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Experimental study of stable imbibition displacements in a model open fracture.
I. Local avalanche dynamics
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We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition
fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions.
We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension and forced them
to slowly invade a model open fracture at different constant flow rates v. In this first part of the study we have
focused on the local dynamics at a scale below the size of the quenched disorder. Changing μ and v independently,
we have found that the dynamics is not simply controlled by the capillary number Ca ∼ μv. Specifically, we
have found that the wide statistical distributions of local front velocities, and their large spatial correlations along
the front, are indeed controlled by the capillary number Ca. However, local velocities exhibit also very large
temporal correlations, and these correlations depend more strongly on the mean imposed velocity v than on the
viscosity μ of the invading fluid. Correlations between local velocities lead to a burstlike dynamics. Avalanches,
defined as clusters of large local velocities, follow power-law distributions—both in size and duration—with
exponential cutoffs that diverge as Ca → 0, the pinning-depinning transition of stable imbibition displacements.
Large data sets have led to reliable statistics, from which we have derived accurate values of critical exponents
of the relevant power-law distributions. We have investigated also the dependence of their cutoffs on μ and v and
related them to the autocorrelations of local velocities in space and time.
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I. INTRODUCTION

Fluid flow through disordered media occurs in geological,
agricultural, and industrial processes of capital importance.
It often involves the presence of an interface separating
two different phases, when a fluid originally residing in
the disordered medium is displaced by an invading fluid.
In secondary oil recovery, for instance, the front dynamics
between the two immiscible phases (oil and water) determines
the efficiency of the recovery process. Printing, coating,
filtering of chemicals and contaminants, impregnation, and soil
irrigation are other examples of two-phase fluid displacements
in disordered media [1–5]. The invasion process depends
first on the relative ability of the two fluids (displacing
and displaced) to wet the walls of the disordered medium.
When the invading fluid wets preferentially the medium,
the displacement—favored by capillary forces—is called
imbibition. Second, the displacement may be either stable
or unstable, depending on the relative viscosity of the fluids
involved. The displacement is stable when the displacing fluid
is more viscous than the displaced fluid. Front disturbances,
due to capillary pressure fluctuations at the pore scale, cannot
grow because the viscous pressure gradient on the side of the
displacing fluid is larger than on the side of the displaced fluid
[6,7].

Stable-imbibition displacements in disordered media have
received a lot of attention from a fundamental perspective,
since they represent an interesting realization of the more gen-
eral problem of the motion of a slowly driven front in a random
potential. In this context, the competition between stabilizing
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and destabilizing (random) forces on different time and length
scales leads to the unbounded growth of correlations and to
the emergence of scale-invariant asymptotic properties [8,9].
In stable-imbibition displacements, specifically, the stabilizing
forces are the surface tension along the front and the change in
viscous pressure drop across it. In contrast, capillary pressure
fluctuations and permeability variations play the role of a
quenched disorder, responsible for the front distortions. In the
absence of gravitational forces (e.g., for horizontal displace-
ments) the main features of these flows are controlled by the
capillary number, a ratio of viscous to surface tension forces.
The capillary number is defined as Ca = μv/σ , where μ is
the dynamic viscosity of the invading fluid (much larger than
the dynamic viscosity of the receding fluid), v is the average
velocity of the invading front, and σ is the interfacial tension
between the two fluids. Large-scale front fluctuations are
damped preferentially by the fluid viscosity, while small-scale
fluctuations are damped by surface tension. The condition of
mass continuity implies that these two stabilizing mechanisms
cross over at a characteristic length scale �c = √

κ/Ca, where κ

is the permeability of the disordered medium. This length scale
was predicted theoretically and numerically to determine also
the lateral extent of correlations of the front distortions [10,11].
We verified this prediction experimentally for constant flow-
rate displacements at different v, and we could show, moreover,
that this correlation length �c plays a crucial role in controlling
the dynamics of the invasion process [12]. Indeed, the front mo-
tion takes place by avalanches, localized front displacements
in which the front velocity is very high and spatially correlated,
with a maximum lateral extent set by �c. The limit v → 0
corresponds to a critical depinning transition, characterized
by diverging lateral correlations �c ∼ 1/

√
v and an infinite

susceptibility of the system to front distortions in the thermo-
dynamic limit. Avalanches in stable-imbibition motions have
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been studied experimentally [12–17], theoretically [10,18–20],
and numerically with phase-field simulations [18–20].

We present here a large ensemble of new experimental
results on the dynamics of stable imbibition displacements.
In the present experiments, a two-dimensional model of an
air-filled disordered medium is invaded by a viscous silicone
oil at constant flow rate. Displacements are horizontal, so
gravitational effects are absent. The experiments are performed
in the statistically stationary state of saturated front roughness,
in which the spatial fluctuations of the front height h(x,t) do
not depend on t in average. In this paper (Part I) we focus our
attention on the spatiotemporal behavior of the instantaneous
velocities v(x,t) ≡ ∂h/∂t at a local scale, defined by our
spatial resolution. A corresponding study of the dynamics
through increasing length scales, up to the lateral system size
L, is reported in the accompanying paper (Part II) [21].

In comparison to previous works we have expanded
significantly the space of experimental parameters: We have
used five silicone oils of very different dynamic viscosity and
increased the range of driving velocities to span more than one
decade in the lowest accessible range. In this way we have
been able to investigate imbibition displacements in a very
wide range of capillary numbers, 6 × 10−5 < Ca < 2 × 10−3.
We have also made an important effort in improving the
statistics: For each experimental condition, defined by (v,μ),
we have performed 15 to 20 experiments with different
disorder realizations. Improved statistics has led to very robust
scalings and to accurate values of the various critical exponents
that characterize the local spatiotemporal dynamics in this kind
of displacements. Accurate values of complete sets of critical
exponents are most valuable to test new and existing theoretical
approaches of imbibition front dynamics. The main effort in
the present work has been to use invading fluids of various
dynamic viscosities. Indeed, by changing systematically the
dynamic viscosity of the invading fluid—while keeping the
oil-air surface tension practically unchanged—we have been
able to show the distinct effect of the flow rate v and the
viscosity μ on the invading process. Specifically, we have
verified the scaling �c ∼ 1/

√
Ca independently for v and μ,

but also we have demonstrated that the temporal correlations
of local front velocities—and, consequently, the duration of
local avalanches—do not scale identically with v and μ and
therefore are not controlled only by Ca.

This article is organized as follows. The experimental
setup and the experimental methods are described in Sec. II.
The front dynamics is analyzed at the (local) scale of our
spatial resolution in Sec. III, and the corresponding avalanche
behavior is quantified in Sec. IV. Finally, in Sec. V, we discuss
the results and draw the conclusions of this work.

II. EXPERIMENTAL SETUP AND METHODS

Our experiments emulate the invasion of an open fracture
by a wetting, viscous fluid. The model open fracture is a
Hele-Shaw (HS) cell with fluctuating gap spacing. A sketch is
shown in Fig. 1. The model consists of two rectangular parallel
glass plates (190 × 500 mm2) separated by a much smaller
distance. Dichotomic variations in gap spacing, between b =
0.46 mm and b − �b = 0.40 mm, are provided by a fiber-glass
plate with controlled topography placed on top of the bottom

FIG. 1. Sketch of the model open fracture. The liquid is driven at
constant flow rate from the inlet(I) displacing the previously resident
air. The model open fracture consists of two horizontal, parallel glass
plates (G) and a disorder fiber-glass plate (FG). Squared copper
patches (Cu) of lateral sizes 0.4 × 0.4 mm2 are randomly distributed
occupying 35% of the surface of the FG plate. The region of interest
(ROI) defines the lateral system size L = 136 mm.

glass plate. The topography consists of copper patches of
size 0.4 × 0.4 mm2 and height �b = 0.06 mm. These patches
are randomly distributed in a square grid, occupying 35% of
the surface. Adjacent patches form islands of disorder. Their
lateral sizes are exponentially distributed, with a characteristic
length �d = 0.6 mm [12].

The fluid is injected through the medium at constant flow
rate by means of a syringe pump connected to the inlet, dis-
placing the air initially present. Lateral edges of the HS cell are
sealed in order to allow fluid flow in the y direction only. The
imposed flow rates explored produce mean velocities in the
range 0.04 < v < 0.6 mm/s. The fluids used are silicone oils
of dynamic viscosities μ = 10,50,100,169,350 cP, density
ρ � 1000 kg/m3, and surface tension around σ = 21 mN/m
in all cases. We thus explore a wide range of capillary numbers
Ca = μv/σ between 6 × 10−5 and 2 × 10−3 and nominal
correlations lengths along the front 2.6 < �c < 15.3 mm.
All experimental conditions explored and the corresponding
values of Ca and �c are quoted in Table I. For each given
experimental condition (v,μ) we have performed 15 to 20

TABLE I. Experimental conditions: μ is the dynamic viscosity
of the fluids, v the imposed mean velocity, Ca their corresponding
capillary numbers, �c the nominal correlation length along the front,
and �c/L the fraction of the lateral system size that is correlated.

μ (cP) v (mm/s) Ca (×10−4) �c (mm) �c/L (%)

10 0.126 0.63 15.3 11.2
0.219 1.09 11.6 8.5

50 0.036 0.90 12.7 9.4
0.053 1.32 10.5 7.7
0.131 3.27 6.7 4.9
0.227 5.68 5.1 3.7
0.353 8.84 4.1 3.0
0.553 13.84 3.3 2.4

100 0.051 2.46 7.7 5.7
0.131 6.26 4.8 3.5

169 0.053 4.27 5.8 4.3
0.130 10.49 3.7 2.7

350 0.131 21.71 2.6 1.9
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experiments with different disorder realizations. This leads to
very large data sets, required for an accurate statistical analysis.

The oil-air front advancement is recorded from the top using
a high-speed, high-resolution camera. The spatial resolution is
r = 0.106 mm/pixel. The image acquisition rate is adjusted
(up to 200 frames/s) to ensure that the front locally advances
one pixel at most between consecutive images. The region of
interest (ROI) spans L = 136 mm in the transverse direction
x (smaller than the cell width to avoid boundary effects) and
25 to 45 mm in the propagation direction y.

We base our study on the analysis of the local waiting
time fluctuations along the front during its propagation. This
method was originally developed to study the dynamics of
interfacial cracks [22] and successfully applied to characterize
the burstlike dynamics observed in forced-flow imbibition
[12–14]. It consists on computing the amount of time
wt(x,y = h(x,t)) spent by the front at each position (x,y) of
the ROI (image recorded). The front lines h(x,t) are obtained
by applying an edge-tracking algorithm on the recorded
frames. The map of local velocities is then computed as
v(x,y) = r/wt(x,y), where r is the spatial resolution. Each
local velocity determined in this way is actually the mean
value of the local front velocity at the pixel resolution.

III. LOCAL VELOCITIES

We perform initially a qualitative analysis of the properties
of the local velocities. Figure 2 displays local velocity maps
for three experiments performed at the same imposed mean
velocity v = 0.13 mm/s but different viscosities μ = 10, 50,
350 cP. In all cases regions of high velocities (above v)
alternate with regions of low velocities. We clearly observe that
these velocity fluctuations around v become larger at smaller
viscosities. In particular, regions of local velocities v(x,y) � v
become bigger, and pinned regions with v(x,y) � v clearly
appear. Besides, low-viscosity fronts are rougher than high-
viscosity fronts. Reducing v instead of μ produces equivalent
effects, suggesting that Ca controls indeed the fluctuations
of v(x,y).

A. Statistical distributions of v(x, y)

Figure 3 shows the distributions of local velocities rescaled
by their mean value P (v/〈v〉) for different μ and v. We choose
this quantity in order to compare experiments performed at
very different v—covering more than one decade. First, local
velocities are widely distributed, spanning a large range of
more than three decades. In all cases, the distributions show

FIG. 2. Velocity maps of three experiments performed at the same v = 0.13 mm/s but different μ = 10, 50, 350 cP (top, middle, bottom).
The color code (gray scale) bar for v(x,y) is the same in all cases. The bottom-right white line in each panel gives the nominal correlation
length �c = 15.3, 6.7, 2.6 mm for each experimental condition.
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FIG. 3. Distributions of local velocities rescaled by their mean
value P (v/〈v〉). Main plot: Distributions corresponding to experi-
ments performed with the same oil but different v = 0.036, 0.053,
0.13, 0.23, 0.35, 0.55 mm/s. Inset: Distributions corresponding to
experiments with different oils of viscosities μ = 10, 50, 100, 169,
350 cP. Dashed and dotted lines are guides to the eye.

a steep decay at large values of v, close to (v/〈v〉)−3.5. In
experiments performed at large v or μ, the distributions have
a maximum slightly below the mean value. However, for
lower v and μ the distributions get wider: The probability
of observing extreme velocities, both much smaller and much
larger than the average velocity, increase. This was already
noticed qualitatively in Fig. 2. The distributions develop a
power law around 〈v〉 well fitted by (v/〈v〉)−1.25 for almost two
decades in the experiments of lowest viscosity and velocity.

This systematic evolution of the distributions P (v/〈v〉) with
μ and v is analyzed in terms of the capillary number Ca ∼ μv
in Fig. 4. The distributions shown correspond to four different
values of Ca, including the two extreme values studied
Ca = 6.3 × 10−5 and 2.2 × 10−3. Remarkably, for different
experimental conditions but similar Ca, the distributions
P (v/〈v〉) collapse on the same curve. This provides strong

FIG. 4. Distributions P (v/〈v〉) for displacements at various
Ca = 6.3 × 10−5, 2.5 × 10−4, 3.3 × 10−4, and 2.2 × 10−3. Different
symbols correspond to different dynamic viscosities.

FIG. 5. Distributions of normalized local velocities—at the scale
of spatial resolution—in a semilog plot (main) and a log-log plot for
the positive values (inset). Results are shown for all experiments, but
different v are not differentiated.

evidence that the capillary number controls the statistical
behavior of the local velocities of the front.

We can also study the statistical distributions of the
normalized fluctuations of the local velocities, defined as
Y = (v − 〈v〉)/σ , where σ stands here for the standard
deviation of P (v). The probability density functions (pdf) for
all experiments are shown in Fig. 5. Again, all of them show
a peak around the mean value and an abrupt decay at large
v, as previously observed in Fig. 3. Interestingly, now all data
collapse for Y > 1, that is, when fluctuations are one σ larger
than the mean velocity of the experiment. We will make use
of this result to analyze local avalanches in Sec. IV.

B. Correlations of v(x,h(x,t))

1. Spatial correlations along the front

Lateral spatial correlations can be studied by computing the
autocorrelation function of the local velocities along the front:

Cv(��) = 〈(v(� + ��) − 〈v(�)〉)(v(�) − 〈v(�)〉)〉�.
〈v(�)〉 is the average velocity within the window of size �,
〈· · · 〉� is the average over all windows � ∈ [0,L − ��] along
the interface, and · · · is the ensemble average over interfaces
recorded at different times.

Figure 6 shows the systematic evolution of Cv with imposed
flow rate for a given viscosity (left panel) and with viscosity

FIG. 6. Autocorrelation of local velocities along the front. Left:
Experiments at different imposed mean velocities v = 0.036, 0.053,
0.13, 0.23, 0.35, 0.55 mm/s. Right: Experiments using different oils
of dynamic viscosities μ = 10, 50, 100, 169, 350 cP.

012149-4



EXPERIMENTAL STUDY . . . . I. LOCAL AVALANCHE . . . PHYSICAL REVIEW E 93, 012149 (2016)

FIG. 7. Lateral length scales of the maximum anticorrelation
(��∗, solid symbols) and decorrelation (��min, open symbols),
extracted from Fig. 6, vs the nominal correlation length �c. Different
velocities are plotted for each μ, with �c ∼ 1/

√
v. Dashed lines are

guides to the eye. The dotted line has slope 1.

for a given mean velocity (right panel). We observe that the
autocorrelation of the local velocities decays with �� towards
a minimum below zero—i.e., maximum anticorrelation—at
��∗, and then increases again towards zero, until the signal
becomes fully uncorrelated at large ��.

The evolution of the length scale ��∗ is plotted as a function
of the nominal correlation length �c in Fig. 7 (solid symbols).
The length scale ��min at which the signal becomes fully
uncorrelated is also displayed in the figure (open symbols).
For all experimental conditions (μ,v) explored ��∗ and ��min

are proportional to �c. The values of ��∗ are systematically
smaller than �c while the values of ��min are systematically
larger than �c. This result confirms that the capillary number
Ca = μv/σ controls the lateral spatial correlations of the
interface, through the characteristic length scale �c ∼ 1/

√
μv.

Equivalent information can be extracted from the analysis
of the statistical width Wv(�) of the fluctuations of v over
windows of size � along the front. Wv(�) increases with � until
it saturates above a crossover length scale �∗ as observed in
Fig. 8. The transition between the scaling and the saturated
regimes is smooth, making more difficult to extract �∗ from
this plot than to obtain the characteristic length ��∗ from
Cv . However, we observe that the crossover length scale �∗
evolves similarly with μ and v, and the results are compatible
with �∗ ∼ �c. Nevertheless, we observe that μ and v play an
opposite role on the amplitude of the velocity fluctuations,
Wv(�): Fluctuations are larger the smaller μ but also the
larger v.

2. Spatial correlations in the direction of propagation

We study also the correlation of v(x,y) in the direction
of propagation of the front. We do not consider the temporal
information of the position of the front explicitly. Instead, we
analyze directly the correlation of the velocities of the interface
in y, and compare it with the underlying quenched disorder.
Figure 9 displays the autocorrelation functions Cv(�y) for
different oil viscosities (solid lines). Again, in all cases the
correlation decays with �y until it reaches a minimum negative
value (maximum anticorrelation) and then it increases and

FIG. 8. Statistical width of local velocities as a function of the
window of observation �. Top: Experiments using different oils of
viscosities μ = 10, 50, 100, 169, 350 cP. Bottom: Experiments
performed at different imposed mean velocities v = 0.036, 0.053,
0.13, 0.23, 0.35, 0.55 mm/s.

saturates to 0 (no correlation). The curves plotted for �y > 1
have been smoothed. At these scales the curves fluctuate but
follow a systematic general trend. The average value of the
fluctuations is well captured by the smoothed curves. Let �y∗
be the value of �y where Cv is minimum, and �ymin the
value of �y where (the smoothed) Cv becomes 0 after the
minimum. These quantities are plotted against Ca in the inset
of the figure. �y∗ (open symbols) remains constant over all
the range of Ca explored. On the contrary, �ymin decreases
with Ca as �ymin ∼ Ca−0.4.

We can compare these results to the underlying disorder
in the cell. We consider the disorder landscape as a matrix
with elements d(x,y) equal to 1 on the disorder patches
and 0 otherwise. Then the autocorrelation function of d(x,y)
in the direction of propagation of the front (dashed line in
Fig. 9) can be compared to the autocorrelation function Cv

of the fronts (solid lines in the same figure). In tune with the
nominal lateral size of single disorder patches (0.4 mm) and
with the characteristic lateral size of the clusters of disorder

FIG. 9. Autocorrelation of local velocities in the propagation
direction y for experiments with different oil viscosities. The spatial
correlation of the disorder is also shown (dashed line). Inset: �y∗

(open symbols) and �ymin (full symbols) vs Ca. The dotted line
corresponds to �yd (the length scale of decorrelation of the disorder).
The dashed line is a guide to the eye proportional to Ca−0.4.
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patches (�d = 0.6 mm), the disorder is highly correlated up
to �0.3 mm; the autocorrelation of d(x,y) decays abruptly
beyond this value, and it becomes zero at �yd = 0.54 ± 0.05
mm. This value is compared to the experimental values �y∗
and �ymin in the figure inset. A strong influence of the
disorder patches on the local dynamics of the interface in
the propagation direction y is clearly observed: The maximum
anticorrelation is achieved at �y∗ = �yd , indicating that the
largest fluctuations of the local velocity occur within the
characteristic size of the disorder patches �d . However, the
relaxation of those large fluctuations is controlled by the
capillary number.

3. Temporal correlations

We now analyze the temporal correlation of local velocities
by computing the autocorrelation of the signal v(x,t) in time
and taking the ensemble average over different positions x

along the front:

Cv(�t) = 〈(v(t + �t) − 〈v(t)〉)(v(t) − 〈v(t)〉)〉t .
〈v(t)〉 is the average velocity within the temporal window �t ,
〈· · · 〉t is the average over all the temporal windows of v(x,t)
such that t ∈ [0,tmax − �t], and · · · is the ensemble average
over velocity signals analyzed at different positions x and
different realizations of the experiment. Cv(�t) presents a
similar qualitative behavior (not shown here) than the spatial
autocorrelation function displayed in Fig. 6: Cv decays as
�t increases, until it reaches a minimum value below zero—
maximum anticorrelation—at �t∗. For larger time lags, local
velocities become uncorrelated in time and Cv → 0.

Figure 10 displays the evolution of �t∗ for all experimental
conditions explored as a function of the capillary number
Ca ∼ vμ. Although the range of imposed velocities explored
(vmax/vmin = 15) is smaller than the range of viscosities
(μmax/μmin = 35), �t∗ varies much more with v than with
μ. Those results make clear that velocity and viscosity do not
play the same role in controlling �t∗—unlike what happens
with ��∗, as discussed before. The dashed line goes through
experiments performed at different v but the same μ and is
proportional to a power law v−1.4. Experiments at the same
v but different μ correspond to the dotted line, which is

FIG. 10. Maximum anticorrelation time �t∗ as a function of
the capillary number Ca. Dashed and dotted lines are guides to
the eye proportional to v−1.4 and μ−0.4, respectively. Open symbols
correspond to experiments at v = 0.13 mm/s.

proportional to μ−0.4. These scaling relations are discussed
in Sec. V in connection with the statistical properties of the
local avalanches studied in the next section.

IV. LOCAL AVALANCHES

Our purpose in this section is to study the spatiotemporal
dynamics of imbibition fronts in terms of local avalanches.
We define local avalanches as spatially connected clusters of
velocities v(x,y) higher than a given velocity threshold vc. The
threshold used is vc = 〈v〉 + cσv , where 〈v〉 is the mean value
of the local velocities in the experiment [i.e., the temporal and
spatial average of v(x,t)], σv is its standard deviation, and c is
an arbitrary constant called the clip level.

Local avalanches are characterized by their size A, given by
the surface area of the cluster of high velocities; their duration
D, given by the time interval elapsed from the moment that a
first interface enters the cluster of high velocities to the moment
that a last interface leaves the cluster; and their extension,
Lx and Ly , in the corresponding directions x and y. These
definitions are represented graphically in Fig. 11.

A. Nontrivial role of the disorder

Thanks to the precise control of the disorder in our setup,
and the high spatial resolution of the acquired images, we are
able to compare directly disorder patches with local bursts
of velocity. Figure 12 displays the clipped velocity map
corresponding to an experiment with v = 0.13 mm/s and μ =
50 cP, on top of the disorder landscape explored by the front.
Velocities above vc = 〈v〉 + 2σv are shown in white, while
velocities below are not displayed. Hence the white clusters
observed in the figure correspond to local avalanches as defined
earlier. Disorder patches—copper islands that reduce the gap
spacing of the cell—are represented in black and disorder-free
regions in orange (dark gray). Since the disorder matrix does
not coincide with the matrix of pixels of the image, some pixels
are only partially filled by disorder patches. The pixel color
code (gray scale) ranges from orange (dark gray) (no disorder
patch) to black (disorder). The bottom panel shows the whole
velocity map v(x,y) of the experiment, and the top panel on
the left shows a close-up of a single avalanche. We observe that
the geometry of the local disorder bears no direct correlation
with the clusters of high velocities. To quantify this effect we
measure the amount of disorder swept by the front during a
local avalanche, i.e., the amount of copper patches within a
cluster of fast motion. The top panel on the right of Figure 12
shows the areas of disorder swept by local avalanches versus
the areas of the corresponding avalanches. The most probable
values of these magnitudes are proportional to each other with
a proportionality coefficient 0.35; this means that the amount
of disorder below a local avalanche is 35% in average. This
value corresponds precisely to the nominal filling fraction of
the disorder patches in our model. We conclude that avalanches
occupy any region of the cell with no particular preference for
the underlying disorder patches.

B. Statistical characterization of local avalanches

In this section we analyze the statistical properties of sizes,
durations, and shapes of local avalanches. We first study
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FIG. 11. Definition of local avalanches. Bottom: Velocity map after clipping. Local velocities v < vc are all plotted in blue (dark gray).
The first and last interfaces in contact with the avalanche highlighted are shown. Top left: Close-up of the selected avalanche. Top middle:
Definition of area, A, and lateral sizes, Lx and Ly , of the avalanche. Top right: Close-up of the same avalanche on the activity map v(x,t). The
avalanche duration is D. Experimental conditions: v = 0.13 mm/s, μ = 50 cP.

FIG. 12. Comparison of local avalanches with the disorder patches in the plate underneath. Bottom panel: Velocity map in (x,y) space.
Top left panel: Close-up of a single avalanche. Local avalanches are depicted in white. The color code (gray scale) for the disorder ranges from
orange (dark gray) (no disorder patch in the pixel) to black (disorder occupying the whole pixel). Top right panel: Areas of disorder swept by
local avalanches vs the areas of the corresponding avalanches in double-logarithmic scale and in lin-lin scale (inset).
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the effect of the threshold vc on the statistical distributions.
In earlier experimental work on imbibition avalanches the
threshold for the local velocities was defined as ṽc = c〈v〉
[12]. However, we have shown in Fig. 3 that the distributions of
v/〈v〉 for different experiments do not collapse, meaning that
the underlying statistics of v/〈v〉 differs for each experimental
condition (v,μ). If we instead consider the normalized variable
Y = (v − 〈v〉)/σv , the distributions of Y practically collapse
for Y > 1 for all the experimental conditions explored (Fig. 5).
The choice vc = 〈v〉 + cσv , with c > 1, is thus more appro-
priate to consider local avalanches of statistically equivalent
local velocities. It allows to compare experiments performed
at very different experimental conditions (μ,v).

The statistical distributions of the various properties of the
local avalanches—size, duration, and lateral extents—can be
approximated by the general form Px(x) = axx

−mx e−x/ξx , a
power law with an exponential cutoff.

First, for given experimental conditions μ and v, we verified
that the power-law exponent, αA for sizes and αD for durations,
is independent of the clip level within the range 1 � c � 3
explored. The clip level, however, does play a systematic role
in the cutoff of the distributions. As the clip level c increases,
the sizes and durations of the high-velocity clusters decrease,
as well as the power-law range of the distributions. Given that c
does not modify the scaling exponent, we have selected c = 2
in all subsequent analysis in order to compare experiments
performed with different (μ,v).

Second, for fixed clip level, the cutoffs of the power-law
distributions depend on the controlling parameters of the
experiment. This dependence will be studied in detail later.
When distributions with different cutoffs are available, a
good procedure to obtain a reliable value of the power-law
exponent of the distributions is to look for their best collapse
in the appropriate reduced variables. This method is described
in Refs. [23,24]. It has been applied here to obtain the
power-law exponents of the distributions of A, D, Lx , and
Ly . For some particular experimental conditions, however, the
probability distributions display only the exponential decay.
The corresponding data have been discarded from the data set
used to extract the corresponding power-law exponent.

1. Distributions of sizes and durations

The size of a disorder patch introduces a natural lower cutoff
of avalanche sizes. For this reason we consider as avalanches
only those high-velocity clusters that span at least one disorder
patch. This implies that the minimum avalanche size is Amin =
0.4 × 0.4 mm2. Figure 13 shows the distributions of sizes
for various experimental conditions. P (A) follows a power
law with a decaying cutoff. The power-law exponent does not
depend on the mean velocity of the front nor on the viscosity
of the fluid, as observed on the left and the right panels of
the figure, respectively. In all cases the power-law regime is
represented by the same exponent,

αA = 1.09 ± 0.08.

This exponent is compatible with the value reported earlier
by our group for one single oil (μ = 50 cP) [12]. However,
it differs from the value αA = 1.54 ± 0.05 obtained in phase-
field simulations [19,20].

FIG. 13. Distributions of sizes of local avalanches. Left: Evo-
lution of the pdfs with the imposed mean velocity v = 0.036,
0.053, 0.11, 0.16, 0.22, 0.35, 0.55 mm/s. Open symbols correspond
to ill-behaved distributions. Right: Evolution of the pdfs with oil
viscosity μ. In both cases αA = 1.09 ± 0.08.

The scaling range of the distributions and thus the cutoffs,
however, do depend on v and μ. The evolution of ξA with v
is quite clear and systematic. The slower the fluid is pushed
through the medium, the bigger the avalanches can be. The
evolution of ξA with viscosity is less clear. In general we
observe that the smaller μ the bigger the avalanches can be.

The distributions of durations of local avalanches are
displayed in Fig. 14 for the same experimental conditions of
the previous figure. Again, the distributions show a power-law
regime with an exponential cutoff. The power-law exponent
does not depend on the experimental conditions:

αD = 1.03 ± 0.10.

In this case the exponent differs from the value obtained in
earlier experiments where the statistics of durations was poorer
[12]. The result from phase-field simulations again differs
considerably, αD = 1.62 ± 0.06 [19].

The effect of the controlling parameters (v,μ) on the
avalanche durations is manifested in the evolution of the
cutoffs, which measure the maximum duration of the bursts
of fast motion. ξD evolves systematically with the flow rate v,
as clearly observed in the left panel of Fig. 14. The faster the
front, the shorter the avalanches. On the contrary, the evolution
of ξD with viscosity is not obvious.

2. Morphology of avalanches

The shape of local avalanches is not isotropic. High-
velocity clusters are larger in the lateral direction x than in
the direction of front advancement y, as can be observed
in Fig. 11. The distributions of lateral extents Lx and Ly ,

FIG. 14. Distributions of durations of local avalanches. Left:
Evolution of the pdfs with the imposed mean velocity v = 0.036,
0.053, 0.11, 0.16, 0.22, 0.35, 0.55 mm/s. Right: Evolution of the pdfs
with oil viscosity μ. In both cases αD = 1.03 ± 0.10.
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FIG. 15. Distributions of lateral extents Lx (left) and Ly (right) of local avalanches. The range of velocities shown in the top panels is
v = 0.036, 0.053, 0.13, 0.23, 0.35, 0.55 mm/s. The bottom panels show the evolution of the pdfs with viscosity. The exponents obtained are
αLx

= 0.83 ± 0.10 and αLy
= 1.08 ± 0.15.

perpendicular and parallel to the advancement of the front, are
displayed in Fig. 15 for various experimental conditions. Both
P (Lx) and P (Ly) are power-law distributed with exponential
cutoffs. The power-law exponents αLx

= 0.83 ± 0.10 and
αLy

= 1.08 ± 0.15 do not depend sensibly on the experimental
conditions. The exponent of P (Lx) is in very good agreement
with earlier experimental results with only one viscosity [12].
Contrary to the power-law exponents, the range in which these
distributions follow a power law depends on both v and μ.
The evolution of the cutoffs ξLx

and ξLy
with experimental

conditions will be discussed at the end of the section.
In order to quantify the anisotropic shape of the local

clusters of high velocities we analyze the joint distribution
P (Lx,Ly). We expect a scaling relation Ly ∼ LH

x between the
most probable values, where the exponent H is a measure
of the anisotropy. The joint distributions P (Lx,Ly) for all
experiments studied are shown in Fig. 16. The left panel
displays the average of the 2D histograms of the distributions
for each experiment. We observe a scaling range where
Ly ∼ LH

x . At small values of Lx the distributions clearly

FIG. 16. Left: Joint distributions of P (Lx,Ly). Results for all
experiments are shown, but different velocities are not distinguished.
Full symbols represent data used to obtain H . Vertical dotted lines
show the lower and upper cutoffs of the range of Lx considered. Right:
Rescaled joint distributions of the data within the scaling range. The
power-law exponent is obtained from a linear fit of the log-log data.
The color code (gray scale) corresponds to the density of events and
increases from dark blue (dark gray, outer region) to red (dark gray,
inner region).

bend. This is a consequence of windowing, resulting from
the fact that we consider only avalanches larger than the
size of a disorder patch Ad = 0.4 × 0.4 mm2. Not taking
into account avalanches of A < Ad implies that very narrow
avalanches—small Lx—are under-represented and, therefore,
must be disregarded. We choose to consider as lower cutoff
Lx = 1.2 mm, i.e., two times the characteristic length of the
medium heterogeneities (�d = 0.6 mm). Bending of the joint
distribution is also observed at large values of Lx . We choose as
upper cutoff Lx = 30 mm, corresponding to 2�c for the largest
�c explored. Data within these two limits are represented using
full symbols in the figure, while the excluded points are shown
in open symbols. To obtain a more reliable value of H , we
consider the joint distribution of Lx and Ly rescaled by their
cutoffs ξLx

and ξLy
. The right panel of Fig. 16 shows the 2D

histogram corresponding to all the avalanches within the range
of Lx chosen. Fitting those data gives the exponent:

H = 0.82 ± 0.02.

This result is in agreement with the value reported earlier for
the same kind of imbibition displacements using one single
oil viscosity [12]. The uncertainty now is smaller thanks to the
improved statistics.

3. Maximum sizes and durations of avalanches

The cutoffs ξA, ξD , ξLx
, and ξLy

are representative values of
the maximum size, duration, and extent of local avalanches in
the x and y directions.

On experiments with one single oil, Santucci and coworkers
observed that ξLx

∼ 1/
√

v [12]. We extend this result now by
including the effect of viscosity. The dependence of ξLx

on
capillary number is shown in the top left panel of Fig. 17.
Given that Ca ∼ μv, this representation of the data allows us
to compare the dependence on both μ and v on the same
plot. We observe that the cutoffs diverge as Ca → 0 and
that the evolution is compatible with ξLx

∼ 1/
√

Ca. In the
bottom left panel of the figure we compare these cutoffs (solid
symbols) with the distance ��∗ of maximum anticorrelation
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FIG. 17. Top panels: Evolution of the cutoffs of P (Lx) (left) and P (Ly) (right) with capillary number in double-logarithmic scale. Dashed
straight lines are guides to the eye with the exponents shown in the figure. Bottom left: Cutoffs ξLx

and maximum lateral anticorrelation lengths
��∗ vs the nominal correlation length �c. Bottom right: Cutoffs ξLy

and decorrelation lengths in the direction of propagation �ymin vs �H
c , where

H = 0.82 is the anisotropy exponent. Dashed straight lines are guides to the eye. The dotted line has slope 1. Different symbols correspond to
different viscosities.

of the front (open symbols) obtained in Fig. 6. ξLx
and ��∗

are plotted versus the nominal value of �c. Both quantities
are approximately proportional to �c, reflecting that the lateral
extent of local avalanches is indeed bounded by the correlation
length �c. However, the actual values are slightly larger (ξLx

)
or smaller (��∗) than the nominal �c, as a consequence of
the dependence on the clip level of the former or on the
particular criterion chosen to define the latter. At any rate,
the result reinforces the notion that μ and v play the same role
in controlling the lateral extent of the avalanches.

It is worth noting that for the largest v and μ (largest
Ca) the smallest avalanches may be under-represented in
Fig. 15. In these cases the correlation length can be as small as
2.6 mm. Given that the maximum lateral extent of avalanches
is bounded by �c, we expect a large number of tiny avalanches.
Because of the constraints arising from the disorder patches,
that impose a minimum size Ad = 0.16 mm2, and data
windowing, we only consider events whose lateral extent
is Lx > 1.2 mm. Hence the expected tiny avalanches are
disregarded. Taking into account that the distributions are
normalized, the occurrence of large events is overestimated and
the distributions are distorted. This applies to the distributions
of sizes, durations, and lateral extents, whose cutoffs are
presumably overestimated for the largest capillary numbers.

Having established that ξLx
∼ �c ∼ 1/

√
Ca, Santucci and

coworkers proposed several other scaling relations between
the cutoffs of the distributions of different properties of the
local avalanches [12]. We check these scaling relations again
on our data, thereby extending their validity to a larger range
of velocities and also to different viscosities.

From the anisotropic shape of the avalanches, Ly ∼ LH
x ,

we infer that the cutoffs of the corresponding distributions
will also scale as ξLy

∼ ξH
Lx

, and thus ξLy
∼ �H

c ∼ Ca−H/2 ∼
Ca−0.41. The cutoffs ξLy

versus Ca are shown on the top right

panel of Fig. 17. The data are compatible with the expected
scaling. ξLy

can be compared also to the correlation length in
the direction of propagation �ymin obtained in Fig. 9. These
quantities are plotted versus �H

c in the bottom right panel of
Fig. 17. ξLy

and �ymin are proportional to �H
c , showing that

the local dynamics is strongly controlled by the avalanches.
The size of local avalanches can be approximated by the

product of their lateral dimensions, A ∼ LxLy . Its maximum
value, therefore, is expected to scale as ξA ∼ ξLx

ξLy ∼ ξ 1+H
Lx

∼
Ca(1+H )/2 ∼ Ca−0.91. The evolution of ξA with Ca is shown in
the left panel of Fig. 18. The result is consistent with the scaling
proposed.

Finally, we consider the maximum durations of the local
avalanches. The average velocity of the front, v, is a lower
bound for the local velocity in an avalanche, and ξLy

is an upper
bound of the corresponding displacement in the direction of
propagation. Hence, the maximum duration can be estimated
as ξD ∼ ξLy

/v ∼ �H
c /v ∼ μ−H/2v−(1+H/2) with H/2 = 0.41.

The right panel of Fig. 18 displays the evolution of ξD with
Ca. The behavior of ξD is compatible with the scaling relation
proposed, even though the error bars for this observable are
particularly large. In Fig. 19 we compare the evolution of
ξD (solid symbols) and of the correlation time �t∗ (open
symbols) with the estimation �H

c /v of the maximum duration
of local avalanches. ξD and �t∗ are both proportional to �H

c /v
and of the same order. This result indicates that the temporal
correlations of the local velocities are controlled by the local
bursts of fast motion of the interface.

C. Scaling relations

The preceding results show that slowly driven, stable
imbibition fronts in our model open fracture exhibit avalanche
dynamics. The statistical properties of the local velocity
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FIG. 18. Evolution of the cutoffs of P (A) (left) and P (D) (right) with the capillary number in log-log scale. Dashed and dotted straight
lines are guides to the eye with the exponents shown in the figure. Different symbols (either open or solid) correspond to different viscosities.
The values for experiments performed at v = 0.13 mm/s have been distinguished by using open symbols.

clusters (sizes, durations, and lateral extensions) are power-law
distributed, with cutoffs that diverge as Ca → 0. Such behavior
is a signature of the proximity to a depinning transition, where
avalanches are expected to be scale invariant at the critical point
[11]. Close to the critical point avalanches are also expected to
be scale invariant, but only up to the cutoff scale imposed by
a finite correlation length �c. In this framework, the following
scaling behavior is expected [12,20]:

Lx ∼ D1/zav and A ∼ Dγav ,

where γav = 1+H
zav

and zav is the avalanche dynamic exponent.
The top and middle panels of Fig. 20 show the joint

distributions P (Lx,D) and P (A,D) in double-logarithmic
scale. In both cases the distributions have been rescaled by
their cutoffs to include all experiments. We observe a clear
scaling of A/ξA with D/ξd (top panel). The exponent obtained
from the fit is γav = 1.8 ± 0.1. This value agrees within error
bars with the experimental result obtained in Ref. [12], γav =
1.6 ± 0.2. However, it differs significantly from the exponent
γav = 1.28 ± 0.04 obtained in Ref. [19] from phase-field sim-
ulations. The scaling of Lx/ξLx

with D/ξD gives an exponent
zav = 1.10 ± 0.12 (middle panel of Fig. 20). The value is in
very good agreement also with previously reported results
in Ref. [12], zav = 1.1 ± 0.1. A value zav � 1 corresponds
to a ballistic lateral propagation of the avalanches Lx ∼ D.
Again, the measured value differs from the one obtained in
phase-field simulations, zav = 1.59 ± 0.15, halfway between a
ballistic and a diffusive propagation of avalanches [19]. Using

FIG. 19. Cutoffs of P (D) (solid symbols) and maximum anti-
correlation time �t∗ (open symbols) vs �H

c /v, an estimation of the
maximum duration of local avalanches. The dashed line is a guide to
the eye. Different symbols correspond to different viscosities. For the
same viscosity, slower experiments have larger �H

c /v.

the exponents obtained experimentally, the scaling relation
γav = (1 + H )/zav is fulfilled within error bars.

In the bottom panel of Fig. 20 we finally show the
joint distribution P (A,Lx). A power-law scaling of the most
probable values of the joint distribution is observed again. In
this case the power-law behavior is compared to the expected
A ∼ L1+H

x . The value H = 0.82 obtained earlier in Sec. IV B
is compatible with the scaling of the joint distribution.

If the joint distribution of sizes, durations, and lateral
extents are scale invariant, the following scaling relations
among the power-law exponents of the marginal distributions

FIG. 20. The top and middle panels show the joint probability
distributions of A and Lx with D, rescaled by the cutoffs of
their individual pdfs. The bottom panel shows the joint probability
distribution of A with Lx , rescaled by the cutoffs of their individual
pdfs. The color code (gray scale) ranges from dark blue (dark gray,
outer region) to red (dark gray, inner region). The different solid lines
are power law fits.
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P (A), P (D), and P (Lx) can be obtained [19]:

αD − 1 = 1 + H

zav
(αA − 1), and αD − 1 = 1

zav

(
αLx

− 1
)
.

Unfortunately, it is difficult to validate these scaling relations,
since the measured exponents αLx

, αA, αD are close to 1.

V. DISCUSSION AND CONCLUSIONS

We have analyzed the spatiotemporal dynamics of constant
flow-rate imbibition fronts in a model open fracture at the
local scale of our spatial resolution [25]. A wide range of
experimental conditions has been explored, using different oils
with dynamic viscosities μ = 10 to 350 cP and imposed flow
rates that produced mean velocities of the front ranging from
v = 0.036 to 0.55 mm/s. Corresponding capillary numbers
ranged from 6 × 10−5 to 2 × 10−3, and the lateral correlation
length along the front took values 3 < �c < 15 mm. The
large number of experiments for each set of parameters (μ,v)
with different disorder realizations has led to large data sets,
allowing an accurate statistical analysis.

This new set of experiments has led us disclose the distinct
effect of the imposed flow-rate v and the dynamic viscosity μ

of the invading fluid on the imbibition process. In particular,
we have shown that the burstlike dynamics of the imbibition
front is not controlled only by the capillary number Ca.

Local velocities of the front fluctuate around the imposed
mean value due to the heterogeneities of the medium and are
widely distributed. We have shown that the range of amplitudes
of the velocities and the specific shape of the distributions are
controlled by the capillary number Ca. In particular, the local
front velocities span a wider range as the critical pinning-
depinning transition is approached by decreasing Ca.

In Sec. III B we have studied the large spatial and temporal
correlations of the local velocities. In spite of being at the
origin of front avalanches, local velocity correlations had not
been studied experimentally before. We have shown that �c ∼
1/

√
Ca for both μ and v, so these two parameters play the same

role in controlling the spatial correlations. The dependence of
the temporal correlations, however, is much stronger on the
mean imposed velocity than on the viscosity of the fluid. This
is consistent with the behavior of the maximum duration of the
local avalanches. The latter scales as �H

c /v ∼ μ−H/2v−(1+H/2),
which corresponds indeed to the observed dependence on μ

and v of the temporal correlations.
We have observed (Fig. 9) that the largest fluctuations of

v(x,y) in the direction of fluid invasion are found within �d ,
the characteristic linear size of disorder islands. Interestingly,
this is consistent with our recent observation that the temporal
range of intermittency of the spatially averaged velocity of the
front is determined by �d [13].

We have found that the statistical properties of local velocity
bursts—sizes, durations, and lateral extents—are power-law

distributed, with an exponential cutoff that diverges as Ca →
0, a limit that corresponds to a pinning-depinning transition
of stable imbibition displacements. In the regime studied here,
where front fluctuations are induced by capillary disorder, the
power-law exponents are independent of Ca. The validity of
this result, established earlier in Ref. [12], has been extended
to a larger range of v but more importantly to different μ.
The measured power-law exponents are αA = 1.09(8), αD =
1.03(10), αLx

= 0.83(10), and αLy
= 1.08(15). The anisotropy

of the velocity clusters, Ly ∼ LH
x , is characterized by an ex-

ponent H = 0.82(2). These values fulfill the expected scaling
relations between exponents, within error bars, and validate
our previous experimental results [12] with less uncertainty.
This is important for comparing with theoretical predictions.
However, they differ significantly from the values obtained in
phase-field simulations [19,20]. The reason for the discrepancy
might lie on the disorder properties. In the experiment, single
disorder patches have a finite linear extension (0.4 mm, about
four times our images resolution). In phase-field simulations,
in contrast, the disorder is pointlike, i.e., of the same size as
the underlying discrete lattice.

We have verified that local bursts of activity do not correlate
trivially with islands of disorder patches. Indeed, the disorder
patches swept during a local avalanche occupy 35% of the
avalanche area, a value coincident with the nominal area
fraction of disorder. This result also reflects the fact that
the front dynamics on a single site is highly dependent on
the dynamics at all other sites. Non-locality makes forced-
flow imbibition intrinsically different (and substantially more
complex) from most other dynamic problems involving slowly
driven fronts in disordered landscapes.

To conclude, slow and stable imbibition displacements
in open fractures take place with strongly correlated local
velocities in both the lateral direction along the advancing
front and in the direction of propagation. Spatiotemporal
correlations lead to localized velocity bursts, or avalanches,
whose scale-invariant properties arise from the proximity
to a critical depinning transition at Ca = 0. The present
work provides an exhaustive investigation of local velocity
correlations and avalanche properties of stable imbibition
displacements in a laboratory model of an open fracture.
Our results shed light on the physics that govern this kind of
displacements. They also provide accurate quantitative results
that will be useful to contrast future theoretical predictions.
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