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We report variational calculations, in the hypernetted-chain (HNC)—Fermi-HNC scheme, of
one-body density matrices and one-particle momentum distributions for >He-*He mixtures
described by a Jastrow correlated wave function. The *He condensate fractions and the 3He
strength poles are examined and compared with the Monte Carlo available results. The agree-
ment has been found to be very satisfactory. Their density dependence is also studied.

The 3He-*He mixtures have been, in the last years,
the object of a large number of theoretical investiga-
tions,'~* mainly devoted to the study of the incom-
plete phase separation of the system. Besides these
papers, in a recent publication, Lee and Goodman’®
(LG) have reported a Monte Carlo calculation of the
one-body density matrices of the mixture using a Jas-
trow correlated wave function. To compare their
results with those from other methods, we will ex-
tend, in this Brief Report, the hypernetted-chain
(HNC)—Fermi-HNC methods®7®-# to calculate the
one-body density matrices p,(r), or equivalently the

one-particle momentum distributions n,(k), for a
boson-fermion solution.

We present the results for the 3He-*He case, with
special emphasis in the behavior of the “He conden-
sate fraction and of the *He strength pole.

We will consider a system of N, “‘He atoms and N;
3He atoms, in the volume Q. The total density is
p=(N4+N;)/Q =p4s+p;3 and the concentrations
Xa=po/p. We will let Ny, N3, and Q go to infinity,
but keep the densities constant.

The ground state of the solution is described by a
Jastrow correlated wave function, a generalization of
that used for the pure components

Ny Ny+N, Ny Ny+N,
(1, ... ,NyNs+1, ..., Ns+N)=TI/3% TI %1 II £89¢(1, ..., N3, 1)
i<j m<n p=1 q>N3
m>N3
—
where ¢(1, . .., N3) is the Slater determinant of Following Fantoni® we are able to write

plane waves for the free *He atoms and f,/*# is the
dynamical correlation factor, induced by the mutual
interactions, between the / particle of « type and the
Jj particle of B type (a, 3=3,4). With the wave
function (1), we will calculate the density matrices,
pa(r) and p;(r), the one-particle momentum distri-
butions,

na()= [dTexp(iK- )lpalr) —panlsal @

and the “He condensate fraction, n{ = p4(0)/pa.

pa(r) =panf explG (D] , (3)

p3(r) = psn? expl G (N (ker)2- G (D] . @)

Here k2 =3m2ps and I (x) = 3[sin(x) —x cos(x)1/x>.

It must be pointed out that, here and henceforth,
the approximation, where all the contributions com-
ing from the ‘‘elementary’’ diagrams (HNC/0 and
FHNC/0 approximations)’® are neglected, will be
adopted.

The G\’ and Gc(,‘:,) are calculated from

S
G (N = 3 pFV XD + G ™) +ps (XD 1XS 2 + G ) +p (XS VXD +GHED) ()
A=3,4
(3) () = (3,3 y 3,3 (3,3) _ (3,3) _ 9y (3,3)
GC’C, (r) _p3(XC’C IXL‘C’ + Gcc’ ) + p3( I/ZIX(.‘CI 2chl ) (6)
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where’® G,##), G&¥, G 3P and X5, X%, X ‘,30'3) are the solutions of this set of integral equations:

Gud P () = 3, pa(Gud ¥ + X VX P) +p3(Gug Y + X V1 X P) + p3 (X ¥ + Gz V1 X P)

A=3,4
G”EexxJ)(r) = 2 Px(GvS; A) +X(u x)|de 3)) +p3(G (@, 3) +X‘§da,3)|Xg(g3,3)) +p3(G‘£ea,3) +X‘$:,3)|Xd(83,3)) , @)
A=3,4

G 3P (N =ps(X 3P +G 3P |XED) +ps(X V1 =1/2)
with
X 3P(r) =B (r)explGP(N1-1-GFP(r) ,
X&) = 1@ expl G (N1- 1 G (N, ®
X3V = {f®P(r) explG3 ¥ (N1 =G 3 (r) = 1(kpr) /2] .
The functions X 8, X£2, X33 and X > are the corresponding solutions of another set of integral equa-

tions given elsewhere.*
Finally, we have for n2

nd=exp[2D*(w) —D*(d)] ()]

where6,7(¢)

« (a,)) (a,3) 1 1 = (a,)) (a,))
PO = S kS ()4 385 (0) zp(z—w)—Jdklk 3l (G = ()

A=3,4
+2x3Gg VG - X VRS P14+ 602 L (10)
r

The expression for D (¥ (d) is obtained from Eq. tions; those labeled MC from LG.

(14) by replacing the “‘w *’ subscripts by the ‘“‘d > It must be said that the discrepancies in the ener-
ones. gies per particle are of the same order as in the pure
The correlation factors between the particles are phases® 1% the relative difference increases with the

chosen to be the same for all the values of « and 8 He concentration. This is according with the fact
(@B8)(y) = = _ 5 that the error in the energy is percentually smaller for
SR =f(r) =expl=(ba/r)/2] . an pure “He than for pure 3He.

The parameter b is determined by minimizing the A good agreement for the condensate fraction has
energy per particle of the mixture at a given density been found. We note, as in LG, an increase of n{
with the interaction potential taken to be the when the total density decreases. We realize that the
Lennard-Jones potential percent difference between n{yc and n{yr increases

V(r)=4el(o/r)2— (o/r)%] 12) w}th p. This may be ascrjbed to the influence of the
disregarded elementary diagrams.
with €=10.22 K and o =2.556 A. In the last column of Table I, the values of the

As starting point, we have considered, in our discontinuity at n3 (k =kyz) (Zr) are reported. Un-
scheme, two of the cases presented in LG. The fortunately, we cannot compare them with other
results are summarized in Table I. The quantities la- results, but, for x3=0.4375, the upper bound estab-
beled HF (HNC-Fermi HNC) come from our calcula- lished in LG (Zr < 0.2) is respected. Going from

TABLE I. Results for n,?, Zp, and E/N from this paper (HF) and from LG (MC). The densi-
ties are in o> and the energies in K.

X3 P b E/Nyg E/Nmc n fup nfvc Zp

0.1228 0.351 1.160 —4.02 —5.25 0.131 0.137 0.139
0.4375 0.323 1.145 —2.60 —3.68 0.174 0.180 0.189
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FIG. 1. Radial distribution functions for p=0.323¢"3 and

x3=0.4375. Solid line, g4 ¥); dashed line, g>*); and dot-

dashed lines g 3.

x3=0.1228 to 0.4375 we have an increase of p3 from
0.04203 to 0.13S0 73, so we should expect a reduc-
tion of Zr. This does not happen because, even if Zr
is a typical fermionic quantity, its value is modulated
by p.

We want to add also that our g(®#(r)’s (the radial
distribution functions) are in good agreement with
those reported in LG. The locations and the relative
altitudes of the first maxima of the g(®#’s are prac-
tically the same. In Fig. 1 we present the HF g(®#)’s
for p=0.3230"3 and x;=0.4375.

It may be interesting to see how nJ and Zy vary
with x; along the P =0 isobar (P is the pressure of
the system, P =pdE/dp, and the condition P =0
fixes the equilibrium density at each concentration).
The results are presented in Table II.

It must be considered that our approximation gives
equilibrium densities smaller than the real ones. For
instance, the experimental peq(x3=0) is 0.3655 73,
while our calculated value is 0.289¢0 2. This differ-
ence affects the value of n{ and Zy, but we think
that the qualitative behavior is still realistic.

The densities of the mixture decrease along the
isobar when x; increases, as a consequence of the

TABLE II. Results for nJ and Zy along the P =0 isobar.
Unities as in Table L.

X3 P n Zp
0.0 0.289 0.200
0.0625 0.284 0.206 0.209
0.1250 0.278 0.214 0.218
0.1875 0.272 0.223 0.229
1.0 0.189 0.509
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FIG. 2. n4(k) for mixture at p=0.2780> and x3=0.125
(solid line) and for pure *He at p,=0.2430~3 (dashed line).

Pauli repulsion; this fact essentially explains the
behavior of n§ and Zr. We want to say that the in-
creasing values of these quantities are well under-
stood in terms of the smaller or larger density of the
solution respect to the pure “He or *He.

The nJ values do not depend too much on the *He
Fermi statistics; to see this effect, we have calculated
them putting ¢(1, . ..,N3)=1in Eq. (1). This
statement is equivalent to consider a boson-mass-
3—boson-mass-4 mixture. The results are practically
the same as in Table II.

Finally, we shortly examine the influence of one
component of the solution on the other one by com-
paring n and Zr in the solution at the equilibrium
density for x3=0.125 with those for the correspond-
ing pure phases (p = p3, ps). The n{ value increase
from 0.214 to 0.267 and the Zr one from 0.218 to
0.904. A similar comparison is made for n4(k) in
Fig. 2 and for n3(k) in Fig. 3.

The decrease of the number of the interactions,
when one of the components is suppressed, leads to
expected increasing values of n and Zr. This is
dramatically true for Zr because of the small density
of the fermionic component.
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FIG. 3. n3(k) for mixture as Fig. 2 (solid line) and for
pure *He at p;=0.0350"3 (dashed line).



26 BRIEF REPORTS 1441

ACKNOWLEDGMENTS

The authors are much indebted to Professor S. Rosati for the critical reading of the manuscript. One of us (A.P.)
would like to thank the Istituto Nazionale di Fisica Nucleare, Pisa, and the Comision Asesora Cientifica y Técnica,

Spain for financial support.

IR. A. Guyer and M. D. Miller, Phys. Rev. B 22, 142 (1980).

2], P. Hansen and D. Schiff, Phys. Rev. Lett. 23, 1488
(1969).

3M. B. Yim and W. E. Massey, Phys. Rev. B 19, 3529
(1979).

4A. Fabrocini and A. Polls, Phys. Rev. B 25, 4533 (1982).

5W. K. Lee and B. Goodman, Phys. Rev. B 24, 2515 (1981).

6S. Fantoni, Nuovo Cimento A44, 191 (1978).

7(a) Many Body Problems, edited by S. Rosati and S. Fantoni,
Lecture Notes in Physics, Vol. 138 (Springer-Verlag,
New York, 1981), p. 1; (b) the convolution integral is

given by
(41B)= [dT34(r By

(c) the Fourier transform of f(r) is defined as
F=p faTexp(E T/ .

8M. L. Ristig and J. W. Clark, Phys. Rev. B 14, 2875 (1976).

9D. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B
16, 3081 (1977).

10D, Schiff and L. Verlet, Phys. Rev. 160, 208 (1967).



