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The domain growth after a quench to very low, finite temperatures is analyzed by scaling theory
and Monte Carlo simulation. The growth exponent for the excess energy AE (t)~¢ " is found to be
n~ %. The scaling theory gives exactly n =} for cases of hierarchical movement of domain walls.
This explains the existence of a slow growth universality class. It is shown to be a singular Allen-
Cahn class, to which belongs systems with domain walls of both exactly zero and finite curvature.
The model studied has continuous variables, nonconserved order parameter, and has two kinds of
domain walls: sharp, straight, stacking faults and broad, curved, solitonlike walls.

The kinetics of domain growth is of relevance for the
formation of polycrystalline microstructure which is of
considerable importance in surface science,! metallurgy,’
and earth science.® A possible universal classification of
the kinetics of domain growth after a quench from high
temperatures to a low temperature ordered phase has
been under vivid discussion in recent years.* For the case
of nonconserved order parameter, the excess energy AE
of the domain wall network is usually expected to decay
algebraically as AE~t~" with n =1 according to the
Allen-Cahn theory® for curvature driven growth. A pos-
sible deviation from this behavior yielding n ~ 1 was first
found by Mouritsen® by computer simulation on an an-
isotropic system with continuous variables and order pa-
rameter degeneracy p =2. It was subsequently found by
Grest et al.” that a number of generalized p-state “Potts”
models with wide low angle domain wall for sufficiently
high p also gave n~, and the possibility of a new
universality class was proposed. The finding® of the small
exponent n ~ + was disputed as being an artifact of inade-
quate data analysis® or a special effect of the applied zero
temperature Monte Carlo method.® However, further ex-
tensive numerical simulations have been performed'® on
different anisotropic models with continuous variables
and p =2. These corroborate conclusively the existence
of a new, slow growth class with n =1 for quenches to
very low, finite temperatures. It was first suggested by
Mouritsen® that the deviation from n =1 in the investi-
gated systems indicated a breakdown of the basic as-
sumptions in the Allen-Cahn theory® in the presence of
broad, ‘“‘soft” walls, which might screen the interaction
between domains.'® This argument was disputed by Ref.
8 and by van Saarloos and Grant® who firstly showed that
even if the walls were broad, the growth should follow
n=4. They pointed out that this was indeed observed ex-
perimentally.!! Secondly they showed that in the model
studied by Mouritsen the walls were in fact only partly
broad, since they were sharp in some spatial directions.
We agree with this observation.

It is the aim of this paper to show the raison d’étre for
the unexpected slow growth class. This insight was ob-
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tained by analyzing a model which is quite different from
the ones studied by Mouritsen et al.>'® But the domain
walls have the same feature, consisting of a mixture of in-
terconnected broad and sharp walls. We shall now
demonstrate that it is this mixture which is the cause. A
scaling theory shows that the exponent is exactly n = .
As was also found in the previous studies®'© the softness
of the walls is not crucial as such, except for making the
walls able to curve easily. The reason is the following. A
soft wall is well modeled by a solitons like shape with a
width w and a phase ¢ describing the soliton maximum
relative to the lattice positions. The energy and width of
the soliton depends only weakly on the phase ¢. There-
fore a wall consisting of neighboring solitons can curve
continuously with relatively little energy cost. In con-
trast a sharp straight wall can only “curve” by the intro-
duction of a kink. This costs considerable energy. How-
ever, once formed the kink can move freely and fast,
whereas the soliton wall moves slower since it involves
several particles. At sufficiently low temperatures no
kinks can be created by thermal fluctuations and the ex-
isting kinks will be trapped by the soliton walls. The sys-
tem then consists of curved walls connected by straight
walls. This situation is a singular case for the Allen-Cahn
theory. Whereas the basic assumptions still hold, the ex-
ponent is nonetheless n = . The slowing down is due to
a temporal pinning of the straight (zero curvature) walls,
which cannot move until their extent is sufficiently small.
This pinning effect is already present for an order-
parameter degeneracy p =2, corresponding to only two
types of equivalent domains. Let us consider a magnetic
model with continuous spin variables with twofold
order-parameter degeneracy (p =2) in a two-dimensional
x-y lattice (d =2). We use the Hamiltonian introduced
recently'? for simulating a Martensitic transformation,

H= 3 {—KS,S,+J[S;S;—P(T;S,)(T;S;)]}
(i, j)

—D 3 (Si+Sh) . (1
This is simplified here by confining the classical spins to
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only the upper half of the x-z plane; we use D =2J as in
Ref. 12. The dipolar term J favors an antiferromagnetic
state with twofold degeneracy and the K term of fer-
romagnetic state. For K /J <2.9 the p =2 antiferromag-
netic phase is the equilibrium state at low temperatures;
at high temperature the equilibrium state is a one domain
ferromagnetic state. The antiferromagnetic state consists
of antiparallel ferromagnetic chains with an interaction
P —1 times stronger along the chains than between the
chains, i.e., twice when we choose the dipole parameter
P =3. This anisotropy is essential for producing different
kinds of domain walls. The wall for a mismatch along
the chains is a broad soliton involving 6—7 spins canting
continuously in the x-z plane. The wall parallel to the
chains is sharp involving only two spins. This is a stack-
ing fault in the sequence of chains. The energy cost for a
curvature of the broad wall is small (a few percent of J)
and proportional to the curvature, whereas the energy
cost for a kink on the sharp wall is 4J at the chosen ratio
K /J =2.3. The cost of a unit length of the broad wall (a
soliton) is approximately 4J, whereas the cost of a unit
length of the sharp boundary is only 2J.

We have made extensive Monte Carlo computer simu-
lations on this simple model studying the domain growth
after rapid temperature quenches from the ferromagnetic
phase to the p =2 phase at low, finite temperatures (0.01
of Ty~2J/kg). The details are reported elsewhere.!
We choose to follow the behavior of the self-averaging*
excess energy. The principal results are shown in Fig. 1,
proving that the time evolution at late times is algebraic
with a small exponent n ~%. This is the same result as
found by Mouritsen et al.®!® We also observe a rapid
crossover at about 2000 Monte Carlo steps per site (MCS)
to an initial faster decay regime for AE as in Ref. 6, with
an appearant exponent n~1. This has nothing to do
with an Allen-Cahn behavior, but is essentially due to an
exponentially fast optimization of the domain wall width.
Longer runs'® indicate that finite size effects manifest
themselves at much later times at ¢t ~20000 MCS for a
200X 200 size system. All runs included in Fig. 1 will
eventually evolve into a single domain, stable state with
no domain walls (other runs, not shown, may be trapped
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FIG. 1. Excess energy vs time in Monte Carlo steps per site

(MCS).
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in metastable slab configurations'* due to finite size
effects and the periodic boundary condition imposed).
The conclusion is that a clear late time regime is found
with an algebraic decay AE ~t ™" with n ~ 1.

The simple model can be analyzed and we will show
that all assumptions made in the Allen-Cahn theory are
fulfilled, yet giving a smaller exponent. Let us first con-
sider the behavior of a typical domain, which is given the
index “o0”. It is shown in the inset of Fig. 2. We notice
the broad, curved walls (called C walls) predominantly in
the vertical y direction in the x-y plane. The spins in the
indicated solitons are in the x-z plane having a z com-
ponent larger than 0.15. The ellipsoidal domain is ter-
minated by sharp, straight walls (called S walls) shown as
the limiting spins of each domain. The ordered spins are
not shown. The number of solitons in the C wall is a
measure for the length projected on the vertical direction,
called L. This dominates the contribution to the excess
energy, whereas the energy of the curvature is negligible.
The length L of the upper half of the ellipsoid decreases
as a function of time (MCS) in a steplike fashion, but on
the average as square root (t,—t)!/2, whereas the area (in
the whole time interval) decreases linearly as a(z,—1); ¢,
is the time at which the domain “0” disappears. The cor-
responding length L of the lower part of the ellipsoid is
pinned by the S wall until z~25000 MCS. Up to this
time the C walls move towards each other with a velocity
proportional to their curvature, eliminating the S wall at
t~25000 MCS. In this process the area decreases again
linearily as a(t,—t) with the same coefficient a and con-
sistently the length of the S wall decrease as Lg ~(t,—1).
For later times the lengths LY and L decrease both as
(to—1)'/2. The crucial result is that the total excess
domain area A, i.e., the area which will disappear, de-
creases linearly in time, and further, when possible, the
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FIG. 2. The inset shows a typical domain with broad soliton-
like walls and the horizontal sharp and straight walls, the stack-
ing faults. The length projected on the vertical direction L is
divided in the upper part L and the lower part Lg. The time
evolution of these are shown. Notice L is constant until the
stacking fault has disappeared. The total excess area decreases
linearly in time during the whole time interval. Consequently
the length of the stacking fault Lg in the lower part decreases
linearly in time, which is also found directly.
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projected length of the C wall decreases as a square root,
whereas the S wall with finite length can shorten, but not
move. The recreation of short S walls is the reason for
the steps on the L. decrease in Fig. 2. The described be-
havior has been found for all other studied examples. It
is in complete agreement with the basic assumption made
by Allen and Cahn® for a curvature driven domain
growth with the consequences:

Le~(tg—0'"2, Ag=alty—1) . )

The next crucial assumption in the Allen-Cahn theory,
generally not as strongly emphasized, is the assumption
of scale invariance of the growth process. In the simplest
form a simple self-similarity of the domain pattern at
different times of course fulfills such a requirement.
However, we shall now show that a much weaker scaling
requirement is sufficient for deriving the Allen-Cahn law:
Assume for simplicity a two-phase system, where the
minority phase, which will disappear, forms only spheri-
cal domains. The excess area is the total area of these
domains. The Allen-Cahn theory then predicts a de-
creasing domain radius R;(t)~(t;—t)!/> for each
domain, now in general indexed “i”. The smaller
domains will disappear first, but it is important to note
that all domains decrease by the same area per unit time.
The system may therefore remain invariant, if the unit
area A we are considering is increasing proportional to
time, 4 ~¢, and the length unit L increases as L ~t172
since A =L2. The excess energy AE(t) for a large distri-
bution of domain sizes is proportional to the total wall
length, i.e., AE(¢)~Z2,R;(t). Assuming scale invariance,
this length is constant when measured in the time depen-
dent unit L, i.e., 3;R;(t)= const/L ~t /2, From this
follows the famous Allen-Cahn exponent n =1 and
AE(t)~t ™12, 1t is clearly sufficient that the excess area
distribution is invariant when measured in the unit A4,
which is increasing linearly in time. However, no strict
self-similarity is required.

Let us now apply the same scaling idea to our case.
This is a singlular Allen-Cahn situation in which one cur-
vature is zero, namely that of the S wall. As exemplified
in Fig. 2, for each decay process of a domain “/ > having
an S wall, the area and consequently the length Lg;(¢) de-
crease linearly in time. This is contrary to the square
root behavior (2). The excess energy associated with the
S-decrease processes is proportional to the total S-wall
length AEg(t)~Z2;Lg(t). Assuming scale invariance
with respect to the excess area for the S-decrease process
we find AE,(t)= const/L ~t ~'/? in agreement with the
Allen-Cahn theory. Furthermore, in the computer simu-
lation one can separately measure the length of the S
walls and explicitly show that 3;,Lg~t~'/2. This
confirms that the scaling of the area distribution is
fulfilled although there is no self-similar scaling. It also
shows that the unusual, linear time dependence of the in-
dividual process is not relevant.

Next we consider the decrease of the C walls, the C-
decrease process. We must now distinguish between two
cases: a dormant C-decrease process and an active one,
which will only start when the S wall between two C
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walls has diminished to a length comparable to the lattice
distance, i.e., when the stacking fault has a sufficiently
small extent. Let us first discuss the active C-decrease
process. A single process is shown in the upper part of
Fig. 2, where it is proved to be a standard curvature
driven Allen-Cahn process, with the area decreasing
linearly in time, and the linear dimensions decrease as
(to—1)'/%, in particular L%, where “ac” denotes active.
The total excess energy for the active C-decrease process-
es is then

AEE(t)~ 3 L&(t) .

Assuming, as before, scale invariance for the area distri-
bution AEZ is constant when measured in the increasing
length unit L. This leads again to AE&(t)~t /2. The
special feature, that the energy only depends on projected
length L, can therefore not explain the observed small
exponent.

Finally let us consider the dormant C-decrease process.
A single process is shown in the lower part of Fig. 2,
where it is proved to be dormant until the S wall disap-
pears at t ~2500 MCS. For a scaling argument for this
process we must consider the probability that the inter-
vening S walls of length Lg diminish to a fixed length of
the order of the lattice constant a. When we consider
larger and larger scales, the probability 2 for this to be
the case decreases inversely as the length scale increases:
P(Lg~a)~a/L~t"'2 Out of the increasing area unit
A, only a fraction A4, of the area is available for the ac-
tive C decrease process A, = AP(Lg~a)~1tt~'2=¢1"2,
The area unit for the C-decrease process therefore in-
creases slower, and consequently also the length unit
L,.=A!/2~t'% Assuming again scale invariance for
the excess area distribution we now find for the dormant
C-decrease process, including the subsequent active one,
that the decrease of the total excess energy is
AE (t)~Z2,Lc(t)=const/L,.. This gives an excess en-
ergy decrease as

AE (1)~t ™%, 3)

This agrees with the observed small exponent. The
reason for the slow decay is simply that the dormant C-
decay process has to wait for the S wall to disappear. We
have also verified by the simulation that the total C
length 3;L; decreases as t ~!/*. Any active C decrease
process already in operation at early stages will disappear
faster than the dormant one, which will dominate the late
time behavior. It is interesting, however, that the equally
fast S-decrease process will continue to play an important
braking role for the dormant C-decrease process. This is
because the prohibitive S-wall length is to be compared
with the atomic scale. The excess energy is dominated by
the dormant C-decrease process for energy reasons in our
case, but it will always dominate at sufficiently late times.
The slow time evolution with an exponent exactly equal
n =1 is therefore now explained, not as a consequence of
the softness of the walls, but as a consequence of a hierar-
chy of walls, where the decrease of one kind depends on
the other. A related problem was studied previously by
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dynamical scaling theory.!> Such a hierarchy is in fact
present in the models®!° in which the slow growth was
first discovered. We believe these model systems and our
model indeed form a new universality class with n =,
independent of details in the models. The growth is in
many respects in agreement with the Allen-Cahn theory,
but we are dealing with a special case of mixed zero and
finite curvature. Important examples of such straight
walls are stacking faults and twin boundaries in crystals
or on surfaces. We expect this class to have many
members. A number of possible experiments were sug-
gested by Mouritsen,® but results are yet to come. Ideally
the domain wall length should be measured. However,
the structure factor for scattering experiments does as
well indicate a slow growth law, although being more
difficult to analyze. At elevated temperatures the straight
walls roughen'® and get the possibility to move. The
self-pinning then disappears and the growth approaches
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the standard Allen-Cahn n =% behavior. This is seen in

recent Monte Carlo studies. !’

We conclude that the growth kinetics for noncon-
served order parameter, even for degeneracy p =2, must
be subdivided in at least two classes with algebraic time
evolution ¢ ~" with different exponents n =1 and n =1.
The first represents independent domain wall movements,
the latter hierarchical wall movements where the slower
domain growth is due to time dependent self-pinning,
operative for quenches to very low temperatures.
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