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A microscopic calculation of the residual particle-hole (p-k) interaction in spin-polarized *He is
performed. As a starting point the Brueckner G matrix is used which is supplemented by includ-
ing the phonon exchange terms self-consistently. An important ingredient in this microscopic ver-
sion of the induced interaction is the treatment of the full momentum dependence of the interac-
tion. This allows a consistent description of the Landau limit (Pauli-principle sum rule for the
Landau parameters is fulfilled) but also enables a detailed study of the p-A interaction at finite
momentum transfers. A comparison with correlated basis functions results shows good agreement
for momentum transfers larger than the Fermi momentum.

I. INTRODUCTION

Surveying the recent literature, one may conclude that
substantial progress has been made in obtaining samples
of highly polarized liquid 3He. The original suggestion
of Castaing and Noziéres! was the rapid melting of high-
ly polarized solid 3He. The most recent experiments
have already resulted in polarizations of 55% (Ref. 2)
and 65% (Ref. 3). Other experimental routes are also
being explored.* Beside these experimental activities,
there is also an expanding literature of theoretical work
on purely polarized *He. The first suggestions on polar-
ized liquid 3He were in fact theoretical.> The equilibri-
um properties of *He? have been studied in a variety of
approaches. Variational calculations of the binding en-
ergy indicated that the polarized phase would be more
bound than the normal phase.*’ This proved only that
it is more difficult to describe the normal phase accurate-
ly. More recent variational calculations either including
spin-dependent correlations®’ or including triplet corre-
lations and backflow,'® have reversed tihs situation
again. In Ref. 6 and 10 it is shown that three-body and
state-dependent correlations give a substantial contribu-
tion to the binding energy of the normal liquid, whereas
they are less important for the fully polarized system.

The conclusion that the fully polarized system is
theoretically easier to handle, was also derived from a
different point of view in Ref. 11, where the Landau pa-
rameters for 3Het were calculated with the method of
Ref. 12. In this semimicroscopic approach this was
shown to be due to the “freezing out” of the spin fluc-
tuations. The residual particle-hole interaction is calcu-
lated with special emphasis on the induced one-phonon
exchange terms, the so-called induced interaction, '3
which is also considered in this paper.

From yet another method, which uses the Galitskil-
Feynman T-matrix approach, similar results have been
obtained for the fully polarized liquid,'* although this
method strongly overbinds the normal system and is
probably not very accurate in this case.!> With this
method it is possible to go beyond the Landau limit and
study the dynamic structure function of the system as is
done in Ref. 16. This current interest in calculating the
excitations of the system instead of restricting oneself to
the binding energy, can be rephrased in an interest in the
particle-hole interaction (also at finite momentum
transfer ¢g) which determines the nature of these excita-
tions and the amount of collectivity they carry. In a re-
cent study'’ within the method of correlated basis func-
tions (CBF) this particle-hole interaction has been calcu-
lated in the local approximation.'®

In the present paper an attempt is made to calculate
the residual particle-hole interaction with a method
which has its roots in perturbation theory. It presents a
microscopic calculation of the induced interaction start-
ing from the bare atom-atom interaction which is taken
from Ref. 19. The philosophy behind this calculation is
to start with a residual interaction which takes into ac-
count the important short-range repulsion between the
atoms. Such an interaction should be well represented
by a G matrix. In a next step one asks the question:
Can this residual interaction lead to strong collective
effects? To answer this question, one then solves a
random-phase-approximation (RPA) type integral equa-
tion for different values of the momentum transfer gq.
The RPA equation is solved in the static case (excitation
energy w=0); this allows the study of the stability of the
normal ground state with respect to particle-hole excita-
tions as a function of g. It is useful to introduce stability
functions which can be viewed as a generalization of the
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stability conditions®® on the Landau parameters at ¢ =0
to finite g. In the case of a repulsive particle-hole (p-h)
interaction a possible zero-sound mode can be sustained
which is pushed up in energy out of the normal p-hA con-
tinuum. In this case the stability conditions are au-
tomatically fulfilled at ®=0. For an attractive p-h in-
teraction of sufficient strength, however, it is possible to
violate the stability condition.

Before reaching the conclusion that the chosen ground
state is indeed unstable, one should keep in mind that
the residual interaction which was used to reach such a
conclusion does not contain important contributions
which tend to prevent this instability. Such a contribu-
tion is represented by the exchange of this ‘‘unstable”
collective mode between the particle and the hole, as
shown in Fig. 1. This term is not included in the G ma-
trix and it is highly plausible that one must include such
terms if one wants to study collective effects microscopi-
cally. Indeed the original divergence will be canceled by
the diverging exchange term of Fig. 1, which in turn
should be calculated with the proper cancellation effect
included and so on. Obviously this leads to a self-
consistency problem for the residual p-h interaction.
This is a microscopic version of the induced interac-
tion.!3

It is a well-known fact that normal 3He is extremely
difficult to describe microscopically. Only recently,
Monte Carlo techniques are reported to give accurate
values for the binding energy of the ground state.?! For
this reason and also because other methods®~!"1* lead to
the conclusion that the fully polarized liquid is more
amenable to a theoretical description, we will consider
this system in this paper.

Although the spin fluctuation degree of freedom is
“frozen out”, resulting in a simplification of the theoreti-
cal description, one must expect it to be highly sensitive
to the treatment of the Pauli principle. Whereas, for ex-
ample, the spin isospin degeneracy in nuclear matter
leads to exchange terms which are roughly a factor + of
the direct terms (at least for a spin isospin independent
interaction), this factor is already 1 for normal ‘He. It
is, however, 1 for the fully polarized liquid. This ex-
plains why a careful treatment of exchange terms as,
e.g., depicted in Fig. 1,is expected to be important. This
issue becomes even more urgent when one observes
coherence in summing the RPA series with the G matrix
as the residual p-A interaction. In this case the higher-
order screening contributions in Fig. 1 will also acquire
some importance and the full self-consistent treatment of
the residual p-h interaction is required.

FIG. 1. Phonon exchange term which contributes to the re-
sidual p-h interaction. The wavy lines on the right-hand side
depict the Brueckner G matrix.
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Since the dominant relative motion of the *He atoms
is of P-wave nature in *He?, again due to the Pauli prin-
ciple, one must expect a considerable momentum depen-
dence of the residual interaction. This in turn implies
that it is crucial to treat the full momentum transfer ¢
dependence, since results!® obtained in the Landau limit
g =0 may not be representative for the calculation of the
full induced interaction. Another advantage in the cal-
culation of the induced interaction is that the Pauli prin-
ciple sum rules for the Landau parameters?? are, in prin-
ciple, automatically fulfilled. In the light of the above
discussion on the relevance of exchange effects this is an
important advantage.

Another consequence of the enhanced importance of
the Pauli principle is the increased sensitivity to the non-
locality due to the exchange contributions. Indeed the
strong momentum dependence of the interaction which
makes it necessary to study the p-A interaction at finite g
implies that one can expect a similar necessity to treat
the full momentum dependence in the exchange channel.
In this paper we therefore employ a method to solve the
RPA integral equation which allows the treatment of the
full momentum dependence of the p-h interaction.?

The paper is organized as follows. In Sec. II we
briefly discuss the calculation of the G matrix and give a
more-detailed discussion of the calculation of the in-
duced interaction. Also, the analysis of the results for
the p-h propagator are discussed which lead to the intro-
duction of stability functions as well as a clean definition
of an effective g-dependent p-h interaction, which in
principle can be compared to the polarization potential
approach?*?® and the results of Ref. 17. Section III con-
tains the results for the Landau parameters and the p-h
interaction at finite momentum transfer g. Finally, a
summary and some conclusions are given in Sec. IV.

II. MICROSCOPIC CALCULATION
OF THE INDUCED INTERACTION

In this section we discuss the formalism and the calcu-
lational scheme to arrive at the induced interaction
starting from the bare atom-atom interaction. In Sec.
II A we will first introduce the calculation of the G ma-
trix which turns the bare potential into a well-behaved
effective interaction. At this point it is also useful to in-
troduce the particle-hole transformation which is neces-
sary to change from the particle-particle channel in
which the G matrix is calculated, to the particle-hole
channel in which the RPA equation is formulated. The
Landau limit of the p-h interaction and the Landau pa-
rameters are also discussed at this point. Section II B
will then be devoted to a discussion of the RPA equation
and the way in which it is solved. It is also shown here,
how one can construct the contribution to the induced
interaction and the steps one has to take until self-
consistency is achieved. The analysis of the induced in-
teraction in terms of stability functions and g-dependent
effective interactions is introduced in Sec. II C.
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A. Calculation of the G matrix

As discussed in the Introduction, we will use as a
starting point for the residual p-k interaction the
Brueckner G matrix. Since the purpose of this paper is a
microscopic study of the p-h interaction as a function of
the momentum transfer g, we will confine ourselves to a
calculation of the G matrix in the standard fashion.?®
This means that the single-particle (SP) spectrum is cal-
culated self-consistently from the on-shell precription

2
e =24 S (kk'| Gle(k)+e(k) | Kk')

2.1)
2m

for momenta k < kr and no insertions are made into par-

ticle lines. For momenta below kp this SP spectrum can

be approximated quite accurately by an effective-mass

spectrum

2

k
ek)=——+Uo , 2.2)

mp

where mj and U, are determined by calculating €(k) for
two values of k below kg. It has been emphasized in the
literature?”2® that this choice for the SP potential leads
to a substantial reduction of the total effective mass in
the case of nuclear matter. In addition, one should use a
continuous SP spectrum across kr if one is interested in
p-h related quantities, as we are here. Although our cal-
culation does not include the enhancement of the
effective mass at the Fermi surface, this might not be
such a serious problem since the results of Ref. 17,
which include the E mass, do not show this enhance-
ment for Het, and in Ref. 11 it was also found that the
effective mass at kr has a value <1. One should, how-
ever, note that an enhancement for the effective mass in
SHet due to the E mass is observed in Ref. 14 as noted
in Ref. 28. Concerning the choice of the SP spectrum in
p-h calculations, we have chosen the prescription

k2

(k)=
¢ 2mf

+Uo (2.3)
where mj is calculated from the Landau parameter F,
according to

mf

=1+1F, . 2.4

(pimi;(p2m) ™ |V [ py,my;(pasma) ™" )y

=(_1)1/2+m4<p

LM —Pa—My |V | —pa—my;p3,ms3),,(—1)
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This prescription is used for all values of k, ensuring the
continuity of the SP spectrum. Clearly this choice is not
consistent with the calculation of the G matrix where a
gap in the spectrum is used; we felt, however, that the
more elaborate calculations including a self-consistent
SP spectrum according to Eq. (1) would go beyond the
main purpose of this paper, i.e., to the study the p-A in-
teraction in more detail.

Some of the results for the binding energy will be
shortly discussed in Sec. III. As is the usual case with
lowest-order Brueckner theory, one does not obtain a
sufficiently attractive contribution to the potential ener-
gy as compared to other methods.’~'®'* For the pur-
pose of the present paper this does not present a serious
drawback since the binding energy is an average of the
residual interaction. Whether the residual interaction, in
this case the G matrix, is slightly too weak should then
be put into the perspective of the corrections which are
obtained when the induced interaction is added. These
contributions turn out to be substantial and certainly
larger than the differences between, e.g., the Galitskii-
Feynman T matrix and the G matrix.

Before discussing the RPA integral equation in Sec.
IIB, it is useful to describe shortly the particle-hole
transformation which transforms the particle-particle
(p-p) channel to the particle-hole (p-A) channel. This
transformation involves both the recoupling of the spins
as well as a recoupling of the momentum vectors. In the
case of nuclear matter this has been discussed in detail in
Ref. 23. In the case of *Het this transformation is con-
siderably simplified since each point in k space can only
be occupied by one particle and there are no tensor
forces present. Schematically, a general p-h transforma-
tion can be written as follows:

(271 V347D, =14V | 2;3),, , 2.5)

where the labels 1-4 refer to a complete set of single-
particle quantum numbers. The superscript — 1 refers to
a hole state with corresponding quantum numbers and
the overbar represents the time-reversed state. The
quantum numbers for *Het are the momentum and the
spin projection of the particles. Writing Eq. (2.5) for
this situation explicitly, one obtains

1/24+m, (2.6)

Without loss of generality all spins are pointing up which is denoted by 1. This means that all the spins on the right-
hand side of Eq. (2.6) point upward, which in turn implies that the corresponding hole states on the left-hand side
have their spin pointing downward. It is therefore not possible to couple the spins of a particle and a hole to a good
total spin S since only particles with spin 1 and holes with spin | are available. The p-h states in *He? are therefore a
linear combination of states with good total spin

IplT;PZ*_1)=T/%i (1,278 =0,Mg=0)+ | (1,27 H)S=1,Ms=0)} . 2.7

For p-h calculations, this is the crucial difference with the normal liquid where both channels contribute separately,
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the S =0 channel corresponding to density waves and the S =1 channel corresponding to spin waves.

The p-p matrix elements on the right-hand side of Eq. (2.6) are calculated by solving the Bethe-Goldstone equation
in the momentum-space partial-wave representation. The different partial-wave channels can then be combined to get
the momentum-space representation which is used in Eq. (2.6). Suppressing the spin quantum numbers in the p-A ma-

trix elements, one finally ends up with the following result:

(@,p|VI]ap)pm= 3 QLT:—I—)<K,1¢LS=1 |V |K,k'LS=1),,P(cosby ) , (2.8)
odd L
f
where the momentum variables are defined in the follow- _ f”L* kr 2.12)
ing way: 0 272

q=P1—P2=P3—P4 >
p=+(P1+P2)

’

P’ =+1(p3+ps) .

The momentum variable q corresponds to the total p-k
momentum, whereas p and p’ correspond to the relative
momenta of the final and initial p-h state. In a similar
way one can relate the corresponding momenta K, k,
and k' in the p-p channel to the momenta of the indivi-
dual particles

K=p,—ps=p3—p2 >,

k=1(p,+ps) , (2.10)

k'=—3(p+p3) -

From Eqgs. (2.9) and (2.10) one can then easily obtain the
relations between the set of p-4 momenta q,p,p’ and the
set of p-p momenta K,k,k’. It should be noted that the
p-p matrix elements on the right-hand side of Eq. (2.8)
are antisymmetrized; therefore, those with even orbital
angular momentum L vanish.

The limit ¢ —0 for the p-A matrix elements corre-
sponds to the so-called Landau limit. In the case of the
G matrix one furthermore has to specify the energy; in
the Landau limit in which also the excitation energy of
the system w-—0, this energy corresponds to twice the
Fermi energy er. In the calculations this choice was
also made for momenta g0, see also Ref. 23. Obvious-
ly, the p-h matrix elements of the G matrix will only de-
pend on the relative momenta p and p’ when ¢ =0.
Since one is interested in p-h propagation only, the only
possible p-h states in this limit have the absolute value of
the relative momentum equal to kz. The only remaining
variable is then the angle between the incoming and out-
going relative momentum. Denoting this limit of the p-A
interaction by ¥ (p,p’) one obtains the so-called Landau
parameters as expansion coefficients with respect to the
complete set of Legendre polynomials

NoV(p,p')= 3 F,P/(cosO, ) . (2.11)

=0

The Landau parameters F; are dimensionless since the
interaction V is multiplied with the density of states at
the Fermi surface

The effective mass m; was already defined in Eq. (2.4).
From the Landau parameter F, can deduce the in-
compressibility

2

k
B=—"—(1+F,) .

(2.13)
Imf

The Pauli principle sum rule for the fully polarized
liquid is finally given by
F

R —— 2.14
EO 1+F, /(2] +1) @14

Il

Sp

We note that the same antisymmetry requirement leads
to i

F;=0 (2.15)

1
Ms

Sa

.\
Il

0

if an antisymmetrized interaction like the G matrix is
used to calculate the Landau parameters.

B. Solution of the RPA equation and construction
of the induced interaction

In this section we will first introduce the concepts of
the induced interation. In a next step the solution of the
RPA integral equation is discussed. In fact, to arrive at
the induced interaction it will be necessary to solve this
linear integral equation until the induced interaction is
calculated self-consistently. To make this point more
clear, the nonlinear scheme to calculate the induced in-
teraction is depicted in Fig. 2. The starting point in
these considerations is the p-h propagator II, which is
obtained by iterating the free p-h propagator I1'© with
the irreducible p-h interaction I. For our purposes it is
most convenient to consider the two-time formulation as
given, e.g., in Ref. 29. This has the advantage that there
is only one energy variable involved which corresponds
to the excitation energy of the system. For the free p-h
propagator one then obtains the result

’

do
(0)( 5. _ / o)
n%piq0)= [ S g(p+a/2,0'+0/2)
xXg(p—q/2,0'—w/2), (2.16)
where g is the SP Green function
O(|k| —kr) Olkp—|k|)
k,E)= . 2.17
g E) = otin TE —e—in @17
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r7_(3)
_ 7(0) + ? = 7T(O) + R
i
(a)
G
I = AMMAAA +

FIG. 2. Nonlinear integral equation relating the p-h propa-
gator I1 and the irreducible p-h interaction I. In (a) the first
equality gives an RPA-type integral equation for II. The
definition of the reducible p-h interaction R is also displayed in
(a). (b) shows how the irreducible p-A interaction I depends on
the solution Il which leads to the nonlinear structure of the
problem. I'” is the free p-h propagator and the wiggly line
represents the G-matrix interaction. The second term in (b)
must be interpreted to include only irreducible contributions to
I

The SP spectrum e(k) has already been discussed and is
given by Eq. (2.3). In the interation process leading to
the induced interaction the Landau parameter F,
changes in each iteration step. This influence on the
self-energy is also treated here by changing e(k) in each
iteration step accordingly. A more-complete calculation
should treat the change in the complete self-energy
2(k,E), but this is beyond the scope of the present pa-
per (see also Ref. 30).

With this approximation to the SP propagator in Eq.
(2.16) one obtains after performing the ' integration

O(|p+q/2| —kp)Olky— | p—q/2|)
o—e(p+q/2)+e(p—q/2)+in
O(|p—q/2| —kpg)O(kp— |p+q/2|)
 w+elp—q/2)—elp+q/2)—in
(2.18)

n'%p;q,0)=

>

where the first term is associated with a forward propa-
gating p-h pair and the second one with backward prop-
agation. The actual numerical calculations are per-
formed for the reducible p-h interaction R which is
graphically defined in Fig. 2. The first iteration step in
the solution of the nonlinear scheme of Fig. 2 consists in
approximating the irreducible p-A interaction I by the G
matrix. This leads to the following integral equation:?!

d’k
(27)3

R™M(p,p’;q,0)=G (p,p", @)+ [ G(p,k;q)

x M'k;q,w)

xR 'V(k,p’;q,0) .

(2.19)

Typical diagrams generated by this equation are
displayed in Fig. 3. This diagram series is commonly re-
ferred to as the bubble series; one must keep in mind,
however, that the G matrix contains both the direct and
exchange contribution. The wiggly line in all the figures
represents this G matrix with both the direct and the ex-
change piece.

In the static limit (w=0) one can obtain the same en-
ergy denominator for the forward and the backward
propagating part of II'” by an appropriate change of
variables. Using symmetry properties of the interaction
one can then show that one can solve Eq. (2.19) directly
for the linear combination

R (p,pq)=4R " (p—1a,p'~ 1a;q)

tRV(U(p—1q)p'—1gq)] . (2.20)
The operation U is defined by
Ulp)=U(p,6,¢)=(p,m7—06,¢) . (2.21)

With this linear combination, R‘i”, Eq. (2.19) can be
written as

Ty -
(a)

(b)

FIG. 3. Typical diagrams which are generated when Eq.
(2.19) is iterated with the G matrix as the irreducible p-h in-
teraction. In (a) the reducible forward-going contributions are
given, whereas in (b) the backward-going terms are displayed.
It must be kept in mind that in this figure the external lines are
not considered as propagators contrary to Fig. 2. Note also
that the G matrix contains both the direct and the exchange
contribution.
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R (p,p;4)=G+(p,p';q)
d*k G*(p.k;QR Y (k,q;q)

+2

x (2m)3 e(k)—e(k—q)
(2.22)
The integration area X is determined by
O<k <kg, (2.23a)
|, k*+q’—k}
—1< cosf; <min |1, T (2.23b)

The importance of the R _ interacton is intimately
connected with the nonlocality of the p-h interaction,
here the G matrix. In general, one can show for any in-
teraction operator V, which depends on the relative dis-
tance of the particles only, that the direct p-h matrix ele-
ment only depends on q and is in fact the same for the
forward [Fig. 4(a)] and the backward contribution [Fig.
4(c)]. For such an interaction only the integral equation
for R, remains, R_ being identically zero. The ex-
change terms of 14 bring in the p,p’ dependence, or
equivalently make the p-h interaction effectively nonlo-
cal. For the forward contribution shown in Fig. 4(b) the
momentum transfer between the particle and the hole is
restricted by 2k, since this momentum transfer is ab-
sorbed on two hole states. For the backward exchange
term [Fig. 4(d)] this restriction does not apply since
there the momentum transfer involves a particle and a
hole state. From Fig. 4 one can also understand the
meaning of U operation [Eq. (2.21)]. It simply corre-
sponds to flipping the initial (or final) p-h state; it trans-
forms diagram (a) to (c) and (b) to (d). One should note,
however, that in the latter case a different momentum
transfer is involved. This difference is responsible for
the appearance of the R _ integral equation and is close-
ly related to the momentum transfer dependence of the
interaction in the exchange channel. The P-wave nature
of the interaction between spin-aligned *He atoms im-
plies that this momentum dependence can be strong.

The three-dimensional integral equation (2.22) can be
reduced to a set of independent two-dimensional integral
equations by employing the fact that the interaction de-
pends only on the difference of the polar angles ¢, and
¢,. For more details the reader is referred to Ref. 32.

(a) (b) (c) (d)

FIG. 4. Different contributions to the p-A interaction from a
local interaction V, e.g., the bare atom-atom potential. (a)
represents the forward direct contribution, (b) the forward ex-
change, (c) the backward direct, and (d) the backward ex-
change contribution.
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According to the scheme depicted in Fig. 2. the in-
duced interaction can now be constructed by calculating
the second term on the right-hand side of Fig. 2(b). This
step involves attaching four SP propagators to R and in-
serting this new p-h propagator between the two G ma-
trices. With this new irreducible p-h interaction I one
can then go back to the integral equation to construct
the new p-h propagator II and so on until convergence is
achieved. This elaborate transformation can be avoided
by employing a very reasonable approximation which
will now be discussed.

Consider the difference

AR V(p,p’;q)=RV(p,p’,q)—G (p,p’;q) . (2.24)

Here the subscript 1 denotes the first iteration step in
the self-consistent determination of the induced interac-
tion [see Eq. (2.19)]. The Ilowest-order diagram
representing this difference is displayed in Fig. 5(a). One
observes that this difference may be interpreted as a
modification of the direct p-k interaction due to the cou-
pling to the medium. Naturally the diagram in Fig. 5(a)
is reducible and should not be used to renormalize the
p-h interaction. The corresponding exchange diagram
[Fig. 5(b)] is irreducible and in fact the lowest-order con-
tribution to the induced interaction. Instead of using
the elaborate construction of I outlined above, we ob-
serve that one can obtain diagram 5(b) directly from 5(a)
by assuming that the AR ‘! interaction depends only on
the momentum transfer q. In that case one can treat
ARV as an operator and simply calculate the exchange
part which contributes to the induced interaction. In
the actual calculations the additional momentum depen-
dence of AR on p—p’ was taken into account. For more
details the reader is referred to Ref. 31.

At this point one can now add the exchange part of
AR'Y to the G matrix to obtain the next approximation
to the p-h interaction

I'V=G+AR), . (2.25)

When this interaction is used in Eq. (2.19) one generates,
in addition to the original bubble series, diagrams which
contain bubbles inside bubbles. A typical example is

(a) (b)

FIG. 5. Lowest-order diagram for the difference AR [Eq.
(2.24)]. (a) corresponds to the direct contribution which is ob-
tained from Eq. (2.24), the exchange (b) can be obtained by re-
garding AR as an operator and taking the exchange matrix ele-
ments (see text).
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0

FIG. 6. Typical diagrams which are generated when the
first iteration step in the nonlinear scheme of Fig. 2 is included
in the p-h interaction.

given in Fig. 6. Using Eq. (2.24) for this case, one ob-
tains AR (2}, which gives a new I'?) and so on. The pro-
cedure outlined here can be repeated until self-
consistent, at which point the nonlinear scheme of Fig. 2
is solved within the present approximations. It is impor-
tant to realize that by construction the final solution
I'), j.e., the self-consistent one, contains all exchange
terms which are generated when I'=’ is used to solve Eq.
(2.19). This ensures that the Pauli principle is automati-
cally fulfilled,*® and therefore also the sum rule for the
Landau parameters [Eq. (2.14)].

As discussed above, we perform the calculation of the
induced interaction at w=0. The construction of the in-
duced interaction disregards the energy dependence of
the induced interaction. Although a treatment of this
energy dependence is desirable, it represents a substan-
tial increase over the present, already extensive numeri-
cal effort and it is therefore not attempted here. A nice
feature of the self-consistent scheme is, however, that al-
though the neglect of the energy dependence might lead
to a slight overestimate of the induced interaction in the
first iteration step, this overestimate will also be counter-
balanced by a somewhat too large screening contribution
and so on. This will lead to a substantial cancellation, so
that one may hope that the neglect of the energy depen-
dence is not too serious.

d 7NG,w)

= 7(q,w)

W'O)(d,w) O 4

FIG. 7. Contributions to the p-h propagator II, see Eq.
(2.26). The first term corresponds to the Lindhard function.
The second term includes at least one interaction term. Note
that the full reducible interaction R contains all possible
screening diagrams and reducible diagrams. The above dia-
grams should be considered as Feynman diagrams containing
both forward and backward propagating contributions.

W(O)(ﬁ,w)
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C. Analysis of the induced interaction

The analysis of the irreducible p-A interaction I is
somewhat complicated due to the treatment of the full
momentum dependence of the interaction. In the Lan-
dau limit the interaction can be represented by the Lan-
dau parameters F;, and the influence of the induced in-
teraction on these parameters will be discussed in Sec.
III. For finite values of the momentum transfer ¢ one
would still like to have a meaningful way of analyzing
the interaction. In order to perform this analysis we
have calculated from the reducible p-h interaction R the
Fourier transform of the density-density correlation
function®*

3 30
(q,0)=1"(g,0)+ f(%g); (%P—);H“Wp;q,w)
o T
XR(p,p';q,w)

xM%p";q,0) ,

(2.26)

where I1'%(q,w) is the Lindhard function’* and
I1'%p;q,) is discussed in Sec. IIA. Equation (2.26)
shows that the full momentum dependence of R is taken
into account in the calculation of Il(q,w). We will re-
strict ourselves, however, to the static limit ow=0. In
this limit the polarization propagator Il(q,w=0) is pure-
ly real since no p-h excitations can be created on-shell.
For w40, II becomes complex and its imaginary part is
proportional to the dynamic structure function
S(q,w).>* Here we only consider the static limit of II.

The diagrammatic content of Eq. (2.26) is shown in
Fig. 7. The relation between the Lindhard function and
M'%p;q,w) is given by

d3
n%q,e)= [ -L-1%p;q,0) . (2.27)
aw)= [ 11 pia
If the irreducible interaction I would only depend on the
conserved p-h momentum q one can obtain II(q,&=0)
=1II(q) from the algebraic equation

M(q)=T"%q)+1'Y(q)I(q)I(q) . (2.28)

The complete numerical calculation of Il(q) according
to Eq. (2.26) can now be used to define an average quan-
tity 1(q), which is required to give the same numerical
result for II(q) but now calculated according to Eq.
(2.28). In this analysis there are actually two functions
I'* corresponding to the integral equations for R ¥ which
were discussed in Sec. II B. The numerical calculation
therefore yields two different contributions illustrated
graphically in Fig. 8. Equation (2.28) can then be ex-
tended to two functions Ij,(q) and I,(q) leading to
coupled equations

(@) =4[11""(q)+ 1V(q)] (@)1 (q)

+19(q) 4 (q)Ty(q)] (2.29)
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FIG. 8. Illustration of forward and backward contributions
to I(q) from the folding of R with I1'”(p;q) and I'”(p’;q) in
Eq. (2.26).

and
My (q)=1[IT'V(q) + I1U(q)] 4y, (q)T15,(q)
+0O(q) ¢, (@), (q)] .
(2.28) and (2.29) reduce to Eq.

(2.30)

When I, =1,,, Eqgs.
(2.27). Obviously

I(q)=

and it is possible to solve Egs. (2.29) and (2.30) by re-
questing that the numerically calculated Ilg,(q) and
IT,,(q) are reproduced by Ig,(q) and I,(q). Alterna-
tively, one can consider again the linear combinations

IF(q)=1[I4(q)t (@], (2.32)

M (q)+1T,,(q) (2.31)

which brings us back to the discussion of Sec. IIB.
Solving for Il(q), one obtains

H(O)(q) _ H(O)(q)
1—-%q)I*(q)  1+X*(q)

where X T(q) can be interpreted as a measure of the sta-
bility of the ground state with respect to p-h excitations
with momentum ¢g. It is also a natural extension of the
criterion of stability on the Landau parameter F in the
limit ¢ =0. When the function X *(q) approaches —1
in a certain momentum range, one is near an instability.
Similarly, one can define

X (q)=—19%1I(q) .

N(q)= , (2.33)

(2.34)
Finally, we introduce the “static dielectric’’ function
e(q)=14+X%(q) . (2.35)

It is even more illustrative to discuss 1/¢(q); this quanti-
ty determines whether the total response function II(q)
is enhanced (> 1) with respect to I1'®(q) or quenched
(<1).

III. RESULTS AND DISCUSSION

The calculation of the induced interaction has been
performed at two different densities correspondmg to the
Fermi momenta kz=0.9 and 1.0 A}, respectively. The

choice for kr=0.9 A ~! was made because it represents
a “low-density” situation in which the hole-line expan-
sion is expected to be relevant. The other density corre-
sponds to the saturation density of normal *He; in addi-
tion most calculations reported in the literature have
been performed for this density. This, therefore, facili-
tates the comparison with other calculations.

As discussed in Sec. II A, we have made the standard
choice for the SP spectrum which is used in the calcula-
tion of the G matrix. It is therefore interesting to make
a comparison with a calculation which treats the SP
spectrum continuous across kr. In Fig. 9 we compare
the SP spectrum obtained from the Galitskil-Feynman T
matrix!® with the lowest-order Brueckner result for
kr=1.0 A ~'. The kink in the spectrum at kp is not
very large and our subsequent use of a continuous spec-
trum will not be too inconsistent with the Brueckner
spectrum. As discussed in Sec. IT A one expects that one
obtains less attraction with this conventional spectrum
and this is confirmed by comparing with the continuous
spectrum. In both cases the potential energy of the sys-
tem is calculated by integrating the SP potential energy
over the Fermi sea. From Fig. 9 one can therefore infer
that the Galitskii-Feynman approach will give more at-
traction than the conventional G matrix. Indeed the po-
tential energy per particle for the G matrix is —3.28 K
compared with —6.27 K for Ref. 14. This is a large
difference, which to a large extent can be attributed to
the use of a continuous SP spectrum in the Galitskil-
Feynman T matrix. One should, however, keep in mind
that this results from a double integration over the Fer-
mi sea. The difference between the Landau parameter
F, will be much smaller and will be disussed later. In
addition, we note that neglecting the center-of-mass (K)
dependence as in Ref. 14 by simply setting |K| =0
throughout the whole calculation one obtains —3.87 K
potential energy for the G matrix.

Comparing with the binding energies which are ob-
tained with other methods,® ! one observes that varia-
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FIG. 9. Comparison of the Galitskil- Feynman SP spectrum
(Ref. 14) (dashed line) with the present results for kr=1.0 A
solid line for | k| < kr and dash-dotted line for |k | > kfr).
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tional results and the Galitskii’-Feynman T matrix re-
sult'# typically lead to 1 to 2 K binding, instead we ob-
tain 1.54 K repulsion when we add the repulsive kinetic
energy contribution to the potential energy. Clearly this
is a significant difference. Presumably it can be over-
come by an inclusion of three-body correlations as calcu-
lated by Day for nuclear matter.?® Since we are mostly
interested in the calculation of the p-h interaction, we
think that the use of the G matrix as a starting point for
the induced interaction is still a good starting point al-
though probably not the best. The substantial changes
in the p-h interaction, which are obtained by including
the induced interaction to the G matrix, indicate that a
proper inclusion of collective effects is at least as impor-
tant as fine tuning the treatment of the short-range
correlations.

We will begin discussing the results for the p-A in-
teraction in the G matrix approximation and later pay-
ing attention to the important changes which occur
when the induced interaction is added. In Fig. 10 the
results for the Landau parameter F, are displayed as a
function of the Fermi momentum k. The results of the
G matrix give an attractive F; this is consistent with the
results of Ref. 14. A comparison with the direct interac-
tion of Bedell and Quader shows that their starting point
for the calculation of the induced interaction is already
repulsive and certainly not representative for the G ma-
trix.

In Table I we give the results for the Landau parame-
ters F; for  <6. The results for the G matrix imply that
there is a strong indication that higher-order parameters
(I>1) are not at all negligible. In this context one
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FIG. 10. Comparison of the Landau parameter F, as a
function of the Fermi momentum for different calculations.
The direct interaction of Ref. 11 is denoted by BQP?, with in-
clusion of the induced interaction by BQ’. The results of Ref.
14 are denoted by GHP, the result obtained by differentiating
the energy by GH. The KCJ result is obtained by extrapolat-
ing the results of Ref. 17 for the p-h interaction to |q| =0 and
using the appropriate effective mass given in Fig. 9 of that pa-
per. The present G-matrix results are denoted by DMP?, and
the results containing the induced interaction by DMP’.
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TABLE I. Landau parameters for two different densities.
The results for kr=0.9 A ~Tare given in the first two columns.
The first column contains the results for the G matrix, the
second the results with inclusion of the induced interaction.
The last two columns corresponds to kz=1.0 A ~!, with the
same order for the G matrix and induced interaction results.
The sum rules S, and Sp in the last two rows correspond to
Eqgs. (2.15) and (2.14), respectively. The incompressibility 3 is
obtained from Eq. (2.13).

kr=0.9 A ! krp=1.0 A '

G I G I
m*/m 0.60 0.79 0.48 0.68
Fo —0.82 —0.15 —0.30 0.70
F, ~1.19 —0.63 —155 —0.95
F, 0.74 1.63 0.48 1.74
F, 0.67 —0.01 0.68 0.16
F, 0.31 0.15 0.36 0.12
Fs 0.13 —0.07 0.16 —0.11
F, 0.06 0.07 0.08 0.06

S, —0.03 —0.03

Sp —4.61 0.15 —1.96 0.24
B 1.30 4.66 7.80 13.37

should keep in mind that the p-h interaction is *“at least”
as complicated as the G matrix. We also note that the
Pauh principle sum rule is strongly v1o]ated for kp=0.9
A ! and somewhat less so for kp=1.0 A ~'. In Table I
we quote results for the sum rules including / <9. The
sum rule (2.15) is of course fulfilled for the antisym-
metrized G matrix. The P wave dominance of the in-
teraction is also illustrated in Figs. 11 and 12, where the
Landau function V(p,p’) [see Eq. (2.11)] is plotted for
the two different densities as a function of the momen-
tum transfer g. between p-h states on the Fermi surface.
This momentum transfer in the crossed channel is relat-
ed to the relative p-h momenta in the Landau limit by>?

q9.=p—p', (3.1

which means that the absolute value is related to the
Landau angle 6, =6,, , by the relation

q?
2k

cosf; =1— (3.2)

It is clear that an antisymmetrized interaction must van-
ish at g.=0 or ;=0 when the lowest L value of the
motion is 1 or larger [see Eq. (2.8)]. In addition, there is
a strong g, dependence which is responsible for the large
higher-order Landau parameters.

This strong momentum dependence will also be obvi-
ous when discussing the p-h interaction away from the
Landau limit, i.e., | q| >0. Before discussing the results
for the solution of the RPA integral equation (2.22) it is
useful to illustrate that in the case of a one-component
fermion system like *He? the momentum dependence in
the Landau limit, i.e., on g, is in a simple way related to
the dependence on g, the total p-h momentum when the
interaction is local. A local representation of the G ma-
trix has been shown to be quite useful in the nuclear
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FIG. 11. The p-A interaction V¥ in the Landau limit [see Eq.
(2.11)] as a function of the momentum transfer g. between the
p-h states on the Fermi surface as defined in Eq. (3.2) for
kr=0.9 A ~!. The dashed line refers to the G-matrix result
and the solid line includes the renormalization due to the in-
duced interaction.

case.”> Assuming a local G matrix operator g (k) which
only depends on the momentum transfer k, which is the
conjugate momentum of the relative distance of the two
atoms, a p-h matrix element acquires a contribution
from the direct and the exchange contribution. For the
matrix element G (p,p’;q) in Eq. (2.19) one then obtains

G(p,p;q9)=g(q)—g(p—p'=q.) . (3.3)

This equation shows that the dependence of the interac-
tion on the momentum q, in the Landau limit is deter-
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FIG. 12. Same as Fig. 11 for kr=1.0 A 1.
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mined by the same function g which also determines the
dependence of the direct part of the interaction on the
total momentum q. The solution of the integral equa-
tion (2.19) involves matrix elements for one momentum
q and a range of values for p—p’ (recall the discussion
in connection with Fig. 4). Assuming the momentum
dependence as displayed in Eq. (3.3), one expects a
dependence on q for the linear combination G . In the
linear combination G _ this dependence on q drops out
and G_ is dominated by the exchange contribution for
which various momenta p—p’ have to be considered.

We have chosen to show these features by calculating
the stability functions X T(q) and X ~(q) defined in Egs.
(2.33) and (2.34) from the full solution of the integral
equations given in Eq. (2.22). We recall that the X * can
be regarded as a generalization of the Landau parameter
F, to finite q. The X functions are also dimensionless
and contain the proper dependence on the phase space
which in the Landau limit is given by N,. This also al-
lows us to inspect the stability of the ground state with
respect to p-h excitations at finite q. Closeness of X to
—1 at some | q| signals such an instability.

In Fig. 13 the X7T functions are given for
kr=0.9 A ~! when the G matrix is used in Eq. (2.22)
and the resulting reducible p-h interaction is used in Eq.
(2.26) to calculate II(q), which in turn can be analyzed
according to Eqgs. (2.33) and (2.34). As expected, one ob-
tains the dominant g dependence in the X * function, but
a non-negligible X ~ is obtained from the momentum
dependence in the exchange contribution. Figure 13 also
nicely illustrates the usefulness of the approximate repre-
sentation of the G matrix given in Eq. (3.3). We know
already the expected momentum dependence of the func-
tion g from the results of the Landau limit given in Figs.
11 and 12. This implies then according to Eq. (3.3) that
X * should have an opposite phase as a function of q,

1.0 T T
* Stability Funcﬁ(l)n
N k. =094
/ \ G matrix
0.5} / \ 1
/ \
/ \
! \
/ \
- 0 / \
o 7 A
< ! '
\
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-0.5F / \ ]
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/ o
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FIG. 13. Stability functions X *(q) (dashed line) and X ~(q)
(solid line) as a function of the total p-h momentum |q| for
kr=0.9 A ~!. These functions are defined in Eqgs. (2.33) and
(2.34), respectively. The results shown here refer to the G-
matrix results at this density.
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which in fact is observed in Fig. 13. First there is an in-
crease in X * and for momenta |q| >kr X7 is decreas-
ing. The averaging procedure implied in Eq. (2.26) over
the momenta p and p’ is then responsible for an almost
| q| independent shift. This shift is represented in the
Landau limit by a simple integral over the angle 6; and
therefore leads to the relation

X*t(|q| =0)=F, . (3.4)
The X ~ function is almost | q| independent if Eq. (3.3)
is a reasonable representation of the G matrix, and this
is also confirmed in Fig. 13. Since the renormalization
due to the induced interaction is more important for the
X * function, we will focus on this linear combination in
the rest of the paper.

For a discussion of the results with inclusion of the
fully self-consistently calculated induced interaction we
now return to Fig. 10. Comparing our results for the
Landau parameter F, with the other calculations in the
literature a few comments should be made. The first
point to raise is the substantially lower value for F, we
obtain as compared to other calculations. If we compare
our values with those of Bedell and Quader!! at kx=1.0
A ! we observe that our F, is roughly a factor 3 small-
er than their value. This implies also a smaller in-
compressibility (shown in Table I) as compared with the
results of Ref. 11. Note that we have drawn a straight
line in Fig. 10 to connect the results obtained with the
same calculation but for a different density, not implying
that this is the actual dependence on the Fermi momen-
tum kr. As we have discussed above we obtain attrac-
tive values for F, in the G matrix approximation,
whereas in Ref. 11 their direct interaction already gives
values which are substantially larger than zero. In addi-
tion, they use only the Landau parameters F and F, for
the direct interaction. More important, however, is that
in their scheme the q dependence of the p-A interaction
and therefore the implied p—p’ dependence on the Fer-
mi surface is not treated adequately. This point can be
made clear by considering Fig. 2 again. The irreducible
p-h interaction on the Fermi surface, i.e.,, |q| =0, is
constructed by including the phonon exchange which is
given by the second term in Fig. 2(b). Even on the Fer-
mi surface these phonons can carry a momentum up to
twice the Fermi momentum. In the p-A propagator Il in
Fig. 2(b) one therefore encounters these larger momenta,
and one should then use the appropriate interaction.
The p-h interaction in the Landau limit is not a good
representation of the p-h interaction at finite ¢ as one
can see from Fig. 13, in fact there is a very strong g
dependence; it should therefore be no surprise that the
calculation of the Landau parameters using only infor-
mation on the interaction in the Landau limit (the direct
interaction in Ref. 11) is not a very good approximation
to an inclusion of the full momentum dependence of the
interaction, as it is done here. Our results therefore
show that one must expect much less repulsive values for
the Landau parameter F,, although the density depen-
dence is similar. This means that F, becomes more
repulsive at higher density.
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In Fig. 10 we have also included the result of Ref. 14
which was obtained by calculating the compressibility
from the second derivative of the Galitskiil-Feynman en-
ergy with respect to the volume. The difference with our
result is substantial and much larger than one would ex-
pect if one compares the values of F, in the G or T ma-
trix approximation. Indeed the more attractive F, in
the T matrix would lead to a larger renormalization, but
this renormalization must also overcome this more at-
tractive original F, and the corresponding cancellation
effect leads to the expectation that the resulting F can-
not be too far away from the corresponding G matrix re-
sult. We have therefore no explanation for the large
difference, although it must be remarked that it is also
unclear in how far this functional differentiation can
represent the detailed calculation of the induced density
fluctuations as they are reported here.

Finally, we show an extrapolation of the results for
the effective p-h interaction calculated with correlated
basis functions,'” to |q| =0. A comparison for the full
p-h interaction will be discussed later. In Ref. 17 the lo-
cal approximation to the p-k interaction!® was employed.
It is therefore likely that this will not be too good an ap-
proximation in the Landau limit where the results are
strongly influenced by the |p—p’| dependence. In ad-
dition, one must keep in mind that the approximation
we make in the construction of the induced interaction
becomes exact in the Landau limit. Here we are refer-
ring to the operation discussed in connection with Fig. 5
and Eq. (2.24).

The results for the other Landau parameters with in-
clusion of the induced interaction are collected in Table
I. We observe that there are also substantial
modifications of the higher-order parameters. The
equivalent results in terms of the function ¥V (p,p’) of Eq.
(2.11) are displayed in Figs. 11 and 12 for the two
different densities. To understand this renormalization it
is useful to include the results for the stability functions
with inclusion of the induced interaction in the discus-
sion. These results are displayed in Figs. 14 and 15.
The solid curves there give the self-consistent results
which in turn help to understand qualitatively the renor-
malization in the Landau limit as a function of g,. One
should keep in mind again that the exchange term corre-
sponding to the difference AR %) [see the discussion un-
der Eq. (2.24)] is responsible for this renormalization.
According to Figs. 14 and 15 this renormalization is
substantial for momenta below 1.5k and momenta close
to 2kp. This explains then the qualitative behavior of
the renormalization in the Landau limit, since only when
the X * function is far from the value zero does one ob-
serve deviations from the free Fermi gas Lindhard func-
tion. It is therefore clear that around ¢g,=1.5 A ~!
there is only a very small renormalization as shown in
Figs. 11 and 12.

This behavior of the renormalization in the Landau
limit induces apart from a substantial increase in F, a
very different set of Landau parameters as compared to
the G matrix result. For both densities there is a reduc-
tion of F, leading to an increase of the effective mass.
Since we only treat the complete momentum dependence
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FIG. 14. Same as Fig. 13. The dashed curve here corre-
sponds to the G-matrix results for X *, the solid line includes
the effects of the induced interaction. The Fermi momentum
has the value 0.9 A —'.

of the interaction, we can only claim that we include a
careful treatment of the so-called k mass.”’ The
enhancement at the Fermi surface due to the energy
dependence is not included as discussed in Sec. II. We
obtain effective masses which are comparable with the
results of Ref. 17. However, we cannot present any new
information on the discrepancy between the Galitskii-
Feynman result'* for the effective mass and the CBF re-
sult!? as discussed by Mahaux et al.?®

Due to our more complicated interaction we obtain
also nonvanishing higher-order Landau parameters. As
discussed above we believe that this result is not surpris-
ing since we include the effect of the finite |q| p-h in-
teraction on the irreducible p-4 interaction. The result
of Bedell and Quader, who observe a rapid convergence
with /, is therefore not valid when the induced interac-
tion is calculated on a microscopic level. We also ob-
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FIG. 15. Same as Fig. 14 for k;=1.0 A ~.
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serve that the Pauli principle sum rule [Eq. (2.14)] is
fulfilled much better by the Landau parameters which
include the effects of the induced interaction, than by
those derived from G-matrix approximation. This is not
surprising since the present method should preserve this
sum rule. We do not obtain exactly zero, however, since
the numerical approximations employed do not allow an
accurate determination of the Landau parameters for
very large I. We have therefore restricted the sum to
1<9.

We now turn to the discussion of the results for the
p-h interaction which are obtained for finite values of the
p-h momentum q. The results for the stability functions
X *(q) are displayed in Figs. 14 and 15 for kp=0.9 A -1
and krp=1.0 A ~!, respectively. It is good to remember
that the influence of the induced interaction is felt
through the exchange term of R 7, it is therefore expect-
ed that this influence is represented by a smooth func-
tion of q since the exchange terms are sampled in a way
which can only induce a weak q dependence [e.g., see
Egs. (2.22) and (2.26)]. To understand the sign of the re-
normalization, one can consider Eq. (2.19) for the case
when the p-h interaction depends only on q

R(q)=I(q)+I(q)IT'”(q)R(q) . (3.5)

Here, we have used the static limit (w=0) and general-
ized the p-h interaction to the complete irreducible one,
denoted by I. Solving Eq. (3.5) in this simple example,
one obtains for the difference AR =R —1

(0) 2
AR(q)= _T0@I*a)

= 3.6
1—I(q)I1'%q) (3.6

When the stability condition in the denominator is not
violated one sees that AR is always negative since IT'” is
always negative in the static limit. Taking the exchange
contribution to obtain the contribution to the irreducible
interaction under the assumptions discussed in Sec. II B,
one obtains an additional minus sign and therefore the
induced interaction gives a repulsive contribution to the
p-h interaction. In addition, it is clear from Eq. (3.6)
that this contribution is important either when the in-
teraction is sufficiently attractive, where the denomina-
tor becomes small, or when the interaction is sufficiently
repulsive in which case the denominator becomes com-
parable with —ITI'” and AR is roughly equal to —1I.
Both cases are actually fulfilled on the G-matrix level of
approximation as can be seen from the dashed lines in
Fig. 14 and 15. This means that it is essential to include
the effects of the induced interaction in order to obtain
reliable results for the residual p-A interaction. From
these simple arguments one can also understand that the
induced interaction becomes increasingly important for
increasing density. This feature is also observed in the
case of nuclear matter’® where the situation is more
complicated due to the presence of more p-h channels
and their coupling.

The resulting stability functions are therefore more
“stable” (i.e., further away from —1) than the G matrix
result. Another important observation is that the effect
of the induced interaction becomes substantially less im-
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FIG. 16. The inverse of the static dielectric function [Eq.
(2.35)], the “enhancement” function, as a function of |q].
This function emphasizes the attractive nature of the interac-
tion and a divergence indicates an instability with respect to p-
h excitations with corresponding momentum |q|.

portant for momenta near 2kr. This is not surprising
because one expects long-range correlations to decrease
in magnitude for higher momentum transfers and the
short-range correlations which are incorporated in the G
matrix to take over. Another useful way of representing
the results is depicted in Fig. 16, where the enhancement
function 1/&(q) is shown. The dielectric function £(q) is
defined in Eq. (2.35). This way of representing the re-
sults emphasizes the attractive features of the interaction
in particular, and it is clear that the strong enhancement
observed for the G matrix is effectively kept under con-
trol when the induced interaction is included.

Finally, we plot in Fig. 17 the irreducible p-% interac-
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FIG. 17. The results for the irreducible p-hA interaction
I*(q) as a function of |q| for two different densities. The re-
sults include the full momentum dependence of the induced in-
teraction and are obtained by analyzing II(q) in terms of Eq.
(2.33). The dashed curve refers to k;=0.9 A ~! and the solid
line to kr=1.0 A ~'. The solid line labeled KCJ gives the re-
sults of Ref. 17 for a density which corresponds to
kr=0.994 A ~!. The agreement between the two methods for
| q| > kr is encouraging.
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tion 1*(q) as a function of |q| for the two different
densities. Also given in Fig. 17 is the result of Ref. 17
for a density which corresponds to kp=0.994 A
The first observation is the good agreement between the
two completely different calculations for momenta larger
than 0.5ky. This agreement is due to the inclusion of
the induced interaction as demonstrated in Figs. 14 and
15. Also, the density dependence of the result for 7 *(q)
is in complete agreement with the results shown in Fig.
4 of Ref. 17 (not explicitly shown here). The agreement
for the p-h interaction calculated by means of completely
orthogonal methods therefore strongly reinforces the
credibility of both calculations. The remaining
discrepancy is nevertheless substantial for small momen-
ta | q| which leads to large differences in the Landau
parameter F (see Fig. 10). As discussed before our re-
sults should be most accurate in the Landau limit lead-
ing, e.g., to a fulfillment of the Pauli principle sum rule
for the Landau parameters. It should therefore be in-
teresting to further explore this difference between both
calculations at small momenta where one is more sensi-
tive to the nonlocalities of the interaction which are not
explicitly included in the calculation of Ref. 17.

IV. CONCLUSIONS AND SUMMARY

In this paper a microscopic investigation of the residu-
al p-h interaction in fully polarized liquid helium is re-
ported. The method is based on the concept of the in-
duced interaction which (self-)consistently includes the
phonon exchange terms into the residual p-h interaction.
The starting point of the calculation is the Brueckner G
matrix which takes care of the short-range correlations
between the atoms. The continuous choice for the SP
spectrum in the Galitskii-Feynman T matrix'* leads to a
substantially lower energy as compared with our G- ma-
trix results which are calculated with a gap in the SP
spectrum. For the p-h interaction as exemplified by the
Landau parameter F, we obtain a similar result as in
Ref. 14. We observe that the direct interaction of Bedell
and Quader!! is not representative of such a microscopic
interaction.

A study of the p-h interaction including the full
momentum dependence of the interaction, reveals that
the nonlocality of the p-k interaction is non-negligible.
The inclusion of this momentum dependence in the in-
duced interaction leads to important renormalization
effects on the Landau parameters. Apart from less
repulsive values for F; as compared with the results of
Ref. 11, we also obtain nonvanishing parameters for
[ >2. With this microscopic version of the induced in-
teraction we therefore obtain quite different results than
in Ref. 11.

An additional advantage of treating the full momen-
tum dependence of the interaction is the possibility of
studying the p-h interaction also for finite values of the
momentum transfer | q|. We have analyzed the result
of our calculations in terms of stability functions X (q)
which measure the closeness of the system to an instabil-
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ity of the system with respect to p-h excitations at
momentum |q|. The results show that the induced in-
teraction tends to stabilize the system making the p-A in-
teraction more repulsive. Furthermore, it has been
shown in terms of a simple model how one can under-
stand the main features of the results. This also illus-
trates that the inclusion of the induced interaction is
essential to obtain reliable results for the p-h interaction.
In the Landau limit this is demonstrated by fulfilling the
Pauli principle sum rule for the Landau parameters. A
comparison with CBF results!” for the p-h interaction
shows encouraging agreement for |q| >0.5kg. For the

Landau parameter F, the CBF yields a considerably
larger value.
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