim that there is an absolute
constant c1 > 0 such that

(2.6) V (ζ) ≥ c1

N∑
j=1

V (zj) ω(ζ, Lj , Ω), ζ ∈ Ω,

where ω(·, E, Ω) denotes the harmonic measure of the set E ⊂ ∂Ω with respect to
Ω.

Indeed, by the maximum principle, it suffices to verify (2.6) for ζ ∈ ∂Ω =
T∪

⋃N
j=1 Lj . Now if ζ ∈ Lj for some j, then (2.6) reduces to V (ζ) ≥ c1V (zj), which

holds with a suitable c1 by virtue of Harnack’s inequality (note that ρ(ζ, zj) ≤ c2 <
1 with an absolute constant c2). And if ζ ∈ T, then (2.6) is obvious, since the
right-hand side equals 0.

Applying (2.6) with ζ = 0 and using the assumption (2.3), we get

(2.7) V (0) ≥ c1Mω

⎛
⎝0,

N⋃
j=1

Lj , Ω

⎞
⎠ .

Since the radial projection of
⋃N

j=1 Lj is clos
(⋃N

j=1 Ij
)
, the arcs Ij being pairwise

disjoint, Hall’s lemma yields

ω

⎛
⎝0,

N⋃
j=1

Lj , Ω

⎞
⎠ ≥ c3

N∑
j=1

m(Ij)

with some numerical constant c3 > 0. Combining this with (2.7) and (2.5), we
obtain

V (0) ≥ c(δ)M
m∑

k=1

(1 − |zk|),

as required. �

3. Proofs of Theorem 1.5 and Proposition 1.6

Proof of Theorem 1.5. (i) =⇒ (ii). Let τj and γj (with j = 1, 2, . . . ) be the param-
eters associated to {zj} as in Lemma 2.2. Put

(3.1) mj := τjγj (j = 1, 2, . . . )

and note that 0 < mj < 1 for all j, while limj→∞ mj = 1.
Now if {wj} is a sequence of complex numbers with |wj | ≤ mj , then, for any

fixed n ∈ N, we have (2.2), since

(3.2) γj ≤ µ
(n)
j (j = 1, . . . , n).

Here, the numbers µ
(n)
j are defined by (2.1), where the disks ∆j have our current

τj ’s (the ones coming from Lemma 2.2) as their noneuclidean radii. The inequality
(3.2) is then immediate, because the products appearing in (2.1) are all ≥ γj by
Lemma 2.2.
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Now Lemma 2.3 tells us that every finite interpolation problem

F (zj) = wj (j = 1, . . . , n)

can be solved with a finite Blaschke product (which is, of course, an H∞-function
of norm 1). By normal families, the infinite interpolation problem

F (zj) = wj (j = 1, 2, . . . )

can also be solved with a unit-norm function F ∈ H∞.
(ii) =⇒ (iii). Put

(3.3) εj := exp
(
− mj

1 − mj

)
(j = 1, 2, . . . ),

where mj are the numbers that figure in (ii). Since 0 < mj < 1 and mj → 1, we
have 0 < εj < 1 and εj → 0. We now let {aj} be a sequence of complex numbers
with

(3.4) 1 ≥ |aj | ≥ εj (j = 1, 2, . . . ),

and we want to find a nonvanishing function f ∈ H∞ that interpolates aj at zj .
This will be constructed in the form

(3.5) f(z) = exp
{

g(z)
g(z) − 1

+ ih(z)
}

, z ∈ D,

where g and h are H∞-functions that satisfy

(3.6)
g(zj)

g(zj) − 1
= log |aj | (j = 1, 2, . . . ), ‖g‖∞ ≤ 1,

and

(3.7) h(zj) = arg aj (j = 1, 2, . . . ).

Here, it is understood that arg(·) takes values in (−π, π]. In particular, (3.7) indeed
has a solution h ∈ H∞, since {arg aj} ∈ �∞ and {zj} is an interpolating sequence.

To see that (3.6) can be solved with a function g ∈ H∞, we rewrite it as

(3.8) g(zj) = wj (j = 1, 2, . . . ), ‖g‖∞ ≤ 1,

where

wj :=
log |aj |

log |aj | − 1
= 1 −

(
1 + log

1
|aj |

)−1

.

From (3.3) and (3.4) it follows that

0 ≤ wj ≤ 1 −
(

1 + log
1
εj

)−1

= mj ,

so the solvability of the Nevanlinna–Pick problem (3.8) is guaranteed by (ii).
The function f given by (3.5) is then analytic and zero-free in D, and it satisfies

f(zj) = aj by virtue of (3.6) and (3.7). Finally, since the image of D under the
mapping w(ζ) = ζ/(ζ − 1) is the half-plane H := {Rew < 1

2}, we conclude (even
though it remains unclear whether ∂H contains the nontrivial zeros of the Riemann
zeta-function) that

Re
{

g(z)
g(z) − 1

}
≤ 1

2
, z ∈ D,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



FREE INTERPOLATION BY NONVANISHING ANALYTIC FUNCTIONS 4459

and so f is bounded with

(3.9) ‖f‖∞ ≤ exp
(

1
2

+ ‖h‖∞
)

.

Therefore, {εj} is a minorant for {zj}, and {zj} is an NVI-sequence.
(iii) =⇒ (iv). Given a minorant {εj} associated with {zj}, put Mj := log(1/εj)

and suppose {uj} is a sequence of numbers with 0 ≤ uj ≤ Mj . Letting aj :=
exp(−uj), we then have 1 ≥ aj ≥ εj , and condition (iii) ensures that there is a
nonvanishing function f ∈ H∞ with f(zj) = aj . It remains to notice that

U(z) := log
1

|f(z)| , z ∈ D,

is a harmonic function which interpolates uj at zj and which is bounded from below
by − log ‖f‖∞.

(iv) =⇒ (i). Suppose {zj} fails to be thin. Then, by Lemma 2.1, there exist
numbers N ≥ 1, ε > 0 and an infinite set of indices J ⊂ N such that∑

k∈K(N,j)

(1 − |zk|) > ε(1 − |zj |) for all j ∈ J ,

where K(N, j) has the same meaning as in Lemma 2.1. It follows that each K(N, j)
contains a finite subset F(N, j) such that

(3.10)
∑

k∈F(N,j)

(1 − |zk|) > ε(1 − |zj |) for all j ∈ J .

We note, in particular, that F(N, j) ⊂ N\{j} and that zk ∈ S(NIzj
) if k ∈ F(N, j)

(recall the definition of K(N, j) in Lemma 2.1). Furthermore, replacing J by a
sparser subset if necessary, we may assume that F(N, j) ∩ J = ∅ for all j ∈ J .

Now let U be a (real-valued) harmonic function satisfying U(zj) = 0 for j ∈ J ,
U(zk) = Mk for k /∈ J and

U(z) ≥ −A, z ∈ D,

with some constant A > 0. (Here, Mj are the numbers figuring in (iv), and the
latter condition ensures the existence of a function U with the above properties.)

Consider the positive harmonic function

V (z) := U(z) + A, z ∈ D.

Next, fix a point zj with j ∈ J , where j is large enough in order that 1−|zj | < N−1,
and let wj = wN,j denote the point of the segment [0, zj ] for which

1 − |wj | = N(1 − |zj |).
It is easy to check that

ρ(zj , wj) ≤ 1 − 1
N

,

and so Harnack’s inequality tells us that

(3.11) V (wj) ≤
1 + ρ(zj , wj)
1 − ρ(zj , wj)

V (zj) ≤ (2N − 1)A.

On the other hand, for k ∈ F(N, j) we have

V (zk) = Mk + A ≥ M∗
j + A,
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where
M∗

j := min{Mk : k ∈ F(N, j)}.
Consequently, invoking Lemma 2.4 and then inequality (3.10), we obtain

(3.12) V (wj) ≥ c(δ)
M∗

j + A

N(1 − |zj |)
∑

k∈F(N,j)

(1 − |zk|) ≥ c(δ)
ε

N

(
M∗

j + A
)
.

It is clear that M∗
j → ∞ as j → ∞, j ∈ J , and so (3.12) yields

V (wj) → ∞ as j → ∞, j ∈ J .

This contradicts (3.11) and completes the proof. �

Proof of Proposition 1.6. Now that Theorem 1.5 is proved, it suffices to show that
(i) =⇒ (v) =⇒ (vi) =⇒ (iv).

The first of these implications is actually hidden in the (i) =⇒ (ii) =⇒ (iii)
parts of the preceding proof. Indeed, if (i) holds, and if mj and εj are defined by
(3.1) and (3.3) respectively, then our interpolation problem admits a solution of the
form (3.5), which satisfies (3.9). Also, since h is only required to be an H∞-function
solving (3.7), we are free to assume that ‖h‖∞ ≤ C(δ), where δ = δ({zj}) is the
value of the infimum in (1.2) and C(δ) is an appropriate constant depending only
on δ (see [4], Chapter VII). Consequently, (3.9) yields

‖f‖∞ ≤ exp
(

1
2

+ C(δ)
)

,

and this last quantity is eligible as M({zj}) in (v).
To see that (v) implies (vi), define

Nj := 1 − log εj

log M
(j = 1, 2, . . . ),

where M = M({zj}) and εj have the same meaning as in (v). (In particular,
one has M > 1.) Next, given a sequence of values {vj} with 1 ≤ vj ≤ Nj , put
aj := M1−vj and note that εj ≤ aj ≤ 1; then use (v) to produce a nonvanishing
function f ∈ H∞ such that f(zj) = aj (for all j) and ‖f‖∞ ≤ M . This done,
observe that

V (z) := 1 − log |f(z)|
log M

is a positive harmonic function on D and

V (zj) = 1 − log aj

log M
= vj (j = 1, 2, . . . ).

The remaining implication (vi) =⇒ (iv) is immediate: once (vi) holds, we put
Mj := Nj − 1 and arrive at (iv) with U = V − 1, where V is a positive harmonic
function that interpolates uj + 1 at zj . �

4. Proof of Theorem 1.9

(a) =⇒ (b). Fix α > 0, and put

(4.1) εj := exp (−jα) , ρj := inf
k: k �=j

ρ(zj , zk).
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Since ρj < 1, we have ρj < 1
2 (1 + ρj). Consequently, for each j ∈ N there exists an

index k = k(j) ∈ N \ {j} such that

ρ(zj , zk) <
1
2
(1 + ρj)

or, equivalently,

(4.2) 1 − ρ(zj , zk) >
1
2
(1 − ρj).

Now suppose we can find an infinite set of indices J ⊂ N with the property that

(4.3) jα(1 − ρj) → ∞ as j → ∞, j ∈ J .

Replacing J by a suitable subset thereof, we may further assume that k(j) /∈ J for
all j ∈ J .

Since {εj} is a minorant for {zj}, there is a nonvanishing function f ∈ H∞ such
that f(zj) = εj for all j ∈ J and f(zl) = 1 for all l ∈ N \ J . Harnack’s inequality,
applied to the positive harmonic function z �→ log(‖f‖∞/|f(z)|), now yields

(4.4)
log(‖f‖∞/εj)

log ‖f‖∞
≤ 1 + ρ(zj , zk)

1 − ρ(zj , zk)
(j ∈ J , k = k(j))

(we have used the second inequality in (1.6) with aj = εj and ak = 1). Noting that
‖f‖∞ > 1 and

1 + ρ(zj , zk)
1 − ρ(zj , zk)

≤ 4
1 − ρj

, k = k(j)

(this relies on (4.2)), we deduce from (4.4) that

log
1
εj

≤ 4 log ‖f‖∞
1 − ρj

, j ∈ J .

This in turn reduces to

jα(1 − ρj) ≤ 4 log ‖f‖∞, j ∈ J ,

which contradicts (4.3). The contradiction shows that

(4.5) 1 − ρj = O(j−α), j ∈ N,

and proves (b), since (4.5) has actually been verified for any α > 0.
(b) =⇒ (a). Fix α > 0, and suppose {aj} is a sequence of complex numbers with

1 ≥ |aj | ≥ εj (j = 1, 2, . . . ),

where εj is defined as in (4.1). Then put

wj := log
2
aj

= log
2
|aj |

+ i arg
2
aj

,

where arg(·) takes values in (−π, π].
Assuming that condition (b) holds, we wish to find a nonvanishing function

f ∈ H∞ satisfying

(4.6) f(zj) = aj (j = 1, 2, . . . ).

We claim that this task will be accomplished if we check that, for some N ∈ N, the
matrix

A = AN :=
{

wj + w̄k

1 − z̄jzk

}
j, k≥N
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is positive definite, in the sense that 〈Ax, x〉 ≥ 0 whenever x = {xj}j≥N ∈ �20.
(Here �20 is the set of �2-sequences that have finitely many nonzero components,
and 〈·, ·〉 is the usual inner product in �2.) Indeed, once A is known to be positive
definite, the Nevanlinna–Pick theorem provides us with an analytic function g on
D satisfying Re g ≥ 0 and

g(zj) = wj (j ≥ N).

Now let b stand for the Blaschke product with zeros {zj}j≥N , and let h ∈ H∞ be
a solution to the finite interpolation problem

h(zj) =
wj − g(zj)

b(zj)
(j = 1, . . . , N − 1).

Then φ := g + bh is an analytic function on D with the properties that

Reφ(z) ≥ −‖h‖∞, z ∈ D,

and
φ(zj) = wj for all j ∈ N.

Consequently, f = 2 exp(−φ) is a nonvanishing H∞-function that solves (4.6), and
we are done.

Next we remark that the matrix A is (or is not) positive definite simultaneously
with B = BN = {Bjk}j, k≥N , where

Bjk :=
wj + w̄k

1 − z̄jzk
(1 − |zj |2)1/2(1 − |zk|2)1/2.

Our aim is thus to prove that B is positive definite for a suitable choice of N . To
this end, we write B = D + M, where D is the diagonal part of B (i.e., the matrix
obtained from B by replacing its off-diagonal entries with 0) and M := B − D is
the complementary matrix with zero diagonal. Now if x = {xj}j≥N ∈ �20, then

〈Bx, x〉 = 〈Dx, x〉 + 〈Mx, x〉 ≥
∑
j≥N

Bjj |xj |2 − ‖M‖
∑
j≥N

|xj |2,

where ‖M‖ = ‖M‖�2→�2 . Therefore, to show that B is positive definite, it is enough
to verify that

‖M‖ ≤ inf
j≥N

Bjj .

Also, since

Bjj = 2 Rewj = 2 log
2

|aj |
≥ 2 log 2 > 1,

it will suffice to check that

(4.7) ‖M‖ ≤ 1,

once the parameter N is chosen appropriately.
Using the Hilbert–Schmidt norm of the (self-adjoint) matrix M as a bound for

‖M‖, we get

(4.8) ‖M‖2 ≤
∑

j, k≥N, j �=k

|Bjk|2 = 2
∞∑

j=N+1

j−1∑
k=N

|Bjk|2.

We further observe that

(4.9) |Bjk|2 =
(1 − |zj |2)(1 − |zk|2)

|1 − z̄jzk|2
|wj + w̄k|2 =

(
1 − ρ(zj , zk)2

)
|wj + w̄k|2.
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An application of (b) with β = 2α + 3 now gives

(4.10) 1 − ρ(zj , zk)2 ≤ 1 − ρ2
j ≤ 2(1 − ρj) ≤ Aj−2α−3 (k �= j)

for some A = A(α) > 0. At the same time, the estimate

|wj | ≤ C log
2

|aj |
≤ C log

2
εj

≤ 2Cjα

(which holds for all j and some absolute C > 0) tells us that

(4.11) |wj + w̄k| ≤ |wj | + |wk| ≤ 4Cjα (k < j).

With (4.10) and (4.11) plugged in, (4.9) yields

|Bjk|2 ≤ 16AC2j−2α−3j2α = const · j−3 (k < j),

and so

(4.12)
j−1∑
k=N

|Bjk|2 ≤ const · (j − N)j−3 ≤ const · j−2 (j > N).

Finally, we go back to (4.8) and use (4.12) to obtain

‖M‖2 ≤ const
∞∑

j=N+1

1
j2

≤ const
N

.

Hence, taking N to be appropriately large, we arrive at (4.7) and thereby complete
the proof.

5. Open questions

Question 5.1. What is the quantitative description of the minorants {εj} associ-
ated with a given thin sequence {zj}? (We have already mentioned this problem
in Section 1.) It would be nice to have the answer stated in terms of the “thinness
parameters” (1.9).

Question 5.2. What happens to our free interpolation problem if nonvanishing
functions are replaced by outer ones? Specifically, is it true that for each thin
sequence {zj} there exists a minorant {εj} such that every interpolation problem

f(zj) = aj with 1 ≥ |aj | ≥ εj (j = 1, 2, . . . )

can be solved with an outer function f ∈ H∞?

Question 5.3. Consider the equivalence relation (i) ⇐⇒ (iv) in Theorem 1.5. Does
this generalize to higher dimensions (in several real variables), once thin sequences
are properly defined?

To be more precise, let us begin by recalling that a sequence {zj = (xj , yj)} in
the upper half-space

R
n+1
+ = {(x, y) : x ∈ R

n, y > 0}
is said to be an interpolating sequence (for the class h∞ of bounded harmonic
functions on R

n+1
+ ) if every interpolation problem u(zj) = aj (j = 1, 2, . . . ), with
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{aj} ∈ �∞, has a solution u ∈ h∞. The problem of characterizing such sequences
is still open (to the best of our knowledge) for n > 1; see [1], [2] for some partial
results on this matter.

We wish, however, to single out the class of those interpolating sequences {zj} ⊂
R

n+1
+ which have the following property, referred to hereafter as (∗): For some

“majorant” {Mj} ⊂ (1,∞) satisfying limj→∞ Mj = ∞, every interpolation problem

U(zj) = cj with 1 ≤ cj ≤ Mj (j = 1, 2, . . . )

can be solved with a positive harmonic function U on R
n+1
+ .

On the other hand, thin sequences in R
n+1
+ can be defined in the spirit of Lemma

2.1. Namely, to each point zj = (xj , yj) of the sequence and to a fixed number
N ≥ 1 we associate the region

SN,j =
{

(x, y) ∈ R
n+1
+ : |x − xj | <

1
2
Nyj , 0 < y < Nyj

}

and we let F(N, j) denote the set of those indices k ∈ N \ {j} for which zk ∈ SN,j .
This done, we say that {zj} is a thin sequence (in R

n+1
+ ) if, for every N ≥ 1,

lim
j→∞

y−n
j

∑
k∈F(N,j)

yn
k = 0.

Are thin sequences precisely the interpolating sequences with property (∗)? We
know that the answer is ‘yes’ when n = 1, and our proof of the implication (∗) =⇒
“thin” (i.e., implication (iv) =⇒ (i) in Theorem 1.5) seems to carry over to higher
dimensions. The converse, if true, would call for a new approach.
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