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Elastic constants of bcc shape-memory binary alloys: Effect of the configurational ordering
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The relationship between the elastic shear modulus C'= %(Cu —C\,) and the atomic order state

in a shape-memory binary alloy A4,B,_, above its martensitic transition temperature is analyzed.
We first present a simple method to evaluate the elastic constants in binary alloys, assuming the
atoms interact via a two-body Morse potential. For CuZn and AgZn alloys, the potential parame-
ters corresponding to the different A- A, B-B, and A-B pairs are determined from experimental data
of the elastic constant C' for different alloy compositions. We next calculate C’ at 0 K as a function
of the ordering state. To do this, we use atomic configurations obtained with a Monte Carlo simula-
tion of the Ising model for a bce binary alloy, at each temperature T,. We obtain a linear relation-
ship between C’ and the short-range-order parameter 7. We also show that the deviations from the
linear behavior observed when C’ is represented against the square of the long-rang-order parame-
ter (S) come mainly from the critical behavior of the system near the order-disorder temperature

T..

I. INTRODUCTION

A wide variety of noble-metal-based alloy systems (e.g.,
CuZn, AgZn, AuCd, .. .) undergo, at low temperatures,
a structural phase transition mainly described by a shear
deformation from a bcc to a close-packed structure. This
transition, called martensitic (MT), is responsible for the
pseudoelasticity and the shape-memory effects observed
in these alloys.! Above the MT temperature (MS), these
alloy systems exhibit atomic order of the B2, DO3, or
L21 type, and undergo an order-disorder transition at a
temperature 7, normally much higher than MS and
dependent on the composition of the alloy. Important
features of shape-memory alloys are the low (but finite)
value of the elastic constant C'=(C,;, —C,)/2, which
measures the resistance against a {110} (110) shear, and
its “abnormal” behavior with temperature: C’ decreases
with decreasing temperature as MS is approached.? This
fact has led several authors to suggest that the MT is
driven by a local elastic instability and that the behavior
of C’ near MS plays a very important role in determining
the properties of the transition.>*

In addition, the atomic order in the alloy has a strong
influence on the properties of the MT. In this sense, it is
experimentally known that the state of atomic order, es-
tablished by annealing at a particular temperature 7T; and
retained by a quench to lower temperatures, can substan-
tially modify quantities such as temperature MS and
enthalpy change of the MT.>®

In the frame of a mean-field theory, the natural way to
introduce the effect of the long-range atomic order on the
characteristics of the MT is through the elastic constants
of the system, and particularly through the shear
modulus C'.7® Such a model includes a linear coupling
between C’ and the square of the long-range atomic order
parameter {S ), and gives the shift in the MT tempera-
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ture and in the enthalpy change of the transformation as
functions of this parameter (S ). The validity of this re-
sult has only been indirectly justified from the correlation
observed between the changes in the MT temperature
and the relative changes of C' during the isothermal or-
dering process that follows a quench from T; to tempera-
tures T, above MS.’

The significance of the results obtained from a mean-
field approximation is not definitive, however, and one
would like to perform a more exact kind of calculation.
In this sense, we have computed the elastic shear contant
C’ of bec binary alloys with different degrees of atomic
order using simulated ordered or partially ordered struc-
tures. These structures have been obtained at different
temperatures 7T; (above and below T,) by a Monte Carlo
simulation of an appropriate Ising model for binary al-
loys. In every case C’' has been calculated at T=0 K.
The procedure simulates measurements of C’ after ideally
fast quenches from T; to temperatures 7, low enough to
neglect the role of thermal fluctuations (T, <<T,). In
such a situation the atoms of the system are restricted to
be at the sites of a bce lattice. It is assumed that they in-
teract with their next (NN) and next-nearest neighbors
(NNN) through a pairwise Morse potential. This empiri-
cal interatomic potential has proven to be successful in
many different solid-state studies. '°

The paper is organized as follows: In Sec. II we
present the mathematical formulation of the problem and
obtain the expressions of the elastic constants in terms of
the interatomic potential. The parameters of the poten-
tial corresponding to the A-A4, B-B, and A-B interac-
tions, for CuZn and AgZn alloys, are obtained in Sec. III
from available experimental data giving C’ as a function
of the alloy composition. In Sec. IV we describe the Ising
model of a binary alloy and the Monte Carlo simulation
procedure used to obtain the atomic configurations. For
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each configuration we calculate C' and analyze its depen-
dence on atomic order. The analysis provides the limits
of validity of the linear relation between C’ and (S )2, a
result of the mean-field model.

II. MORSE INTERATOMIC POTENTIAL:
STABILITY CONDITIONS AND ELASTIC
CONSTANTS FOR bce BINARY ALLOYS

Let us suppose that ¢(r™") is the interatomic potential
energy of two atoms (m and n) separated a distance r™"
Assuming interaction only to NN and NNN, the bound
energy of the crystal per unit volume is given by

E=V'Se(rm™) (1)

m,n

where the sum is taken over all the lattice atoms (m) and
over its nearest and next-nearest neighbors (n). ¥V is the
volume of the system.

Consider now the system homogeneously deformed.
For small displacements of the atoms about their equilib-
rium positions, a Taylor expansion of Eq. (1) yields'!

E=4 +A e + Cljkleljek/+ (2)
with
A=V"'Ze(rg"], (3a)
m,n
B mn) mn
U‘—V 12 —ng_n—\rOi , (3b)
m,n 0
2 mn
Cha=V'3 | LU |, (3¢)
myn arj arl 0
Here r/™" is a Cartesian component of r™", and rg" is the

undeformed value of r™". The derivatives of the potential
energy are evaluated at the undeformed lattice positions,
and summation by repeated indexes is implied. €;; are
the components of the strain tensor defined in the usual
form'? and Cj, are directly the components of the elastic
constant tensor if the external pressure is zero and the
effect of temperature is negligible. In such a case 4,;=0
is the equilibrium condition. For crystals with a cubic
symmetry, there are only three independent components

J

2
N z(m) 2
— aa aa _ mn
C”=V 12 P e 2(aa)p
mn ( mn)3
m=1n=1 P P
2
N z(m) 2
_ aa aa _ mn
C12—V iz P e 2aa)lp
mn ( mn)3
m=1n=1 P P
and the equilibrium condition is given by
z(m) aa 7(aa)p"’"(p;"")2
ar m=1n=
€ 0= N z(:ﬂz ’ (10)
aa —2(aa)"‘" mny2
S 3 2%, -aear (g

m=1 n—]p

-0

-Q

T. CASTAN AND A. PLANES 38

of the elastic constant tensor: C;;, C;,, and C4, using
Voigt notation (xx —1, yy —2, zz—3, yz—4, xz2—5,
xy —6). For central forces, in addition, the Cauchy con-
ditions yield C|, =C,,. Consequently there are only two
independent components, which may be written as

C11_4V—12 la_[L)] (rgm*, (4a)
cu_cM_w—lz ——‘p——af r ; (rEmArgm? . (4b)

Born and Huang”"4 have investigated the conditions un-
der which a crystal lattice is thermodynamically stable.
A necessary condition is the mechanical stability of the
crystal with respect to arbitrary (small) homogeneous de-
formations. In the case of crystals with cubic symmetry
and interactions given by central forces this condition
may be expressed simply as

Cll/C12>1 N C12>O. (5)

Suppose now that the interaction potential energy is
given by a Morse potential function:

@(r)=D {exp[ —2a(r —rq)]—2exp[ —alr —ry)]} (6)

where a and D are positive constants with dimensions of
reciprocal distance and energy, respectively. This func-
tion has its minimum at r =r; and ¢@(ry)= —D. In order
to obtain the stability criteria solely in terms of the di-
mensionless parameter (aa) (a being the lattice parameter

of a bec structure) we define

mn
mn r

P= (7a)
and

P =D exp(2ar,) , (7b)

Q0 =2D exp(ar,) . (7¢)
Now
p(p™")=P exp[ —2(aa )p™"]—Q exp[ —(aa )p™"] . (8)

With the Morse potential energy the elastic constants
[(4a) and (4b)] may be written as

2
o | 4 o e e o
p P
2
a:n + : l?ﬂi)} e —(aa)™ ](p;"n)z(P;nn)2 , (9b)
p

[

where Z(m) is the specific number of neighbors con-
sidered. For a bcc system Z =14 (eight NN and six
NNN) is sufficient to obtain mechanical stability. The
Born stability criteria (5) are satisfied for aa
<(aa)*=5.8 (see Fig. 1). In a previous work, Milstein'>
found (aa)*=4.8 but the difference arises from the
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FIG. 1. Ratio of elastic constants C;;/C;, and C,, (in re-
duced units) vs the dimensionless parameter (aa). The Born sta-
bility criteria are satisfied for values of (aa) less than 5.8.

periodic boundary conditions considered in our calcula-
tions.

III. APPLICATION TO beec BINARY ALLOYS

In the case of an 4, B,_, binary alloy system the equa-
tions (4a) and (4b) can be rewritten in the form

X (r&r

— ~ = ~(1
Co=V"'"(NLi@ s +Nis@ 53+ Niis@lup)

X (ro )V (rg))? (11b)
with
2
~('!)=4 a <p,](r)
P ij P22 |r=ri’
R (12)
Sa_gy | O]
ij (r2)? |r=r@

@;;(r) is the interaction potential energy for atom pairs i
and j. NS and N{? are the number of next- and next-
nearest-neighbor ij pairs, respectively. For a bcc struc-
ture ri!’ =v3/2 and r{¥’ =1 (in units of a). Let us focus

our attention on the relevant elastic constant
C'=(C,;—C,)/2, given by
C'=(6V" (NE @D +Np@ 53 + N3 p 15) - (13)
Taking into account that

N =3N, — N

NG =3Ny ~ 1N "
we obtain
C'=(6V)"'[3(N 4 T4 +Ne® 53)—tN 39 ] (15)
where

?P =0 +oH—20'% e
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and N 4,Np are the number of atoms A and B, respec-
tively.

For completely ordered configurations, Eq. (15) as a
function of the concentration x reads

e’

N xR+ (1—x)p g —(1-x)(2x —1)p P

(17)
when x >0.50, and

%q@‘}; F1—xpP—x(1—20pP  (18)
when x <0.50.

The parameters of the Morse potential for the A4 A,
BB, and AB interactions must be determined from exper-
imental data. We use C’ values of AgZn and CuZn al-
loys, measured at room temperature for different compo-
sitions in the range 0.45 <x <0.55 and 0.55> x > 0.50,
respectively.!® The qualitative observable behavior
around x =0.50 is determined by

aC’

—>0 if x>0.50,
0x

8_C_<0 if x <0.50 .
ox

(19)
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FIG. 2. (a) Composition dependence of C’ in AgZn alloy at 0
K. Solid line is our result whereas points indicate experimental
data values. Dotted line corresponds to an empirical behavior
proposed by Verlinden and Delaey (Ref. 25). (b) Composition
dependence of C’ in CuZn alloy at 0 K. Solid line is our result
whereas points indicate experimental data values. Dotted line is
the empirical behavior proposed by Verlinden and Delaey (Ref.
25).
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Imposing this behavior on the analytical expressions of
C’ (17) and (18) we obtain that @ 2, and @ 73 must have
the same sign and @ '3} the opposite one. On the other
hand, the stability conditions (5) near x =0.50 require
that g ‘3, >0 and @ 3 > 0 which implies that @ 7} <O0.

A fit of the functions (17) and (18) to the experimental
data of CuZn and AgZn alloys [see Figs. 2(a) and 2(b)],
gives the parameters of the Morse interactions summa-
rized in Tables I(a) and I(b). An analysis of the sensitivity
of C'(x) to these parameters shows that the calculated
value of C’(x) does not change significantly with (aa);
parameters (at least around x =0.50) for fixed values of
the parameters listed in Table I(b). Finally, Figs. 3(a) and
3(b) show the Morse interatomic potentials for the
different atom pairs corresponding to CuZn and AgZn al-
loys, in units of Qc,.cy, and Qa,.a,, respectively [(7¢)].
Qcu-cu (0r Qppa,) may be obtained from the Debye tem-
perature using the expressions of ®] ~° as a function of
the elastic constants.!” Taking a=2.94 A and
®f—%=288 K (Ref. 18) for the CuZn alloy we have ob-
tained Qc,.c,=8.-2X 107" J. This value is consistent
with the value obtained from Monte Carlo simulations of
C’ at finite temperature.'® In addition, the evaluated po-
tentials yield the sign of the NN ordering energy
[=2¢ 5r" ) — @ (ri)—@gp(ril’) <0] according to
the tendency to ordering exhibited by these systems.

IV. ELASTIC CONSTANTS AND ATOMIC ORDER

A. Monte Carlo simulations
of partially ordered configurations

Using a Monte Carlo simulation of an Ising model for
a binary alloy*® we have obtained the equilibrium atomic
configurations at different temperatures 7, for a fixed
composition. The Monte Carlo calculations have been
carried out following the standard procedure originated
by Metropolis et al.?!

The system is a bec lattice with N =N , + Ny =(8)3x2
particles, obeying periodic boundary conditions. The
volume (8)® and the temperature 7 remain fixed in each
simulation. The Hamiltonian of the system reads

H:—Jza',-a}-—hZU,» , J<O (20)

ij i

TABLE I. Parameters of the Morse potential for 4-4, B-B,
and A-B interactions obtained from experimental data for
CuZn and AgZn alloy systems.

(a)

Interaction aa P/Q arg
A-A 1.865 2.760 1.708
B-B 2.840 6.630 2.585
A-B 6.545 171.232 5.836

(b)
Alloy 4B O8.8/Q4.4 Q48/Qu.4
CuZn 0.3597 131.9205
AgZn 2.6358 67.3614
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FIG. 3. (a) Interatomic potentials (in reduced units) for the
different pairs of AgZn. (b) Interatomic potentials (in reduced
units) for the different pairs of CuZn.

where the first summation gives all nearest-neighbor pairs
ij in the lattice. o;=1 if the site i is occupied by a con-
stituent of type 4 and o;= —1 if the constituent is of
type B. J is a negative parameter giving the ordering en-
ergy for NN. The equilibrium state of this system in-
cludes long and short ordering modes.

Starting from an initial random configuration, the sys-
tem moves through the phase space with a transition
probability corresponding to a “spin-exchange” opera-
tion, i.e., following a Kawasaki’s dynamics.22 The aver-
ages are based on samples ranging from 15000 to 30000
configurations. The first configurations are omitted since
they show nonequilibrium effects and slow the conver-
gence of the averages.

In order to define the long-range atomic order parame-
ter (S'), the bec lattice is divided into two interpenetrat-
ing simple-cubic sublattices a and b. (S) is given by

1

N
=(— S (—1Yo,
(s) <N,-§1( 1)0,> 1)

where j =0 if i is a site of the a sublattice, and j =1 if i is
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a site of the b sublattice. The bracket represents statisti-
cal averages. The short-range order parameter 7 is
defined by

N
iN/2

_—(H)/MJ_ 1
T 2zNx x5 4x,xp

1 (22)

where z is the coordination number for NN pairs, and
N'}} the number of 4-B NN pairs.

In Figs. 4(a) and 4(b), respectively, we show {(S) and 7
as functions of (T/T,) for four alloy systems with
different compositions (x =0.50, 0.55, 0.61, and 0.65). T,
is the critical order-disorder temperature. For x =0.50
we obtain—in Ising-model units—7,~6.3J/kg in
agreement with previous Monte Carlo results.”* Experi-
mentally 7,=735 K, and then J/kz=115 K. This
value is one order of magnitude lower than is obtained
from the potential evaluated in Sec. III. This contrariety,
probably due to the fact that we have only considered
elastic constant data in the evaluation potential parame-
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FIG. 4. (a) Monte Carlo results for the short-range-order pa-
rameter vs reduced temperature for A,B,_, binary systems,
with x =0.50 (@), x =0.55 (0), x =0.61 (A), and X =0.65 (M).
(b) Monte Carlo results for the long-range-order parameter vs
reduced temperature for 4,B,_, binary systems, with x =0.50
(@), x =0.55(0), x =0.61 (A), and X =0.65 (W).
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ters, does not prevent us from performing our initial pro-
position.

B. Influence of atomic order on the shear modulus C’

Suppose now the binary alloy 4,B,_, at a tempera-
ture T; with an atomic order configuration described by a
long-range-order parameter (S) and by a short-range-
order parameter 7, both obtained from the numerical
simulations explained above. Just after a quench from T;
to Ty (<< T,) the system retains the atomic configuration
it had at T;. It is interesting to evaluate the functional
dependence of C’ with (S') and 7 under these conditions.
We would like to remark that the two problems involved,
ordering and elastic constants, are dealt with indepen-
dently; that is, we assume that the calculation of elastic
constants can be performed on ordered structures ob-
tained by a model without connection with elastic prop-
erties. This point is important since it assures that we
have not imposed any correlation between both issues,
which in fact could exist in real systems.

To do this, the different sampled configurations con-
sidered in the calculation of statistical averages (i.e., in
the evaluation of {S) and 7) are frozen at a temperature
T, <« T,. To simplify the calculations it is assumed that
the effect of thermal fluctuations on the elastic constants
is irrelevant at Tf, and Tf=0 K can be assumed. For
each atomic order state, C' is obtained now as an average
of the C' values calculated for each microstate (using
periodic boundary conditions and the interatomic Morse
potential obtained previously for the different atom
pairs). This calculation is performed by accounting for,
in every microscopic situation, the number of atomic
pairs ij (i,j = A,B) (NNN).

400
300
g
T 2
_o 200
8)
>
100;
0 1 L 1 i 1
02 04 0.6 08 10
(S¥(S™ )
FIG. 5. Calculated value of C’ (in reduced units) for

Ago sZng s alloy at T, =0 K, after quenches from different 7; vs
the short-range-order parameter (solid line on x), the square of
the long-range-order parameter (.S )? (solid line on @) and the
(S?) (dashed line on x).
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FIG. 6. (a) Calculated value of C’ (in reduced units) for
Cu,Zn,_, alloy at T, =0 K, after quenches from different 7, vs
the short-range-order parameter for x =0.50 (@), x =0.55 (O),
x =0.61 (A), and x =0.65 (W). (b) Calculated value of C’ (in re-
duced units) for Cu,Zn,_, alloy at T,=0 K, after quenches
from different T; vs the square of the long-range-order parame-
ter for x =0.50 (@), x =0.55 (O), x =0.61 (A), and x =0.65 (W).

V. RESULTS AND DISCUSSION

In this section we present the results obtained for
CuZn and AgZn alloy systems. In Fig. 5 we have plotted
C’ as a function of (S )2, (§%), and 7 for the Ag, sZn, s
alloy. We observe an almost perfectly linear behavior of
C’ with 7. When C'’ is represented against (S )?, howev-
er, we observe deviations from the linear behavior for
(S) sufficiently small, i.e., for T; close enough to T,. In
this case the deviations from the linear behavior are evi-
dent for quenches from 7;/T.~0.93. When C’ is
represented against (S?) the deviations become much
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FIG. 7. C' (in units of Q¢,.c,/V ) has been represented vs the
experimental shift of the MT temperature (MS) for Cu,Zn,_,
(x =0.61) alloy after quenches from different T, temperatures.

smaller, even for configurations quenched from a temper-
ature T; very close to T, (Fig. 5). These results are evi-
dence that the nonlinearities arise mainly from the criti-
cal behavior of the system near T,, i.e., from the diver-
gency of ({(S§2?) —(S)?) near the critical point. In Figs.
6(a) and 6(b), respectively, C’ is shown against (.S )2 and
n for Cu,Zn,_, with x =0.50, 0.55, 0.61, and 0.65. In
all cases we observe, as before, a linear behavior between
C’ and 7, and deviations from this behavior for T; close
to T, when C’ is represented against (S )2. In addition,
it is worth noting that at least in the range of concentra-
tions analyzed, dC'/d7n and dC'/3{S)? seem to be in-
dependent of the alloy composition. On the other hand,
we observe that alloys with a low enough degree of
configurational order are mechanically unstable, because
C’ becomes negative at a particular value of {S) (or %)
depending on x. This fact suggests that sudden changes
in the state of atomic order can induce mechanical insta-
bilities in the system. Following these results and in spite
of the deviations from the linear behavior, we conclude
that the functionality proposed phenomenologically be-
tween C’ and (S) in shape-memory alloys is in agree-
ment with our numerical calculations, at least when T is
not close to 7. In Fig. 7 finally we have represented the
calculated value of C’ at 0 K in differently ordered
configurations (in equilibrium at T;), versus the experi-
mental shift of the MS temperature measured just after
quenches from different temperatures 7; (<7T,) for a
Cu,Zn,_, alloy with x =0.61.> We observe a linear re-
lationship between both magnitudes as predicted from
mean-field treatments.”® This result provides new evi-
dence to justify that the shift in MS temperature is due to
changes in C’ arising from the difference in long-range
order in the sample.
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