Variational study of 3He-4He mixtures

A. Fabrocini
Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, Italy
and Istituto di Fisica dell'Università, Pisa, Italy

A. Polls*
Institut für Theoretische Physik, Universität Tübingen, Germany
(Received 18 January 1982)

The ground-state properties of the 3He-4He mixture are investigated by assuming the wave function to be a product of pair correlations. The antisymmetry of the 3He component is taken into account by Fermi-hypernetted-chain techniques and the results are compared with those obtained from the lowest-order Wu-Feenberg expansion and the boson-boson approximation. A little improvement is found in the 3He maximum solubility. A microscopic theory to calculate 3He static properties such as zero-concentration chemical potential and excess-volume parameter is derived and the results are compared with the experiments.

I. INTRODUCTION

Recently, there has been a renewed interest in the theoretical description of isotopic boson-fermion mixtures, mainly due to the discovering of an incomplete phase separation at $T = 0$ K in 3He-4He mixtures.$^{1-3}$ The maximum solubility of 3He in 4He has been measured to be about 6.5%. Different microscopic approaches to this problem have been used in the past years$^{4-7}$ starting from a description of the system that does not incorporate the fermionic character of 3He; however, this incorrect treatment of the 3He symmetry properties did not allow these theories to reproduce the phase mixing. Hansen and Schiff8 and, more recently, Guyer and Miller9 have in fact shown that in order to obtain miscibility in the ground state of the 3He-4He mixtures, the presence of the Fermi-Dirac statistics in 3He is necessary. In their procedure, a Slater-Jastrow wave function was used and the antisymmetrization of the 3He wave function was introduced by means of a lowest-order Wu-Feenberg expansion10 mixed to a hypernetted-chain (HNC) expansion of the bosonic component.

In this paper we have generalized the Fermi-HNC (FHNC) and HNC equations11 to the case of a binary fermion-boson system and we have applied them to the 3He-4He mixtures to account for, in a more complete way, the antisymmetry of the 3He wave function. Two other quantities of experimental interest and which are useful to test the microscopic models are the 3He chemical potential ϵ_1 and the excess volume parameter α_0. The first, at zero concentration of 3He and zero pressure and temperature, is identical to the binding energy of one 3He atom in 4He, and its experimental value is -2.795 K. The presence of an excess-volume parameter is a consequence of the fact that the 3He particle has a larger zero-point energy than the 4He because of the lighter mass and therefore has a larger specific volume. The α_0 experimental value is 0.284. Woo, Massey, and Tan4 (WMT) have developed a microscopic theory that involves the knowledge of the radial distribution functions of a binary boson system to calculate α_0 and ϵ_1.

Here we present the formulas for the radial distribution functions, in an HNC approach, of a boson system with two internal impurities; then the WMT theory of calculating the 3He chemical potential and α_0 is applied. The plan of the paper is the following. In Sec. II the generalization of the FHNC and HNC equations to fermion-boson mixtures and the energy equations are derived; in Sec. III the expansion to calculate ϵ_1 and α_0 is presented; in Sec. IV the results are presented and a brief discussion of them is made; finally, the last section contains a brief conclusion.

II. FHNC-HNC EQUATIONS FOR 3He-4He MIXTURES

We consider a homogeneous, isotopic mixture compound of N_3 3He atoms and N_4 4He atoms, confined in a box of volume Ω with densities $\rho_3 = N_3/\Omega$ and $\rho_4 = N_4/\Omega$ and $\rho = \rho_3 + \rho_4$ and concentrations $x_3 = N_3/(N_3 + N_4)$ and $x_4 = N_4/(N_3 + N_4)$; at the end we let N_3, N_4, and Ω go to ∞, keeping the densities constant. The Hamiltonian of such a system is

\begin{equation}
\end{equation}
\[
H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N_4} \nabla_i^2 - \frac{\hbar^2}{2m} \sum_{i=1}^{N_3} \nabla_i^2 + \sum_{i=1}^{N_4} V^{(4,4)}(i,j) + \sum_{i=1}^{N_3} V^{(3,3)}(i,j) + \sum_{i=1}^{N_4} \sum_{j=1}^{N_3} V^{(4,3)}(i,j),
\]

where \(V^{(a,b)} \) are the interaction potentials between the particles of the \(a \) and \(b \) types, repulsive at short distances (here and in the following we will use Greek indices to stand for 3 and 4). To describe the system we adopt a variational choice and simple generalization of the Jastrow wave function used to describe the separate components; then

\[
\psi(1, \ldots, N_4, N_{4+1}, \ldots, N_3 + N_4) = \prod_{i<j}^{N_3} f^{(3,3)}(i,j) \prod_{i=1}^{N_4} \prod_{i<j}^{N_4} f^{(4,4)}(i,j) \prod_{i=1}^{N_4} \prod_{j=1}^{N_3} f^{(4,3)}(i,j) \times \phi(1, \ldots, N_3),
\]

where \(f^{(a,b)}(i,j) \)'s are the correlation functions between the \(i \) \(a \) particle and the \(j \) \(b \) particle, with the usual boundary conditions

\[
\lim_{r_{ij} \to 0} f^{(a,b)}(i,j) = 0, \quad \lim_{r_{ij} \to \infty} f^{(a,b)}(i,j) = 1,
\]

and \(\phi(1, \ldots, N_3) \) is the Slater determinant of plane waves relative to the Fermi component of the mixture.

We are mainly interested in the calculation of the ground-state energy, so it is useful to consider the \(\alpha-\beta \) radial distribution functions:

\[
g^{(\alpha,\beta)}(r_{ij}) = \frac{N_\alpha (N_\beta - \delta_{\alpha \beta})}{\rho_{\alpha \beta}} \int \frac{d\Omega(i,j)}{\mathcal{S}},
\]

with \(\mathcal{S} \) the normalization integral and where \(d\Omega(i,j) \) indicates the integration over all the particle coordinates except \(i \) and \(j \) (\(i \in [\alpha] \) and \(j \in [\beta] \)). Now, we will derive the \(g^{(\alpha,\beta)} \)'s generalizing the HNC and FHNC techniques to a binary system. To make this, we need to construct the sets of all the possible nodal and non-nodal diagrams (we will work in HNC/0 and FHNC/0 approximation, i.e., we will disregard all the contributions coming from the elementary, or bridge, diagrams) and to calculate the functions corresponding to their sums.

The functions are denoted as \(N^{(\alpha,\beta)}_d, N^{(\alpha,\beta)}_d, N^{(\alpha,\beta)}_{ee}, \) and \(N^{(\alpha,\beta)}_{cc} \) and \(X^{(\alpha,\beta)}_d, X^{(\alpha,\beta)}_{ee}, \) and \(X^{(\alpha,\beta)}_{cc} \). The first set of functions refers to the sums of the nodal diagrams and the second to the non-nodal ones. The subscripts indicate the types of correlation lines reaching the external points (\(d \) denotes direct, \(e \) denotes exchange, and \(c \) denotes cyclic) and the superscripts the types of particles (\(\text{He}^3 \) or \(\text{He}^4 \)) at the same points. These functions are the solutions of the following seven integral equations:

\[
N^{(\alpha,\beta)}_{dd} = \sum_{\lambda=3,4} \rho_\alpha X^{(\lambda,\alpha)}_d | X^{(\lambda,\beta)}_d + N^{(\lambda,\beta)}_{dd} \rangle + \rho_\beta X^{(\alpha,\lambda)}_d | X^{(\lambda,\beta)}_d + N^{(\lambda,\beta)}_{dd} \rangle + \rho_3 X^{(\alpha,3)}_d | X^{(3,\beta)}_d + N^{(3,\beta)}_{dd} \rangle + \rho_3 X^{(\alpha,3)}_d | X^{(3,\beta)}_d + N^{(3,\beta)}_{dd} \rangle,
\]

\[
N^{(\alpha,\beta)}_{de} = \sum_{\lambda=3,4} \rho_\alpha X^{(\lambda,\alpha)}_d | X^{(\lambda,\beta)}_d + N^{(\lambda,\beta)}_{de} \rangle + \rho_3 X^{(\alpha,3)}_d | X^{(3,\beta)}_d + N^{(3,\beta)}_{de} \rangle + \rho_3 X^{(\alpha,3)}_d | X^{(3,\beta)}_d + N^{(3,\beta)}_{de} \rangle,
\]

\[
N^{(\alpha,\beta)}_{ee} = \sum_{\lambda=3,4} \rho_\alpha X^{(\lambda,\alpha)}_e | X^{(\lambda,\beta)}_e + N^{(\lambda,\beta)}_{ee} \rangle + \rho_3 X^{(\alpha,3)}_e | X^{(3,\beta)}_e + N^{(3,\beta)}_{ee} \rangle + \rho_3 X^{(\alpha,3)}_e | X^{(3,\beta)}_e + N^{(3,\beta)}_{ee} \rangle,
\]

\[
N^{(\alpha,\beta)}_{cc} = \rho_3 X^{(3,\alpha)}_c | X^{(3,\beta)}_c + N^{(3,\beta)}_{cc} \rangle - \ell(k_F r)/v,\]

where \(\ell(x) = 3(\sin x - x \cos x)/x^3 \), \(k_F = 6\pi^2 \rho_\beta /\nu \), and \(\nu \) is the degeneracy of the Fermi component. The convolution integral is defined as follows:

\[
(f^{(\alpha,\beta)} | g^{(\beta,\gamma)} = \int d\mathcal{F}_x f^{(\alpha,\beta)}(r_{ij}) \bar{g}^{(\beta,\gamma)}(r_{ij}) .
\]

The non-nodal functions are
\[X_{dd}^{(a,b)}(r) = (f^{(a,b)}(r))^2 e^{N_{dd}^{(a,b)}(r)} - N_{dd}^{(a,b)}(r) , \]
\[X_{de}^{(a,3)}(r) = [(f^{(a,3)}(r))^2 e^{N_{de}^{(a,3)}(r)} - N_{de}^{(a,3)}(r) , \]
\[X_{ee}^{(a)}(r) = (f^{(a,3)}(r))^2 e^{N_{ee}^{(a,3)}(r)} [N_{ee}^{(a)}(r) + (N_{de}^{(a,3)}(r))^2 - v(\ell(k_F) / v + N_{ee}^{(a,3)}(r))^2] - N_{ee}^{(a)}(r) , \]
\[X_{ee}^{(3)}(r) = [(f^{(3)}(r))^2 e^{N_{ee}^{(3)}(r)} - 1] [N_{ee}^{(3)}(r) - \ell(k_F) / v] . \]

By means of these functions we can write the radial distribution functions
\[g^{(4,4)}(r) = 1 + N_{dd}^{(4,4)}(r) + X_{dd}^{(4,4)}(r) , \]
\[g^{(4,3)}(r) = 1 + N_{dd}^{(4,3)}(r) + X_{dd}^{(4,3)}(r) + N_{de}^{(4,3)}(r) + X_{de}^{(4,3)}(r) , \]
\[g^{(3,3)}(r) = 1 + N_{dd}^{(3,3)}(r) + X_{dd}^{(3,3)}(r) + N_{de}^{(3,3)}(r) + X_{de}^{(3,3)}(r) + 2 [N_{de}^{(3,3)}(r) + X_{de}^{(3,3)}(r)] . \]

The boson-boson approximation is obtained by putting zero \(N_{ij}^{(a,b)} \) and \(X_{ij}^{(a,b)} \) for \((i,j) \) different from \((d,d) \) in Eqs. (2.5) and (2.7). So we have in this approximation
\[g_{BB}^{(a,b)}(r) = 1 + N_{dd}^{(a,b)}(r) + X_{dd}^{(a,b)}(r) \]
for \(a,b = 3,4 \). At the lowest order of the Wu-Feenberg expansion the radial distribution function of the \(^3\text{He} \) component is given by
\[g_{WF}^{(3,3)}(r) = g_{BB}^{(3,3)}(r) [1 - \ell^2(k_F) / v] . \]

The energy per particle of the binary system is
\[\frac{E}{N} = x_B \frac{E}{N}^{(4)}(\rho_3,\rho_4) + x_F E^{(3)}(\rho_3,\rho_4) + x_B x_F E^{(m)}(\rho_3,\rho_4) , \]
where \(E^{(3)} \) and \(E^{(4)} \) represent the energies of the fermionic \(^3\text{He} \) and of the bosonic \(^4\text{He} \) components and \(E^{(m)} \) is the energy coming from their interaction; using the Fantoni-Rosati form of the kinetic energy for a Fermi system, the various parts of Eq. (2.11) may be written as
\[E^{(4)} = \frac{\rho_4}{2} \int d\vec{r} g^{(4,4)}(r) \left[\rho_4^{(4,4)}(r) - \frac{\hbar^2}{2m_4} \nabla^2 \ln f^{(4,4)}(r) \right] , \]
\[E^{(m)} = \rho \int d\vec{r} g^{(4,3)}(r) \left[\rho_4^{(4,3)}(r) - \frac{\hbar^2}{2\mu} \nabla^2 \ln f^{(4,3)}(r) \right] , \]
\[E^{(3)} = \frac{\rho_3}{2} \int d\vec{r} g^{(3,3)}(r) \left[\rho_3^{(3,3)}(r) - \frac{\hbar^2}{2m_3} \nabla^2 \ln f^{(3,3)}(r) \right] + T^{(1)}(\rho_3) + T^{(2)}(\rho_3) + T^{(3)}(\rho_3) , \]
where \(T^{(1)} = \frac{1}{30} \hbar^2 k_F^2 / m_3 \) and \(T^{(2)} \) and \(T^{(3)} \) are the two- and three-body terms of the kinetic energy obtained from the application of the derivative operator to the Slater determinant. The reduced mass \(\mu \) is
\[\frac{1}{\mu} = \frac{1}{2} \left[\frac{1}{m_3} + \frac{1}{m_4} \right] . \]

In the boson-boson approximation we have \(T^{(i)} = 0 \) for \(i = 1,2,3 \) while in the WF approximation \(T^{(1)} \) is the same as in FHNC, \(T^{(3)} = 0 \) and

\[T^{(2)}_{WF} = - \frac{\hbar^2}{8m_3} \rho_3 \int d\vec{r} g^{(3,3)}(r) \frac{\nabla^2 f^{(2)}(k_F)}{\nabla} . \]

In terms of the energy and of the pressure
\[P = \rho^2 \int \frac{\partial E}{\partial \rho} \mid_{x_3} , \]
we can calculate the enthalpy per particle,
\[H(x_3,P) = \frac{E(x_3,\rho)}{N} + \frac{P(x_3,\rho)}{\rho} \]
and the chemical potential of the α component,

$$
\mu_\alpha = H + x_\beta \left[\frac{\partial H}{\partial x_\alpha} \right]_p .
$$

(2.16)

These two quantities give direct information about the phase behavior of the mixture.3

III. HNC CALCULATION OF THE 3He STATIC PROPERTIES

In the WMT theory,4 the expectation value of the Hamiltonian (2.1) for a binary boson system was written as

$$
\langle H \rangle = N_4 e_0(\rho_4) + N_3 e_1(\rho_4)
$$

$$
+ \frac{N_4^2}{N_4} E_2(\rho_3, \rho_4) ,
$$

(3.1)

where $E_0(\rho_4)$ is the energy per particle of pure 4He at density ρ_4, $E_1(\rho_4)$ is the chemical potential of one 3He atom in 4He at that density and $E_2(\rho_3, \rho_4)$ may be interpreted as an interaction term between the mass-3 bosons. A different form of $\langle H \rangle$ is the following:

$$
\langle H \rangle = N_4 e_0(\rho_4) + N_3 e_1(\rho_4)
$$

$$
+ \frac{N_4^3}{N_4} e_2(\rho_4) + O \left[\frac{N_3^3}{N_4^2} \right] .
$$

(3.2)

The first two terms of formulas (3.1) and (3.2) are the same ($e_0 = E_0$ and $e_1 = E_1$); e_2 is the energy of a system compound from N_4 4He atoms plus two 3He impurities of opposite spins. It is clear that

$$
E_2(\rho_3, \rho_4) = e_2(\rho_4) + O \left[\frac{N_3}{N_4} \right] .
$$

(3.3)

In the zero concentration limit ($x_3 \to 0$) we have $e_2 = E_2$. Using Eq. (2.2) with $\phi = 1$ the explicit expression for the e_i's are

$$
e_0(\rho_4) = \frac{\rho_4}{2} \int d\mathbf{r} \, g_0^{(4,4)}(r) \left[V^{(4,4)}(r) - \frac{\hbar^2}{2m_4} \nabla^2 \ln f^{(4,4)}(r) \right] ,
$$

(3.4a)

$$
e_1(\rho_4) = \frac{\rho_4}{2} \int d\mathbf{r} \, g_0^{(4,3)}(r) \left[2V^{(4,3)}(r) - \frac{\hbar^2}{2m} \nabla^2 \ln f^{(4,3)}(r) \right]
$$

$$
+ \frac{\rho_4^2}{2} \int d\mathbf{r} \, g_1^{(4,4)}(r) \left[V^{(4,4)}(r) - \frac{\hbar^2}{2m_4} \nabla^2 \ln f^{(4,4)}(r) \right] ,
$$

(3.4b)

$$
e_2(\rho_4) = \frac{\rho_4}{2} \int d\mathbf{r} \, g_0^{(3,3)}(r) \left[V^{(3,3)}(r) - \frac{\hbar^2}{2m_3} \nabla^2 \ln f^{(3,3)}(r) \right]
$$

$$
+ \frac{\rho_4^2}{2} \int d\mathbf{r} \, g_1^{(4,3)}(r) \left[2V^{(4,3)}(r) - \frac{\hbar^2}{2m} \nabla^2 \ln f^{(4,3)}(r) \right]
$$

$$
+ \frac{\rho_4^3}{2} \int d\mathbf{r} \, g_2^{(4,4)}(r) \left[V^{(4,4)}(r) - \frac{\hbar^2}{2m_4} \nabla^2 \ln f^{(4,4)}(r) \right] ,
$$

(3.4c)

$g_n^{(\alpha,\beta)}(r)$ is the radial distribution function of the α-β type with n internal impurities (3He atoms).

In the HNC/0 approximation the distribution functions $g_0^{(\alpha,\beta)}$s are easily obtained from the solutions of the following set of equations:

$$
N_0^{(\alpha,\beta)}(r) = \rho_4 X_0^{(\alpha,4)} + N_0^{(4,\beta)} ,
$$

(3.5a)

$$
X_0^{(\alpha,\beta)}(r) = \left(f^{(\alpha,\beta)}(r) \right)^2 e^{N_0^{(\alpha,\beta)}(r) - 1 - N_0^{(\alpha,\beta)}(r)} ,
$$

(3.5b)

and

$$
g_0^{(\alpha,\beta)}(r) = 1 + N_0^{(\alpha,\beta)}(r) + X_0^{(\alpha,\beta)}(r) .
$$

(3.5c)

The $g_1^{(4,\beta)}$s are defined as

$$
g_1^{(4,\beta)}(r) = g_0^{(4,\beta)}(r) \left[N_1^{(4,\beta)}(r) + N_1^{(4,\beta)}(r) \right] ,
$$

(3.6a)
where
\[N^{(k_1k_2)}_1(r) = (g^{(k_1)}_0 - 1 | g^{(k_2)}_0 - 1) \] (3.6b)
is the sum of the nodal diagrams of 4-\(\beta \) type with one \(^3\)He impurity on a node, and
\[N^{(k_1k_2)}_1(r) = 2\rho_4(g^{(k_1k_2)}_0 - 1 | X^{(k_1k_2)}_0 + \rho_4(g^{(k_1k_2)}_0 - 1 | \rho_4(X^{(k_1k_2)}_0 | g^{(k_1k_2)}_0 - 1)) \] (3.6c)
\[N^{(k_1k_2)}_1(r) = \rho_4(g^{(k_1k_2)}_0 - 1 | X^{(k_1k_2)}_0 + \rho_4(X^{(k_1k_2)}_0 | g^{(k_1k_2)}_0 - 1) + \rho_4(g^{(k_1k_2)}_0 - 1 | \rho_4(X^{(k_1k_2)}_0 | g^{(k_1k_2)}_0 - 1) \] (3.6d)
with
\[X^{(k_1k_2)}_0 (r) = g^{(k_1k_2)}_0 (r) - N^{(k_1k_2)}_1 (r) - N^{(k_1k_2)}_1 (r). \] (3.6e)
Finally, for \(g^{(k_1k_2)}_2(r) \) we have
\[g^{(k_1k_2)}_2(r) = g^{(k_1k_2)}_0 (r) [N^{(k_1k_2)}_2 (r) + N^{(k_1k_2)}_2 (r) + [N^{(k_1k_2)}_2 (r) + N^{(k_1k_2)}_2 (r)]^2] \] (3.7a)
where
\[N^{(k_1k_2)}_2 (r) = (g^{(k_1k_2)}_0 - 1 | g^{(k_1k_2)}_0) \] (3.7b)
is the sum of all the nodal diagrams of the 4-4 type with two \(^3\)He impurities on the internal points and at least one of them on a node, and \(N^{(k_1k_2)}_2 (r) \) is the solution of the following integral equation:
\[N^{(k_1k_2)}_2 (r) = 2\rho_4(g^{(k_1k_2)}_0 - 1 | X^{(k_1k_2)}_0 + \rho_4(g^{(k_1k_2)}_0 - 1 | \rho_4(X^{(k_1k_2)}_0 | g^{(k_1k_2)}_0 - 1)) \] (3.7c)
\[+ \rho_4(X^{(k_1k_2)}_0 | X^{(k_1k_2)}_0 + N^{(k_1k_2)}_2 (r) + \rho_4(g^{(k_1k_2)}_0 - 1 | \rho_4(X^{(k_1k_2)}_0 | X^{(k_1k_2)}_0 + N^{(k_1k_2)}_2 (r)) \] with
\[X^{(k_1k_2)}_2 (r) = g^{(k_1k_2)}_2 (r) - N^{(k_1k_2)}_2 (r) - N^{(k_1k_2)}_2 (r). \] (3.7d)

In the WMT theory, the knowledge of \(E_0, E_1, \) and \(E_2 \) allows the calculation of the static properties of \(^3\)He in \(^4\)He; applying these results at zero concentration, we can write
\[\frac{\partial e_1}{\partial \rho_4} = (1 + \alpha_0) \frac{m_4 \delta^2}{\rho_4} \] (3.8)
and
\[2e_2(\rho_4) = (1 + 2\alpha_0)m_4 \delta^2, \] (3.9)
where \(\delta \) is the sound velocity in pure \(^4\)He at that density.

IV. Results

As a starting point of this section, we discuss the energy properties and the phase behavior of liquid \(^3\)He-\(^4\)He mixtures at zero Kelvin temperature and zero atmosphere pressure. In these conditions, the energy per particle is identical to the enthalpy per particle. It has to be noted that our

zero pressure comes from the FHNC-HNC approximation and the corresponding equilibrium density is well far from the experimental one.

We assume that the \(V^{(\alpha\beta)} \) interactions appearing in the Hamiltonian (2.1) are all of the form
\[V(r) = 4\varepsilon \left[\frac{\sigma}{r} \right]^{12} - \left[\frac{\sigma}{r} \right]^{6} \] (4.1)
with \(\varepsilon = 10.22 \) K and \(\sigma = 2.556 \) \(\text{\AA} \); the correlation factors between the \(\alpha \)-type and \(\beta \)-type particles are taken identical for all the pairs and of the commonly used short-range form
\[f(r) = \exp \left[- \left(\frac{b\sigma}{r} \right)^2 \right] \] (4.2)
with \(b \) as unique variational parameter.

In order to study the energy of the ground state of the mixture for different \(^3\)He concentrations, we fix \(x_3 \) and then perform a minimization respect to \(b \) and the density. This, together with the condition \(\rho(\delta E/\delta \rho) = 0 \), determines the total equilibrium density for a given \(x_3 \) and ensures us to have zero pressure.

The excess energy per particle \(E_{ex} \) is related to the heat that must be removed or added to the system in order to keep constant the temperature and is defined as
where all the quantities are evaluated at zero pressure and temperature. When we study the energy diagram, looking for regions of instability requires\(\frac{d^2E}{dx_3^2} < 0 \) or, in an equivalent way,\(\frac{d^2E_{ex}}{dx_3^2} < 0 \). When this condition occurs, the system is completely unstable against phase separation. The condition \(\frac{d^2E}{dx_3^2} = 0 \) gives the frontier of the region with the absolutely unstable systems and determines the spinodal concentration \(x_{3}^{s} \); the maximum solubility concentration \(x_{3}^{m} \) lies a little bit before and is fixed from the condition of the equality of the \(^3\)He chemical potential in pure phase with that in the mixed one:

\[
\mu_{3}(x_{3}^{m}) = \mu_{3}(1). \tag{4.4}
\]

We can rewrite this condition in terms of \(E_{ex} \),

\[
E_{ex}(x_{3}) + (1 - x_{3})\frac{dE_{ex}(x_{3})}{dx_{3}} = 0. \tag{4.5}
\]

The region between the two concentrations \(x_{3}^{s} \) and \(x_{3}^{m} \) is the locus of the metastable concentrations.

In Figs. 1 and 2 we present the values of \(E \) and \(E_{ex} \) obtained by using the following different approximations.

(a) Boson-boson: We consider only the underlying boson-boson system without taking care of the antisymmetrization of the \(^3\)He [Eq. (2.9)].

(b) Wu-Feenberg at lowest order: As in Ref. 9, the antisymmetrization is properly included only at lowest order [Eq. (2.10)].

(c) FHNC-HNC: All the effects of the antisymmetry are considered except those contained in the elementary diagrams [Eq. (2.8)].

In Table I the results for \(x_{3}^{m} \) and \(x_{3}^{s} \) in the different approximations are reported. As it has been already established,\(^7,^8\) the boson-boson solution is completely unstable and no mixture at all takes place. The differences between the other two calculations are not large and, in spite of the small improvement of the FHNC-HNC results, we are still far from the experimental values.

Of course, to calculate \(E_{ex} \) requires much more attention than to calculate the energies of the single pure components, because the first quantity is 2 orders of magnitude smaller, and therefore the evaluation of the derivatives is a very delicate task. Our feeling is that the calculations (performed by us) are accurate enough. The differences from the experimental results are not perceptually larger than those in the pure phases. In this respect, we think that even the inclusion of the omitted diagrams will not improve significantly the conclusions (for pure \(^3\)He the elementary diagrams' contribution to the energy\(^13\) is about 10%). Similarly, an optimal correlation factor, coming from the solution of the Euler equation for the FHNC-HNC energy, would not considerably improve the description of the system.\(^14–16\)

We think that the main source of disagreement between the calculated \(x_{3}^{m} \) and its experimental value is the large error (\(E_{FHNC} = -0.92 \) K) in the
TABLE II. Calculated values of the zero-
concentration chemical potential ϵ_1 and of the excess-
volume parameter α_0 for 3He. M denotes microscopic
and A denotes analytical calculations; expt., experimental
values.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>A</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_1 (K)</td>
<td>-1.89</td>
<td>-1.90</td>
<td>-2.79</td>
</tr>
<tr>
<td>α_0</td>
<td>0.38</td>
<td>0.31</td>
<td>0.28</td>
</tr>
</tbody>
</table>

estimation of the pure 3He energy. Because of
this, the system is energetically favored in the
mixed phase; in fact, to get mixing, it is also essential
that the 3He chemical potential at zero concentra-
tion be smaller than that in the pure phase, but
as the experimental difference between them is
smaller than that calculated with the FHNC-HNC
results, we have a larger x_3^δ.

In Table II we present different results for the
zero-concentration chemical potential of 3He (ϵ_1)
at zero pressure and for the excess-volume parameter α_0. The values under the M column (micro-
scopic) are derived from the equations of the Sec.
III of this paper; those under the A column (analy-
ic) come directly from the curves of Figs. 1 and
2 employing the formula

$$
\alpha_0 = \lim_{x_3 \to 0} \frac{\rho(x_3) - \rho_4}{x_3 \rho_4},
$$

(4.6)

where $\rho(x_3)$ is the equilibrium density of the mix-
ture at the x_3 concentration of 3He and ρ_4 is the
equilibrium density of pure 4He, and

$$
\epsilon_1 = \mu_3(x_3 = 0) = E(0) + \left. \frac{\partial E}{\partial x_3} \right|_{x_3 = 0, p}.
$$

(4.7)

In the expt. column the experimental values are re-
ported. The agreement between the two calculated
values of ϵ_1 is very good. This fact is a strong
indication of the accuracy of the two procedures.

The values of α_0 are also in good agreement if we
have present that numerical derivatives are neces-
sary in order to obtain them. The comparison
with respect to the experimental results shows a
percentual error not larger than that made in the
pure phase calculations. We realize that this type
of wave function allows a better description of the
3He-4He system at very low concentrations of 3He.

This is in accordance with the fact that the simple
Jastrow wave function gives a disagreement of
about 25% in the ground-state energy estimation
for pure 4He and 60% for pure 3He.

We have also made calculations with different
parameters for every type of pairs in the two-body
correlation function, but the results are not signifi-
cantly affected. We think that effective improve-
ments can be achieved by introducing effective
three-body correlation in the wave function and
momentum dependence. This conclusion is strongly
supported from the results in the estimation of the
energy of the pure phases17 and of the 3He effec-
tive mass14 with this more complete wave func-
tion.

V. CONCLUSIONS

The FHNC-HNC theory has been generalized to
apply for boson-fermion mixtures and specifically
for the description of the 3He-4He system. The
system is as well described as in the pure phases.
As was expected, the disagreement between the
simpler lowest-order Wu-Feenberg approximation
and the FHNC-HNC approach increases with the
3He concentration and a small improvement is ob-
tained in the calculated value of the 3He maximum
solubility.

The 3He static properties at very low concentra-
tions, chemical potential, and excess-volume
parameter are better reproduced than the pure 3He
energy. At low concentrations, the mean distance
between the 3He atoms is large compared to that in
the pure phase, and the effective interaction be-
tween two of them does not depend too much on
the Fermi-Dirac statistics, but in order to obtain
good agreement with the experimental values it is
necessary to improve the description of the mixing
by introducing a more complete wave function
than the simple Jastrow-Slater employed in this pa-
per.

ACKNOWLEDGMENT

The authors are much indebted to Professor S.
Rosati for helpful discussions and critical reading
of the manuscript.
On leave of the absence from Department of Nuclear Physics, Granada University, Granada, Spain.

