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The hypernetted-chain formalism for boson-boson mixtures described by an extended Jastrow
correlated wave function is derived, taking into account elementary diagrams and triplet correla-
tions. The energy of an ideal boson *He-*He mixture is computed for low values of the *He concen-
tration. The zero->He-concentration limit provides a *He chemical potential in good agreement with
the experimental value, when a McMillan two-body correlation factor and the Lennard-Jones poten-
tial are adopted. If the Euler equations for the two-body correlation factors are solved in presence
of triplet correlations, the agreement is again improved. At the experimental *He equilibrium densi-
ty, the *He chemical potential turns out to be —2.58 K, to be compared with the experimental value,

—2.79K.

I. INTRODUCTION
Boson-boson"? and boson-fermion** mixtures are
largely theoretically analyzed systems. The *He-*He solu-
tions are the most deeply studied among them, because of
their known experimental properties.® At zero tempera-
ture and zero pressure, *He is miscible up to a concentra-
tion of ~6%. The characteristics of one *He atom in “He
can be derived by the *He zero-concentration limit. 3He-
“He is a fermion-boson mixture and the >He antisymmetry
plays an essential role in its miscibility property. A well-
established result is that if one considers a model boson
3He-*He solution, no *He miscibility is obtained. Howev-
er, the zero-concentration limit is not affected by the
statistics. Thus the boson-boson model can provide
correct results in that case.

In the last few years, the variational calculations of the
ground-state properties of quantum fluids have achieved a
high degree of accuracy. Starting from a microscopic
two-body interaction between the particles, the wave func-
tion has been taken as a product of n-body (n =2,3) Jas-
trow factors times a Slater determinant of plane waves, if
the fluid follows the Fermi statistics. In these theories,
the approximated sum of the hypernetted-chain®’ (HNC)
diagrams has shown to give results comparable to those
provided by the exact Monte Carlo methods.>® Both of
these results are in good agreement with the Green-
function Monte Carlo!® (GFMC) estimates and with the
experimental results.

The aim of this paper is to extend the recent variational

techniques [HNC scaling approximation (HNC/S) and
triplet correlations®’] to the boson-boson mixtures in or-
der to improve the preceding results obtained by HNC/0
(to assume as zero the elementary diagram contribution),
Born-Bogoliubov-Green-Kirkwood-Yvon (to use this rela-
tion between the two- and the three-body distribution
functions to evaluate the first one), and Monte Carlo cal-
culations. The paper is divided into four sections. After
the Introduction, we present the general formalism for
evaluating the energy and the radial distribution functions
of a boson-boson solution described by a Jastrow-extended
correlated wave function, with two- and three-body corre-
lation factors. The low-concentration limit is also de-
rived.

The beginning of Sec. III gives the results, with the
Lennard-Jones potential, for a boson 3He-*He mixture in
the average correlation approximation. A McMillan!!
two-body correlation factor is adopted. The three-body
correlation factor is that of Ref. 8. Different approxima-
tions are compared.

The excess volume parameter a, of one *He in “He and
the He zero-concentration chemical potential u; are
evaluated. Noticeable agreement with the experimental
results is found. The final part of Sec. III presents the
formalism for deriving, in the zero-concentration limit,
the optimal two-body correlation factors when the triplet
functions are fixed. This approach again improves the re-
sults of the first part of the section. Finally, brief con-
clusions are given in Sec. IV.

II. BOSON-BOSON MIXTURES
AND THE ZERO-CONCENTRATION LIMIT

An extended Jastrow correlated wave function, containing two- and three-body correlation factors, of the type
W(l,...,No,Ng+1, ... ,Nog+Ng)=[1f Plig:j T/ ®Garjarla ) TLf Pig,ip)
><Hf(3)(iﬂ,jﬂ7lﬁ)I_If(Z)(iaaiﬁ)l_[f(3)(ia’ja,lﬂ)Hf(3)(iﬂ)jﬁ’la) ’ (1)
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represents a realistic wave function for the ground state of
a binary boson solution constituted by N, a particles and
Ng B particles. In Eq. (1) i, (y =a,p) runs over the coor-
dinates of the y-type particles and i, <j, and i, <j, </,.
The f (")(iy,i A»+-->iy) is the n-body dynamical correla-
tion factor involving n bosons of types ¥, A,...,u,
respectively.
The Hamiltonian of the system is given by

#7 #
=— S Vi oo 2 Vi

2mg St N, ¢ 2Mp i ZTN,

+ 3 Vl0igja)+ 2 Viig,jg)
ia<ja iB<]ﬁ

+ 3, Viig,ig) . (2)

igig
py=N,/Q (y=a,B) are the partial densities of the solu-
tion and Q is the volume of the box where the particles
are embedded. The total density is given by p=p,+pg
and the concentration of the ¥ component by
x,=p,/p=N,/(Ny+Npg). If not otherwise specified,
any greek index, different from a and 8, may assume the
a and B values. We operate in the limit N),— o0, 3— o,

and p, =const.
The expectation value of the Hamiltonian is better ex-

pressed by

(V|H |V)/(¥|¥)=&(N,Npg)
=& D(N,,Ng)+ &Ny Ng), ()
with
PN, Ng) =N, & 2papp)+Np& 53 paspp)
+2(NoN )28 2N paspp) @)
and
&N o, Np)=Na& cac Parpp) + N & 56 PesPp)
+3[(NEINR) &) s paspp)
+(NEN)V*E ol pwpp)l - (5)
The two- and three-body energies are given by
& R papp) =(pyp1) 2 /(2Q)
X [dT,dTagP(rp)
X[V (ryn)—(#/4)(VE/m, +V5/my)
XInfPr,)1, (6)
& PP =— (pypapu ) (# /4)/(6Q)
x [dT,dT5d T8 V(T TaTy)
X[V2/my,+V3i/my+Vy/m,]
XInfOAT,, 0, T,) - @)

We have explicitly assumed that the two-body y-A poten-
tials, correlation factors, and distribution functions
gm(r,,k) depend only on the interparticle distances. The
. three-body y-A-u distribution functions, g Ty Tar Tp),

have also been introduced. It is clear that &,
=& (,,2,,)+ & ;3,,),, is the energy per particle of the pure
phases, when evaluated at x, =1.

The HNC techniques, providing the radial distribution
functions g ?(r) of a one-component fluid, can be general-
ized to obtain

gBr ) =1fPr, ) Pexp[G(rya) +Cryn)+E(r)].

(8)
G (r,) is the y-A nodal function, solution of

G(ryn)=3p, [ AT I8P (ry)—1-G(ry,)]
I
x[gP(rp)—11, ©)

C(r,) is the integral of the dressed triplet function
C("rl)=2Pufd?#g(z)("w)gm("ﬂk)
IJ, N

X{[f(3)(Fy’Fu’?A)]2—1] ’ (10)

and E(r,,) represents the sum of all the “elementary” di-
agrams of the y-A type.
The three-body distribution functions are written as

8(3)(?7',?A,?y)=g(2)("yx)g(2)(rm )8(2)(VA,4)
XLFOE, Ty TP T )
where 4 (T,T,T,) is the sum of the contributions of all
the Abe!? terms of the y-A-u type.

The main difficulty in the exact evaluation of the g
functions lies in computing the elementary and Abe con-
tributions. The simplest choice, E =0 and 4 =0, gives
the well-known HNC/0 approximation. Further im-
provements are obtained by summing certain classes of di-
agrams with a few interval points (HNC/4,
HNC/5, ...,HNC/n when the n-point elementary dia-
grams are evaluated). Monte Carlo techniques provide ex-
act results, but they require large computing efforts. Ap-
proximated methods to fully evaluate these contributions
have recently shown to be very powerful in the pure fluids
[HNC/S (Ref. 6) and the interpolating equations
method"3]. In this paper, the HNC/S approximation will
be adopted. It consists in approximating E(r,) by
s[E%(r,,)/4]1+E"(ry,)/4, E’/4, and ET/4 being the
four-point elementary diagrams with (7') or without (J)
triplet correlations. The constant factor s is derived by
imposing the consistency between the Pandharipande-
Bethe and the Jackson-Feenberg (JF) forms of the kinetic
energy when the triplet function is set to be 1. The JF ki-
netic energy is the one adopted here. For the Abe terms,
we follow Ref. 6, approximating

e TN 1 L (145 /2)[ 40T, Tr T /4]
+ AT, THTu)/4 . (12)
To complete this section, we notice that the problem of
one B-type impurity in the a-particle fluid can be studied
by considering the low-xg limit of the a-B mixture. If
Eq. (3) is expanded in powers of Ng, at the leading order
one obtains
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&(Ny,Ng)=No&o+Ngug+O(Np) . (13)

The pg chemical potential of one B particle in the a-
particle fluid is explicitly given by

Hp= {2(pa/pﬂ)l/2$$zzﬂ)(f’wpﬁ)

+3(pa/Pp)*"* € aplParPp)

9 2 3)
+Pa_a—;;[ gaa(Pa’pﬂ)'i' gaaa(pa’pﬂ)] }pﬁ=0 . (14)

III. CORRELATION FACTORS AND RESULTS

In this section, the method presented in Sec. II is ap-
plied to an ideal boson *He-*He mixture (¢ =3 and f=4)
at 0 K. The incorrect treatment of the *He statistics is
unimportant in the x3=0 limit. The interaction potential
is the Lennard-Jones one for every pair of particles:

V(r)=4€[(o/r)*—(a/r)°], (15)

with 0=2.556 A and €=10.22 K. Different types of
correlation factors will be examined.

A. Average correlation approximation

A very popular approach in the variational theories of
quantum mixtures is to use some analytical and
parametrized form of % and to minimize the total en-
ergy respect on the parameters. In principle, one could
have different parameters for different pairs and triplets
but, in a recent paper,’ we have shown that this degree of
freedom gives no substantial improvement, at least for
simple two-body correlations, respect on the average
correlation approximation (ACA), consisting in setting
FBr,2)=f"*r) for every y-A pair. Therefore, as a first
step, ACA has been adopted here and it has been extended
to f®). A very practical aspect of ACA is that all the
g(2)(ryx)’s are identical to the radial distribution function
of a single-component system, at p=p,+pg. The same
property holds for g®)(T,, T, Ty,).

£ has the McMillan'" form

f(2)(r)=e —(ba/r)s/z’ b=1.17 (16)

and the three-body correlation factor is

f(3)(f’bf’2’f’3)=exp 2k§(r,~j)§(r,~k)f’ij-f}k (17)
cycl
with
E(r)=F(re'" 7T
(18)

F(rgr,,):[(r—r,,)/r,,]3 and F(r >r,)=0.

This f® is the one adopted in Ref. 8, with A=80"2,
r,=0.820, ®=0.50, and r, is half the size of the Monte
Carlo simulation cube, 7, =(108/p)!/3/2.

We have evaluated the energies of the *He-*He boson-
boson mixtures at zero pressure for different values of x;.
The scaling factors are taken from Ref. 7.

The results, in different approximations [HNC/O,
HNC/S with (T) and without (J) triplet correlations], are
shown in Fig. 1. Table I contains the estimated zero-

& ‘K\’ " 1 2 " 1 1 I A I

-5 -/W___
-6 -/“mc/s‘/_

T T T T T T T T T

o 0.1 0.2

X3
FIG. 1. Low-He-concentration behavior of the energy per
particle of a boson *He-*He solution, at zero pressure, with the

McMillan correlation factor in ACA, in different approxima-
tions.

concentration *He chemical potential, evaluated at the
equilibrium densities provided by the approximations.
The *He chemical potential us= & ,+p40&4/3ps, the ex-
perimental values, and those obtained by the Green-
function Monte Carlo results in Ref. 10 are also given. ay
can be obtained as

limo[p(x3 )—p(0)]/[x3p(0)]
X3—>

and its value at the computed equilibrium density is 0.25,
to be compared with the experimental 0.28.

Table II presents results at the “He experimental equi-
librium density peyy, =0.3650 2. The difference between
14 and &, is a measure of the quality of the approxima-
tions in reproducing the equilibrium density. The large
discrepancies between p; and its experimental value at
Pexpt. Must be ascribed mainly to this incorrect density
behavior. This behavior is analogous to that of the veloci-
ty of the sound in “He, c(p)=[(1/m4)3P/3p]'/% the
computed value of ¢ (pey.) in HNC/0 is 367.2 m/sec, to

TABLE I. One-*He and -*He chemical potentials in *He with
the McMillan two-body correlation factor and the ACA, at the
equilibrium densities provided by the HNC/0, HNC/S;
(without triplets), and HNC/Sy (with triplets) approximations.
The last two rows give the experimental values and the GFMC
results of Ref. 10.

Peq (@72 ta (K) ps (K)

HNC/0 0.292 —5.13 —1.80

HNC/S;, 0.327 —5.83 —1.97

HNC/Sy 0.360 —6.49 —2.82

Expt. 0.365 —7.14 —2.79
GFMC 0.365 —6.85
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TABLE II. Chemical potentials of one *He and “He in *“He,
computed pressures and energy per particle of ‘He at
Pexpt. =0.3650 3 with the McMillan function in ACA. All ener-
gies are in K.

Ha H3 &, P/Pexp.
HNC/0 4.95 9.75 —4.44 9.39
HNC/S, —3.20 1.40 —5.70 2.49
HNC/Sr —6.15 —2.39 —6.49 0.34

be compared with the experimental 238.2 m/sec. It must
be noticed that, at the HNC/0 equilibrium density
po=0.2920"3, the value of c is 248.5 m/sec. The HNC/0
results are partially improved by the introduction of the
elementary diagrams, but both u; and the equilibrium
density become very close to the experimental values when
triplet correlations are considered.

B. x3;=0 Euler equations

An alternative procedure consists in employing the
f®3 giving the minimum of the energy in the class of the
extended Jastrow correlated wave functions. To this ex-
tent, the functional variation of &(N,,Ng) with respect to
f*3 must be performed and the Euler equations originat-
ed by 8& /8f(r,,)=0 and 8& /8T, T, T,) =0 must
be solved. This has been made in HNC/0 and in the ab-
sence of triplet correlations.” The presence of these
correlations would lead to very complicated expressions.
In this paper we use a simpler method. Firstly, we exam-
ine only the x; =0 limit, then we choose an analytical and
parametrized form of f© and solve the corresponding
Euler equations for . Finally, we look for the lowest

Sag(k)

k(A1)

FIG. 2. Su(k) (solid line) and S43(k) (dashed line) in the
zero-*He-concentration limit in the He-*He solution, as provid-
ed by the Euler equations with triplet correlations at pexpt..
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FIG. 3. Optimal radial distribution functions g®'(r44) (solid
line) and g'®(r43) (dashed line) with triplet correlations, in the
zero-*He-concentration limit in the *He-*He solution at peyy..

energy res?ect on variations of the triplet parameters. If
we fix f® identical for all the triplets and we minimize
Eq. (13), the following set of Schrodinger-type equations
results:

0=— % 1/my+1/m, )V g P (ry)1'?
+Ig P 1AV (1) +wrgy ) +wE(ryy)

with y=3,4.
The induced potentials w* are defined as

2,2
pai (k) = #[smk)— 1[Saa(k)—1]

X(Saa(K){1/m4[141/84(l)]+1/m, })71,

(20a)
wE(r4y)=%(1/m4+l/my)VzE(r4y)+AwE(r4y) ,

(20b)
wc(r4,,)=!§(1/m4+l/my)VZC(r4Y)+AwC(r4,,) .

(20c)

In the above equations, i gy(k) is the Fourier transform
of w°(r4,,), S4y(k)=1+p, [the Fourier transform of

TABLE III. Same quantities of Table II with the optimal
f@”s. All energies in K.

Ha M3 gl& P/pexpt‘
HNC/0 2.06 6.78 —4.66 6.72
HNC/S; —4.10 0.26 —5.85 1.74
HNC/Sr —6.53 —2.58 —6.58 0.05
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g2(r4y)—- 1] are the structure factors and Aw* are terms
involving 8C/8g'? and 8E /8g‘*. Equation (20a) is the
well-known HNC/0 induced potentials'* and Egs. (20b)
and (20c) are contributions arising from the elementary
and triplet terms in the energy. The wT(r4y) is the in-
duced potential coming from 8%),/8¢?(r4,). In solv-
ing Eq. (19), the Aw* and w” terms have been dropped.
We have also approximated E(r43) by E (r4). These ap-
proximations have shown to be very accurate in the
HNC/4 case.

If the Lennard-Jones potential is adopted, the resulting
structure factors have a linear behavior at low-k values.
S44 tends to zero and the slope, S'44(0), is related to the
sound velocity in pure “He. S,3(k) tends to a finite value,
namely minus the excess volume parameter of 3He in
solution.

In Figs. 2 and 3 we present Su4(k), S43(k) and g?(ry,),
g@(ry;) at peyr. in HNC/Sy, as obtained by Eq. (19).
The f parameters are A=—70"2% r=0.820, and
©=0.500. The value of S43(0) is —0.29. In HNC/0 and
HNC/S without triplets the values are —0.32 and —0.30,
respectively.

Table III is analogous to Table II, but the Euler equa-
tions solutions are employed in computing the energies.
Adopting the Euler equations solutions makes the equi-
librium density closer to the experimental value than the
McMillan choice. This explains the larger improvement
in p4 than in &, p; also is affected by the better choice
of the correlation factors passing from —2.39 to —2.58
K at Pexpt.-

IV. CONCLUSIONS

The main result of this paper is that large improve-
ments are found in the description of the properties of a

" boson-boson mixture, at low concentrations if elementary

diagrams and triplet correlations are considered. When
this approach is applied to an ideal boson *He-*He solu-
tion at zero temperature and zero pressure, the *He chemi-
cal potential and its excess volume parameter are well
described by an extended-Jastrow correlated wave func-
tion. At the experimental equilibrium density of the “He,
u3 is closer to the experimental value if the Euler equa-
tions are solved with triplet and elementary contributions.
The error in the evaluated equilibrium density, which is
crucial in estimating pu3 at peyp , is lowered by the intro-
duction of £,

It will be very interesting to use more realistic poten-
tials. The very satisfactory results provided in the pure
phases by the HFDEHE2 potential of Aziz et al.'® allow
us to think that a similar accuracy can be obtained in the
mixtures problem also. Then, wider classes of triplet
functions could be examined.

In conclusion, it must be noticed that if the zero-
concentration limit of *He-*He mixtures can be studied in
the boson-boson model, the correct behavior of the phases
is not predicted by it. The *He maximum solubility and
the spinoidal point cannot be evaluated because of the ab-
sence of a proper *He antisymmetrization. To this extent,
the fermion-boson mixture formalism® must be general-
ized to deal with triplet correlations. Work is in progress
along this direction.
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