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We present a very simple but fairly unknown method to obtain exact lower bounds to the
ground-state energy of any Hamiltonian that can be partitioned into a sum of sub-Hamiltonians.
The technique is applied, in particular, to the two-dimensional spin-§ antiferromagnetic Heisen-
berg model. Reasonably good results are easily obtained and the extension of the method to other

systems is straightforward.

The discovery of high-temperature superconductors'
has induced a renewed interest in models that describe
strongly correlated systems, in particular, in the two-
dimensional (2D) spin-3 antiferromagnetic Heisenberg
model?

HH=J(Z>S,--S», 1)
i.J

where S; and S; are spin operators on sites i and j, the
sum is over nearest neighbors (NN), and J > 0.

Exact results of the spectrum of the Hamiltonian have
been obtained for the regular 1D problem? and for small
finite systems where diagonalization is computationally
feasible. A great amount of work has been done for the
2D model, but only numerical ground-state-energy results
are known.* The best energy value (upper bound) has
been obtained variationally by Liang, Dougot, and Ander-
son> (—0.6688J/site). In order to supplement the usual
variational methods that lead to upper bounds, we present
a fairly unknown method that provides exact lower bounds
to the ground-state energy of any Hamiltonian that can be
partitioned into a sum of subHamiltonians, and apply it,
as an example, to the Heisenberg model.

The method is based on a theorem that states that given
a Hamiltonian H that can be decomposed into n elementa-
ry Hamiltonians H;, i =1,2, ... ,n:

H=3 b, @
where no;mally,

[H;,H;1=0, i=j, 3)
then,

Eo= ,-g,E""’ C))

where E¢ and E; are, respectively, the ground-state ener-
gies of the total Hamiltonian H and of each one of the
H;s. Whenever the H; commute among them, the equal
sign holds.

The proof of this theorem is very simple,

H=Y Y El|is)Xis|, (s)

i™=] s

41

and
L=Xis)is]| 6)

is the identity in the space of H;. The index i denotes the
subsystems in which the Hamiltonian has been divided
i=1,2,...,n (notice that the corresponding subspaces
are in general overlapping). s is the index that sums over
the whole spectrum of H;, and E;; are the corresponding
energies with

Ew<Ej< - <Es;< - <Ep. @)
Then,
n n n
2 X EslisXis| = X EioX |i,s)i,s| =X Eiol;,
i=] s =] K i=1
)

from which (4) follows.

Once a particular decomposition is chosen, it only
remains to obtain the ground-state energies of H;, which
usually are such that they do not depend on i, or at most
fall into a few classes. The efficiency of the method will
strongly depend on the choice of the H;’s.

We have applied this technique to the spin- 3 antiferro-
magnetic Heisenberg model (1) on the square lattice.

The square lattice can be partitioned into different
pieces: lines, squares, crosses, etc. From all elementary
partitions, i.e., those where H; is trivially diagonalized, the
best has proved to be into crosses. The ground-state ener-
gy corresponding to a cross is easily computed. We have
[see Fig. 1(a)]

Ha "‘J(S]‘ Sz+sl‘ S3+S1'S4+S|'Ss)
=J/2[St345—S? —Shusl , 9)

where S12345=S|+S,+S3+S4+S;s, etc. Therefore,

E.,=JN2[S(S+1)— 23‘ _S2345(Sz345+1)] s

with § =S5 ,345 the total spin.
By the Lieb and Mattis theorem for bipartite lattices, ®
the ground state will have total spin S = 3. Furthermore,

(10)
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FIG. 1. Elementary Hamiltonians considered.

Sz345 -2, Then,

Eso=—1.5J. an
The next step consists of doing the proper combination
of these H, in order to recover H. In the square lattice,
two bonds are assigned to each site; when covering the lat-
tice with crosses centered at all sites, four bonds are intro-
duced per site. Then, the following lower bound to the
ground-state energy of the whole system is dbtained:
E@/site=Eq0x § =—0.75J . (12)
This is an exact lower bound to the ground-state energy
of the square lattice which has been obtained with no
effort. Any other elementary partition, which incidentally
all have a lower ground-state spin, leads to a worse bound.
An improvement of this result can be obtained by
defining new H;’s which are combinations of the previous
elemental H;’s.

In our case, the new H;’s correspond to combinations of
crosses. The same theorem (4) assures that these H;’s will
provide a better lower bound to the ground-state energy of
the whole system.

Only two different combinations of two crosses exist
[see Figs. 1(b) and 1(c)]. Their Hamiltonians can be
written as

Hp, = J/2[St34— S — S+ Séiso — S — Sl

+JS5(S; +S¢) , (13)
and
H.=J/2[Str34— St —S314+S780 — S — Ss]
+J(S;-Ss+S4-S¢) . (14)
For H, the ground-state spin is® § = 3. Now, as
[Hs,S334] =[H},S%35] =0 (15)

the ground state also has well-defined values of S,34 and
S789. It is a less straightforward consequence of the proof
of the same theorem of Lieb and Mattis that S)4
=S.39=7% (i.e., they take their maximum value as their

spins belong to the same sublattice in the language of Ref.
6). The diagonalization of H, which has to be performed
in order to obtain Eo thus boils down to consider its
reduction to the 7D S =3, S;34=S789 = 3 subspace. For
H, a similar argument based on

[H.,S})1=[H.,S%]1=0 (16)

leads to the reduction of H. in the 11D S=2, Sy
=S7,3=1 subspace. These matrices are easily diagonal-
ized and the corresponding lower bounds come out to be

E®/site=E,ox £ =—0.7421J,

© 17)
E'fsite=E x # =—0.7391J .

This process can be further iterated, so that better lower
bounds will be obtained defining new subsystems H;, com-
bination of the previous ones. The computations per-
formed suffice, however, to show the efficiency and simpli-
city of the method.

In conclusion, we have presented a technique for ob-
taining exact lower bounds to the ground-state energy that
provides reasonably good results with little computational
effort and can be improved by applying the method itera-
tively.

The 2D Heisenberg Hamiltonian has been chosen as an
example and fairly good results have been obtained (17).

This method can be applied to a wide variety of systems
and Hamiltonians and its most relevant features are its
simplicity and the fact that it limits energies from below.

Note added in proof. We have run a computer program
by Allan H. MacDonald (Indiana University) with which
we have obtained the ground-state energies for the Hamil-
tonian formed by four crosses in a 45° tilted square [twice
Fig. 1(c), 13 sites]

E/site=E X &4 =—0.7224J

and for the Hamiltonian formed by six crosses in a 45°
tilted rectangle [three times Fig. 1(c), 18 sites]

E/site=Eox & =0.7158J .
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