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Abstract

Understanding the attitude to risk implicit within a risk measure sheds some

light on the way in which decision makers perceive losses. In this paper, a two-stage

strategy is developed to characterize the underlying risk attitude involved in a risk

evaluation, when executed by the family of distortion risk measures. First, we show

that aggregation indicators defined for discrete Choquet integrals provide informa-

tion about the implicit global risk attitude of the agent. Second, an analysis of the

distortion function offers a local description of the agent’s stance on risk in relation

to the occurrence of accumulated losses. Here, the concepts of absolute risk atti-

tude and local risk attitude arise naturally. An example is provided to illustrate the

usefulness of this strategy for characterizing risk attitudes in an insurance company.
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1 Introduction

1.1 Motivation

Tools designed to provide adequate risk measurements are needed by both decision-making

agents and regulatory agents, who require information about potential losses within a

probabilistic framework. As such, the choice of a risk measure plays a central role in

decision-making in many areas including health, safety, environmental, adversarial and

catastrophic risks (1,2). Many different risk measures are available to practitioners, but the

selection of the most suitable risk measure for use in a given context is generally contro-

versial. A key element in characterizing a risk measure is the underlying risk attitude that

is assumed when this measure is used for risk assessment. Clearly, therefore, in selecting

the best measure, the practitioner is concerned with how a particular measure matches

up with the alternatives. However, this simple question is only satisfied with a complex

answer.

Consider the Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR), probably the most

common measures used in assessing risk. Suppose α is the confidence level, which reflects

the degree of tolerance to undesirable events. The VaRα(X) is the α-quantile of loss X,

while the TVaRα(X) averages quantiles ranging from the α-quantile to the maximum

(the 100%-quantile) of X. Based on these definitions, it seems obvious that these two

quantile-based risk measures can be directly compared in terms of their respective con-
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ceptions of risk using their associated confidence levels. For instance, the Value-at-Risk

measure provides for a concept of risk associated with a barrier, beyond which the de-

cision maker assumes catastrophe lies (3). A Value-at-Risk measure at a 95% confidence

level presents a lower resistance to undesirable events than a VaR measure at a 99% level.

This also holds for TVaRα(X). Comparisons of VaR and TVaR measures can likewise be

readily undertaken when their respective confidence levels are fixed and equal. Given an

α-confidence level, the TVaRα(X) is always greater or equal than the VaRα(X). How-

ever, a direct comparison cannot be made if the VaR and the TVaR risk measures have

different confidence levels. For example, imagine a decision maker wishes to compare the

implicit risk attitude of the TVaR95%(X) and the VaR99%(X). In this instance, it is not

immediately obvious which of these two risk measures offers the greatest risk tolerance.

Furthermore, if the decision maker wants to know the risk attitude of a measure other

than that of these two quantile-based measures, comparisons are even less intuitive.

Here, we focus on the family of distortion risk measures introduced by Wang (4,5), where

the VaR and TVaR can be understood as two particular cases. A battery of instruments

is developed to facilitate the comparison of the risk attitude of distortion risk measures

from both global and local perspectives. The results afford new elements for determining

the suitability of a particular distortion risk measure in comparison with other available

options. They also allow an agent to determine which risk measure provides the most risk

tolerant behavior.
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1.2 Attitude towards risk

This article seeks to contribute to the study of attitudes towards risk in the assessment

of risk. The study analyses the risk perception that is implicit when an agent applies a

particular distortion risk measure. The characterization of the implicit attitude towards

risk in a given distortion risk measure is carried out by means of the computation of

aggregation indicators and an analysis of the distortion function. The combination of

these two instruments provides a precise portrait of the underlying risk position of a

decision-maker when selecting a particular risk measure for risk assessment.

Distortion risk measures can be represented mathematically as a class of Choquet

integrals (6). One way in which to describe the characteristics of discrete Choquet inte-

grals is to use a set of aggregation indicators, which provide information about features

of the underlaying aggregation operator (7). Here, we investigate the quantitative infor-

mation related to the overall risk attitude associated with the risk measure as provided

by the aggregation indicators. It is our contention that these indicators are useful for

characterizing the global perception of risk implicit in the risk measure choice.

It is reasonable to suppose that decision-makers do not worry about all random event

losses in the same way. Decision makers frequently treat different random events distinctly

(note that some of these events can represent benefits or affordable losses). Therefore,

the global vision of risk embedded in a risk measure has to be completed with local

information. In this paper, we define a quotient function, based on the distortion function

associated with the risk measure, in order to characterize the local vision of risk. The
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quotient function is graphically analyzed to investigate the risk attitude of the agent at

any point in the survival distribution function when using a certain risk measure. The

graphical evaluation of the risk-appetite pattern of a manager in the range of feasible

values is the basis of the definition of two concepts: absolute risk attitude and local risk

attitude.

The attitudes to risk implicit within three particular distortion risk measures are

studied. Our attention is focused on the characterization of the attitudes toward risk of

the VaR, TVaR and a class of four-parameter distortion risk measures that are called

GlueVaR (8). The high flexibility of the GlueVaR distortion measures allows different

specific attitudes to be reflected. We examine the additional risk information provided

by these risk measures and their usefulness for decision makers.

An illustrative example of the risk attitude characterization implicit in a distortion

risk measure is included in this article. The European insurance regulatory framework

serves as an excellent example of the choice of a compulsory risk measure, i.e. VaR99.5%.

However, insurers implement other choices in their internal tools. We show that, given

a particular insurer’s dataset, distortion risk measures other than that of the Value-at-

Risk can provide the same risk estimates. However, if the insurer does chose a different

risk measure, this provides complementary tools for evaluating risk that can be used

to understand its position in the European insurance or financial market, or even to

benchmark it in relation to the mandatory risk assessment standard.

The article is structured as follows. Section 2 is devoted to a brief presentation of

distortion risk measures and indicators for discrete Choquet integrals. Section 3 examines
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and discusses the tools to analyze implicit risk attitudes in distortion risk measures.

Section 4 describes an application and its results, and outlines the strategy and the

methodology used to calibrate risk measure parameters. The programming of the data

analysis was carried out using the open source R statistical programming language and

software (9). Finally, section 5 concludes.

2 Choquet integral and distortion risk measures

2.1 Choquet integral

We define the Choquet integral in line with Denneberg (10). The (asymmetric) Choquet

integral with respect to a set function µ of a µ-measurable function X : Ω→ R is denoted

as

∫
Xdµ and is equal to

∫
Xdµ =

∫ 0

−∞
[Sµ,X(x)− µ (Ω)] dx+

∫ +∞

0

Sµ,X(x)dx, (1)

if µ (Ω) < ∞, where Sµ,X (x) = µ ({X > x}) denotes the survival function of X with

respect to µ. Note that Ω denotes a set, which in many applications is the sample space

of a probability space. A set function µ in this context is a function defined from 2Ω (the

set of all subsets of Ω) to R. A µ-measurable function X is, widely speaking, a function

defined on Ω so that expressions like µ ({X > x}) or µ ({X ≤ x}) make sense. If µ is

defined so that 0 ≤ µ (Ω) <∞ and it also satisfies that µ (∅) = 0 and that if A ⊆ B then

µ (A) ≤ µ (B), for any A,B ∈ 2N (monotonicity), then µ is often called a capacity.
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The discrete expression of (1) can be obtained as follows. Let µ be a capacity on

Ω = {$1, ..., $n}, and X : Ω → R be a function. Let σ be a permutation of (1, ..., n),

such that X
(
$σ(1)

)
≤ X

(
$σ(2)

)
≤ ... ≤ X

(
$σ(n)

)
and Aσ,i =

{
$σ(i), ..., $σ(n)

}
, with

Aσ,n+1 = ∅. If notation X
(
$σ(i)

)
= xσ(i) for all i ∈ Ω is used, then the asymmetric

Choquet integral of X with respect to µ (sometimes noted as Cµ) is equal to

∫
Xdµ =

n∑
i=1

xσ(i) (µ (Aσ,i)− µ (Aσ,i+1)) . (2)

2.2 Degree of orness for discrete Choquet integral

Indicators may be used to characterize the discrete Choquet integral. One of the most

frequently used indicators is the degree of orness, which seeks to summarize the impor-

tance of each ith-order statistic, i = 1, ..., n, in the aggregation process associated with the

Choquet integral with respect to capacity µ. This indicator provides some kind of level

of preference inherent to such an aggregation function on a [0, 1] scale, where 0 represents

the minimum and 1 the maximum order statistic (11,12).

Let us assume that input data (x1, x2, ..., xn) are increasingly ordered. Given increas-

ingly ordered data, the degree of orness is computed as follows,

ω (Cµ) =
n∑
i=1

(
i− 1

n− 1

)
·
[
Sµn−i+1 − Sµn−i

]
, (3)

where Sµi = µ(Aid,n−i+1). Note that Aid,n−i+1 = {$n−i+1, · · · , $n}. To simplify the nota-
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tion, the difference Sµn−i+1−Sµn−i is denoted as wµi , which can be understood as the weight

indicating the importance given to the i-th order statistic represented by the fraction i−1
n−1

,

i = 1 . . . n. The degree of orness is one when the weight wµn associated with the maximum

is equal to one and the remaining weights are zero. It takes zero when the weight of the

minimum wµ1 is equal to one and the rest are zero. Thus, the value of the degree of orness

indicates how the aggregation performed by the Choquet integral is ranked between these

two boundaries.

It should be emphasized that the data ordering hypothesis can be relaxed. Indeed, the

degree of orness can be computed without assuming the ordering of input data. Unfortu-

nately, in practice, this flexible approach has high computational costs if n is large. Finally,

alternative aggregation indicators have been developed in the literature to characterize

the Choquet integral. Examples include the divergence and the variance indicators (7).

2.3 Distortion risk measures

The Choquet integral may be used in the definition of distortion risk measures. A dis-

tortion function is a non-decreasing and injective function g from [0, 1] to [0, 1] such that

g(0) = 0 and g(1) = 1. Consider a probability space and the set of all random variables

defined on this space. Given one of these random variables X, the value ρg (X) that a

distortion risk measure returns when applied to X may be understood as the value of the

asymmetric Choquet integral of X with respect to a capacity, which is build by distorting
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the survival probability of X with the distortion function g, i.e. ρg (X) =

∫
Xd (g ◦ P ).

The most frequently used distortion risk measures are the quantile-based risk mea-

sures Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR). Let us consider the VaRα

and TVaRα risk measures that are defined for a random variable X as VaRα (X) =

inf {x | FX (x) ≥ α} = F−1
X (α) and TVaRα (X) =

1

1− α

∫ 1

α

V aRλ (X) dλ, respectively,

where 0 ≤ α ≤ 1 is a confidence level. The relationship between the VaR and TVaR

risk measures and discrete Choquet integrals has been described in literature (6). Both

VaRα (X) and TVaRα (X) may be understood as Choquet integrals with respect to ca-

pacities ν = ψα ◦ P and τ = γα ◦ P , respectively, where P is the probability function

of X, ψα(u) = 1[1−α,1](u) and γα(u) = u
1−α · 1[0,1−α)(u) + 1[1−α,1](u) are the distortion

functions associated with these risk measures, where 1I(u) denotes an indicator function

which equals 1 when u is in the interval I and 0 otherwise.

Note that the distortion risk measure is defined as ρ (X) = Cg◦P (X). Thus, the

distortion function g distorts the survival probability of X. The mathematical expectation

of X can be understood as a particular case of a distortion risk measure such that E (X) =

Cid◦P (X), where the distortion function is the identity function id. Indeed, the value of a

distortion risk measure ρ (X) may be interpreted as the expectation of X given that the

survival probability of X has been previously distorted by the function g.

Many articles have recently examined risk measures based on either distortion func-

tions (13,8,14) or generalizations of the quantiles (15,16). The interplay between both of these

two groups of risk measures has been examined (17,18).
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2.4 GlueVaR distortion risk measures

GlueVaR risk measures were introduced by Belles-Sampera et al. (8). These measures

are defined by means of four parameters α, β, ω1 and ω2, such that 0 < α ≤ β < 1,

β − 1

β − α
≤ ω1 ≤ 1 and ω1 + ω2 ≤ 1. It is shown by authors (8) that the GlueVaRω1,ω2

β,α is a

distortion risk measure. In other words, GlueVaRω1,ω2

β,α (X) =

∫
Xdµ is the asymmetric

Choquet integral of X with respect to capacity µ = κω1,ω2

β,α ◦P , where κω1,ω2

β,α is the distortion

function of a GlueVaR risk measure as shown in expression (4) and P is the probability

of the random variable X;

κω1,ω2

β,α (u) =



[
ω1

1− β
+

ω2

1− α

]
· u if 0 ≤ u < 1− β

ω1 +
ω2

1− α
· u if 1− β ≤ u < 1− α

1 if 1− α ≤ u ≤ 1.

(4)

An appealing feature of the GlueVaRω1,ω2

β,α risk measure is that it can be expressed as

a linear combination of three risk measures, as follows:

GlueVaRω1,ω2

β,α (X) = ω1 · TVaRβ (X) + ω2 · TVaRα (X) + (1− ω1 − ω2) · VaRα (X) , (5)

with confidence levels β and α. From expression (5) it is immediately observed that

VaR and TVaR can be defined as particular GlueVaR risk measures, i.e. GlueVaR0,0
β,α =

VaRα, GlueVaR0,1
β,α = TVaRα and GlueVaR1,0

β,α = TVaRβ. GlueVaR risk measures can

be connected to the Tail Distortion risk measures, as defined by Zhu and Li (13). The

relationship between these risk measures, and a result regarding asymptotic features of

GlueVaR for continuous heavy-tailed distributions, has been recently shown (19).
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In terms of decision-making and risk management, GlueVaR risk measures combine

three possible risk measurement scenarios: a highly tolerant to undesirable events scenario

using TVaRβ as the risk measure; a tolerant scenario using TVaRα; and a less tolerant

scenario using VaRα. As each GlueVaR combines these three risk scenarios, it allows

different specific risk attitudes to be reflected. GlueVaR risk measures can be implemented

by real world practitioners, because flexibility of these measures makes them useful in a

variety of contexts. However, each particular risk context could require a different set

of parameter values; thus, proposing a general criterion for GlueVaR calibration in all

risk contexts is not possible. In next sections we suggest criteria for calibrating GlueVaR

parameters and we examine their association with an attitude towards risk.

3 Risk attitude of agents

We analyze here agents’ attitudes to risk when they opt for a particular distortion risk

measure to assess a risk. The degree of orness and a graphical analysis of the relative

distortion associated with the risk measure are two useful tools for characterizing agents’

risk attitudes. The first of these tools is a global indicator of their attitude towards losses.

Their perception of risk is frequently not constant over the whole range of losses. An

agent’s risk attitude can therefore be examined in any interval of losses using a graphical

inspection of the relative distortion associated with the risk measure.
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3.1 Degree of orness and global risk attitude

A distortion risk measure may be understood as an aggregation operator because its

relationship with the Choquet integral and, from the perspective of aggregation operators,

the degree of orness is interpreted as an index that computes the similarity of the Choquet

integral with the maximum. Adapting this interpretation to the risk measurement context,

the degree of orness provides a level of similarity between the distorted survival function

associated with the risk measure and the theoretical distorted survival function which

returns the maximum loss. Note that the maximum value is returned in the worst-case

scenario, i.e. the distorted survival function is equal to one in the range (0, 1] and zero

in zero. The lower the degree of orness falls, the more dissimilar is the distorted survival

function to the worst-case survival function. Therefore, an agent would be less risk tolerant

in aggregated terms when the degree of orness is low.

An additional interpretation can be provided from the perspective of risk management.

To provide some insights into the information on risk attitudes provided by the degree of

orness, let us rewrite expression (3) as follows:

ω (Cµ) =
n−1∑
i=1

1

n− 1
· Sµn−i. (6)

If µ = g ◦ P , it is straightforward to check that following expression holds,

Sµn−i = g (SX (xi)) = g(
n∑

j=i+1

pj). (7)

where pj is the probability of xj, j = 1 . . . n. When combining expressions (6) and (7) it
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can be deduced that ω (Cg◦P ) provides an approximation to the area under the function

g. The level of accuracy of the approximation increases as n increases, where n is the

number of different values. Figure 1 illustrates how the degree of orness approximates the

area under the function g for the mathematical expectation (on the left) and the VaRα

(on the right), where their distortion functions are plotted as dotted lines. The accuracy

of the approximation depends on the size of n. The area under the function g is computed

by means of n rectangles, where each rectangle has a width equal to
1

n− 1
. So, a more

accurate approximation of the area under g would be given as n increases, conditioned by

the fact that a larger set of distinct values of X is involved when n increases.

___________________

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0
||

1

n− 1

|

2

n− 1
· · ·

|

i− 1

n− 1

|

i

n− 1
· · ·

|

n− 3

n− 1

|

n− 2

n− 1

|

1

<

1

n− 1
<

1

n− 1
<

1
SX (x1)

SX (x2)

· · ·
SX (xn−i)

· · ·

SX (xn−2)

SX (xn−1)

___________________

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0
|

1− α

◦

•

|

1

n− 1

|

2

n− 1
· · ·

|

i− 1

n− 1

|

i

n− 1
· · ·

|

n− 3

n− 1

|

n− 2

n− 1

|

1

<

1

n− 1
<

1

n− 1
<

1
ψα (SX (x1))ψα (SX (x2))

· · ·

ψα
(
SX (xn−i)

)

· · ·

ψα
(
SX (xn−2)

)
ψα

(
SX (xn−1)

)

Figure 1: Approximation to the area under the distortion function given by the degree of orness. Left:

the identity function id in the case of the mathematical expectation. Right: distortion function of the

VaRα risk measure, ψα(u) = 1[1−α,1](u). Note: x1, x2, ..., xn are increasingly ordered.

As indicated previously, the mathematical expectation can be understood as a distor-
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tion risk measure involving the identity function id as the associated distortion function.

The area under the id function is one half. Figure 1 (left) illustrates that the degree of

orness associated with the mathematical expectation should be approximately one half.

In the case of the VaRα risk measure (Figure 1, right), the degree of orness linked to

VaRα must be close to α for a large n, since α is the value of the area under the graph of

ψα(u) = 1[1−α,1](u).

The approximations to the areas under the distortion functions of the TVaRα and the

GlueVaRω1,ω2

β,α risk measures given by their degrees of orness are here not plotted. In the

case of the TVaRα, however, it is easily deduced that its degree of orness should be ap-

proximately 1+α
2

which is the value of the area under γα(u) = u
1−α ·1[0,1−α)(u)+1[1−α,1](u).

Similarly, the area under the distortion function associated with the GlueVaRω1,ω2

β,α can be

understood as a lineal combination of three different areas from expression (5), so its

degree of orness should be close to α + ω1 · (1+β
2
− α) + ω2 · (1−α

2
).

Since the degree of orness provides an accurate approximation of the area under g, this

quantity can be understood as an indicator of the global risk attitude of an agent, with

decision-makers being classified as risk tolerant, risk neutral or risk intolerant. Note that

we assume that a risk neutral agent would not distort the survival distribution function,

so the associated distortion function linked to aggregated risk neutrality would be the id

function. The area under the id function is one half and this value could be used as a

benchmark of global risk attitude. A globally risk tolerant agent would make an upper

distortion of the survival distribution in accumulated terms; thus, the area under g for this

agent would be larger than one half. Similarly, an agent would be globally risk intolerant
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if the area under g was lower than one half. An agent would be globally risk tolerant

using either the VaRα measure with α > 0.5 or the TVaRα with a positive α. In the case

of the GlueVaRω1,ω2

β,α , the implicit global risk attitude would depend on the values of the

four parameters that define the risk measure.

3.2 Graphical analysis of local risk attitude

A graphical analysis is proposed to complement the examination of decision makers’ risk

attitudes when using distortion risk measures. While the degree of orness evaluates the

accumulated distortion performed over the survival distribution function, it does not take

into account which part of the survival distribution function was distorted. Clearly, from

the perspective of a manager, distorting the survival probability in the right tail of the

random variable linked to losses is not the same as distorting this probability in the

left tail. Additionally, all distortion functions with an area equal to one half would be

associated with global risk neutrality, where the id function is only a particular case.

One option open to us is to define the risk attitude in absolute terms. An absolute risk

neutral agent is a decision-maker that does not distort the survival probability and who,

therefore, uses the id function as the associated distortion function, i.e. g(u) = id(u) = u

for all 0 ≤ u ≤ 1. An absolute risk tolerant agent is associated with a distortion function

g such that g(u) > u, for all 0 ≤ u ≤ 1. And, similarly, an absolute risk intolerant agent

has a distortion function g such that g(u) < u, for all 0 ≤ u ≤ 1. This definition of risk

attitude is in absolute terms in the sense that the relationship of ordering between g(u)
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and u must be fulfilled in the whole range [0, 1]. Note that these considerations lead to a

more restrictive definition of risk attitude than that provided by the global risk attitude.

The definition of the absolute risk attitude implies that the implicit attitude of an

agent is invariant over the range of values. Yet, there are no reasons as to why the

agent should have a unique risk attitude across the whole range. An agent’s attitude to

risk is likely to differ in accordance with the interval of loss under consideration. The

risk attitude implicit in frequently used risk measures is not invariant; this is the case,

for instance, of the VaRα. When using the VaRα, a risk tolerant attitude is associated

with the interval [1 − α, 1), but a risk intolerant attitude is associated with the interval

(0, 1−α). Thus, an homogeneous risk attitude cannot be linked to the VaRα risk measure

throughout the domain.

Let us define the function Qg(u) on u ∈ (0, 1] as the quotient between the distortion

function g and the identity function, Qg(u) = g(u)
u

for all 0 < u ≤ 1. The Qg(u) allows

the analysis of the agent’s perception of risk at any point in the survival probability

distribution. It takes non-negative values. This quotient function provides a function of

survival probabilities, u, which describes the distortion factor applied by g at each u level.

The quotient Qg is a quantifier of the local risk tolerance of the agent at any point. The

quotient value represents the relative risk attitude of the decision maker compared to that

of an agent with a risk neutral attitude who is confident of the survival probability. An

agent is risk neutral, risk tolerant or risk intolerant at point u if Qg(u) is equal to, higher

or lower than one, respectively. The graphical analysis consists of plotting Qg(u), for all

0 < u ≤ 1. Two examples are shown in Figure 2, where the quotient functions associated
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with the VaRα and TVaRα are displayed, Qψα and Qγα respectively. The quotient function

of the GlueVaRω1,ω2

β,α is not plotted because the particular shape for the Qκ
ω1,ω2
β,α

depends

on the values of the four parameters that define the risk measure.
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Figure 2: The quotient function of VaRα, Qψα (left) and the quotient function of TVaRα, Qγα (right).

Note that they only differ in terms of the interval [0, 1− α). The quotient function of the mathematical

expectation, Qid, is represented by a horizontal dotted line.

We should emphasize that the quotient 1
u
, for all 0 < u ≤ 1, marks out the maxi-

mum risk resistance frontier. Since the quotient function computes the ratio between the

distorted survival probability and the survival probability, so 1
u

is the maximum value

attainable by this quotient function. Note that the quotient function is equal to 1 in the

whole range for a completely risk neutral agent in absolute terms (absolute risk neutral

agent). Thus, an agent’s risk intolerance attitude emerges at point u when the quotient

function is smaller than one.

If we focus our attention on the quotient function associated with the VaR, Qψα , it
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can be seen that a radical risk attitude is implicit in the interval [1−α, 1), shifting to the

opposite extreme in the interval (0, 1− α). Indeed, a maximum risk tolerance is involved

in [1 − α, 1) and a maximum risk intolerance attitude is involved in (0, 1 − α). Some

similarities are found when the quotient function associated with the TVaR is examined,

Qγα . Two ranges involving a different risk attitude are also distinguished. Maximum

risk tolerance is involved in the interval [1 − α, 1) and a constant (non-boundary) risk

tolerance attitude is involved in (0, 1 − α). Unlike the VaRα, an absolute risk tolerance

attitude is associated with the TVaRα because the quotient function is larger than one

throughout the range (0,1). As in the former two risk measures, a maximum risk resistance

is involved in the interval [1 − α, 1) when the quotient function of the GlueVaRω1,ω2

β,α is

analyzed. However, more than just one attitude can be involved in the range (0, 1 − α).

The high flexibility of GlueVaRω1,ω2

β,α allows multiple attitudes towards risk to be implicit

in the range (0, 1− α), depending on the values of the remaining three parameters, β, ω1

and ω2.

In short, the quotient function Qg(u) can be used to characterize the relative risk

behavior of an agent at any point. The value of a quotient function at a particular point

depends on the distortion function as well as on on the original survival function. In

other words, risk attitude in the quotient function is contemplated in the size of the

distortion performed (the denominator) but also in the position in which this distortion

is performed (the numerator). Note that the area under the quotient function provides

similar information to that of the area under g, but expressed in terms of risk neutrality.

Indeed, the area under the quotient function can be interpreted as the area under a
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weighted distortion function, where weights (1/u) are given to distorted values, i.e. g(u)· 1
u
.

Following this interpretation, greater weights are assigned to distortion function values

associated with lower survival values.

The areas under the quotient function of VaRα and TVaRα are A (Qψα) = − ln(1−α)

and A (Qγα) = 1− ln(1−α), respectively. Similarly, the area under the quotient function

of the GlueVaRω1,ω2

β,α is equal to A
(
Qκ

ω1,ω2
β,α

)
= ω1[1 + ln(1−α

1−β )] + ω2 − ln(1− α).

Evaluating the area under the quotient function may be useful when analyzing the ag-

gregate risk behavior in situations in which values of the distortion function are weighted,

indicating that risk resistance is negatively associated with the size of the survival values.

Thus, the area under the quotient function can be interpreted as a weighted quantifier of

the aggregate risk attitude, where an area equal to one indicates global risk neutrality, an

area larger than one indicates global risk resistance and an area lower than one indicates

global risk intolerance.

4 Application

This section illustrates how the above findings can be applied in characterizing underlying

risk attitudes - more specifically, it illustrates the challenges faced by European insurance

companies. It is devised to highlight situations in which the implicit risk attitude linked

to the VaR is unable to detect changes in potential catastrophic losses. We argue that

the use of equivalent GlueVaR risk measures can be helpful in overcoming this drawback.

The example involves the calibration of GlueVaR risk measures for a real dataset. Details
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regarding the calibration process to obtain equivalent GlueVaR risk measures are included

in the Appendix.

4.1 Risk assessment in a scenario involving catastrophic losses

Suppose that the risk management function of a European insurance company is in-

volved in its Own Risk and Solvency Assessment (ORSA), in accordance with Directive

2009/138/EC of 25 November 2009 (known as the Solvency II Directive), or in the design

of a total or partial internal model for the company under the same regulatory framework.

In this framework, the VaR with a confidence level α = 99.5% is required to assess the

regulatory capital. Note that the selection of the confidence level involves a trade-off

between protection and competitiveness. The level of the protection could be reduced

with low confidence levels. An increase in the confidence levels could involve higher eco-

nomic reserves and, therefore, the protection would rise; however, this could also affect

the competitiveness.

Risk managers may dislike using the VaR as a risk measure, because of the lack of

risk-based information it provides on catastrophic losses. Indeed, two firms with marked

differences in the sum of their potential losses in adverse scenarios may report the same

risk value, even though they are not exposed to the same level of risk. As such, their

disparities would go unobserved by decision makers. Moreover, the lack of subadditivity

may well constitute another drawback. Alternatives to VaR99.5% that take into account

catastrophic losses can be considered by risk managers. Traditional approaches frequently

lead to severely higher economic reserves. Managers need to find a risk measure that gen-
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erates similar economic reserves than VaR99.5% for the overall risk faced by the insurance

company and, additionally, they would like that the alternative risk measure provides

risk-based information on catastrophic losses and that, hopefully, it satisfies appealing

subadditivity properties. This is a real practical problem because the Solvency II Direc-

tive allows insurance undertakings to look for such alternatives1.

4.2 Data and Results

In the example two loss random variables X1 and X2 affect a motor insurance company.

Motor claim cost data provided by a leading Spanish motor insurer are used to illustrate

the calibration procedure. The sample consists of n = 518 observations of individual

claim costs (in thousands of euros). These data were analyzed in previous studies (20,21).

The dataset contains X1 and X2, which report property damage costs and bodily injury

costs, respectively. Total claim costs are the sum of the two, Z = X1 +X2. The aggregate

risk faced by the insurer is the sum of both random variables. We assume that the insurer

uses the VaR99.5% as its risk measure.

Before dealing with the calibration of the GlueVaR measures, we first compute the

VaR99.5%(Z) and its associated degree of orness. The risk measure value is equal to

VaR99.5%(Z) = 187.612 and the degree of orness is equal to ω (VaR99.5%) ' 0.996. Let

us now modify the original dataset so that catastrophic losses are artificially increased.

Specifically, the two pairs of bivariate losses (x1, x2) that lead to the highest aggregated

loss z are each multiplied by 10. Total claim costs in the modified dataset are represented

1See Article 122(1) of the Directive.
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by the random variable Z∗, and the value of the VaR99.5%(Z∗) and the associated degree of

orness are computed. We find that values of VaR99.5% and ω are equal in the two scenarios,

both for the original and the modified datasets (note that probabilities and n remain

unchanged and only Z values located in the local risk intolerance zone of VaR99.5% have

been modified). Based on this information, a risk manager comfortable with the implicit

risk attitude of VaR99.5% is unaware that he faces a notable increase in catastrophic risk

(or, to some extent, it might be concluded that a less risk resistant agent is involved in

the second scenario).

Let us now focus on the strategy used to calibrate the GlueVaR parameters. The

following steps are performed to obtain GlueVaR risk measures that are comparable to

the VaR99.5%(Z): a) the minimum and maximum values of confidence levels are fixed

at 90% and 99.9%, i.e. αmin = 90% and βmax = 99.9%; b) the number of partitions

is stipulated in d = 25, so we deal with 625 optimization problems; c) the empirical

distribution function of total claim costs is used for the risk quantification, and, finally, d)

the outcome choice of the GlueVaR solutions are obtained using constrOptim function

from rootSolve library in R. The same phases are repeated for the modified random

variable Z∗.

We found a set of optimal GlueVaR risk measures that give the same risk value as the

VaR99.5% in these two specific contexts. Thus, 341 optimal solutions were found for the

random variable Z and 605 for Z∗. Once a set of GlueVaR measures has been obtained,

the degree of orness was computed to characterize the underlying aggregated risk attitude.

The boundary values of the degree of orness and the associated GlueVaR measures were
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identified. We should emphasize that the maximum degree of orness was equal to the

degree of orness of the VaR99.5% in both scenarios. In fact, the optimal GlueVaRω1,ω2

β,α

solution with the highest degree of orness was the GlueVaR with parameters α = 99.5%,

β = 99.9% and ω1 = ω2 = 0, and it holds that GlueVaR0,0
99.9%,99.5% = VaR99.5% (see

expression (5)). In other words, given a certain risk value, the VaRα is the GlueVaR risk

measure that presents the highest area under the associated distortion function of all the

GlueVaR risk measures that return this value2.

The minimum degree of orness and the associated GlueVaR measure for the original

dataset and the dataset with catastrophes are reported in Table 1. Information about the

underlying aggregate risk attitude of the agent can be inferred from the minimum degree

of orness. Table 1 shows that, for the original dataset, there exists an optimal GlueVaR

risk measure for which the area of the associated distortion function is approximately

0.912. Thus, this GlueVaR risk measure gives the same value as that given by VaR99.5%

when applied to Z, but, in aggregate terms, it involves a more moderate distortion of

the original survival distribution function, a lower degree of orness and, consequently, less

global risk tolerance. Moreover, when assessing the data with catastrophic extremes, the

minimum degree of orness is 0.896 indicating that the underlying global risk resistance

of the agent could be even lower whether the VaR99.5% risk measure is applied to Z∗.

This finding is consistent with prior expectations because the modified-data scenario is a

more risky scenario involving larger catastrophic losses. A remark is worth to make here.

2Note that the distortion function associated with the VaRα assigns one to survival values higher than

(1− α) and zero to the rest.
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In the original-data scenario an optimal GlueVaR solution was found equivalent to the

TVaR, but its associated degree of orness was not a boundary value3. In the modified-data

scenario, the TVaR was not found to be an optimal GlueVaR solution.

Original dataset Dataset with

catastrophic observations

α 0.900 0.900

β 0.999 0.995

ω1 0.188 0.039

ω2 1.210·10−6 0.812·10−6

Degree of orness 0.912 0.896

Table 1: Parameter values of the associated GlueVaR measure equivalent to VaR99.5% and minimum

degree of orness for Z (original dataset) and Z∗ (modified dataset).

The degree of orness should be complemented with the examination of the quotient

function which allows the relative risk attitude at any point of the survival distribution to

be analyzed. The quotient functions of risk measures associated with boundary degrees

of orness in both scenarios are examined. All the quotient functions analyzed are located

in the upper risk-tolerance frontier in the range [0.10, 1). For ease of comparison, the

quotient functions are rescaled and their left-tails are shown only in the range [0, 0.10] in

Figure 3.

3The GlueVaR1,0
97.4%,90% was an optimal solution with degree of orness equal to 0.986, and, as expressed

in (5), this measure is equivalent to the TVaR97.4%.
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Notable differences can be observed in the relative risk attitudes locally implicit in

the left-tail of the quotient functions. Let us first examine the quotient functions of the

GlueVaR risk measures that present the maximum degree of orness (left), which is the

same quotient function associated with the VaR99.5%. The agent is most risk tolerant at

any point of the interval [0.5%, 1) and maximum risk intolerant at (0, 0.5%). This means,

the quotient function is located in the upper frontier at [0.5%, 1) and in the lower frontier

at (0, 0.5%). When the GlueVaR measures that present the minimum degree of orness are

analyzed for the equivalent GlueVaR (right), the patterns of the left-tails of the quotient

functions are undoubtedly different. An interesting finding is that the Qg(u) is not located

within the boundaries at any point of the interval (0, 0.10). This means, the risk tolerant

attitude is not maximized in the range [0.5%, 0.10) but, on the contrary, the agent is more

risk resistant to catastrophic losses at (0, 0.5%) than when using VaR99.5%.

The differences in implicit risk attitudes between scenarios should be commented upon.

In line with our initial beliefs, the agent’s risk resistance is lower in the scenario that

involves higher catastrophic losses. This can be interpreted as a warning that either

a change in the agent’s risk attitude or a change in the risk faced has been detected.

The same conclusions are drawn when evaluating the area under the quotient function,

where the areas take the values of 3.054 and 2.458 for the original scenario and the

scenario with catastrophic losses, respectively. Note that the area under the quotient

function of VaR99.5% is equal to 5.298. So, if the area under the quotient function is

considered a weighted quantifier of the global risk attitude, the differences between the risk

attitude involved in VaR99.5% and the risk attitude implicit in the equivalent GlueVaRω1,ω2

β,α
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measures become more evident in these two scenarios.

5 Discussion

Distortion risk measures are widely used for assessing risk in a range of different contexts.

The risk value obtained from such measures depends basically on the characteristics of

the random variable, which are captured by the survival distribution, and the associated

distortion function. These two elements can be disaggregated and, here, our attention has

focused on an analysis of the distortion function, which can be understood as a weighting

function of survival probabilities. Thus, any risk attitude implicit in a distortion risk

measure is to some extent attached to its distortion function. An aggregation indicator

and a quotient function are used to describe alternative features of the distortion function.

Here, we show that these mathematical devices provide valuable insights into the implicit

risk tolerance associated with the choice of a risk measure.

Distortion risk measures can be understood as belonging to a class of aggregation

functions and a set of indicators has been developed in the literature to characterize

this class. In this article, we have analyzed the degree of orness and we showed that

this aggregation indicator may be interpreted as an approximation of the area under

the distortion function of the risk measure. The size of this area reveals the aggregate

distortion made over the survival distribution. This being the case, this indicator reveals

the global risk attitude when a particular distortion risk measure is applied. The analysis

reported here allows to conclude that the degree of orness and the area under the distortion
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function can be interchangeably used to study an agent’s global vision of risk.

The risk attitude implicit in a risk measure, however, is not only determined by the area

of the distortion function - of equal importance is the distribution of this total distortion

across the range of values. The risk information provided by the aggregation indicators

needs to be complemented by the quotient function, defined as the ratio between the

distortion and the identity functions. We demonstrate that a graphical analysis of this

quotient function provides local information about the relative risk behavior associated

with the risk measure at any point in the range of values. Additionally, the area under

the quotient function provides similar aggregate risk information to that of the area under

the distortion function, which means the former could replace the distortion function in

analyses of global risk attitude, especially if distorted values need to be weighted.

The analysis of the risk attitude implicit in the Value-at-Risk measure illustrates that

it is not sensitive to changes involving more risky scenarios. The reason for this is that

the risk measure presents two extreme risk attitudes, i.e. maximum risk resistance in

[1−α, 1) and maximum risk intolerance in (0, 1−α). Here, we have shown that additional

risk information may be obtained using comparable GlueVaR risk measures that are

calibrated to report the same risk value as that of the VaRα. The distortion functions

of these GlueVaR risk measures have been examined and we showed that the calculation

of the aggregation indicators and quotient functions of these GlueVaR measures gives a

more complex characterization of the risk framework providing, for instance, boundary

risk attitudes. Thus, we believe GlueVaR measures can usefully be employed by risk

managers to enrich the risk information provided by the standard quantile, gaining a
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deeper understanding of the risks taken.

The calibration procedure of GlueVaR parameters was not the primary focus of this

study and it was not our intention to cover all the possible calibration criteria. However,

two final remarks are worth recording. First, the procedure proposed depends necessarily

on the risk measure of reference and also on the random variable. As such, the set of

comparable GlueVaR measures differs when the random variable changes. This is not an

unbridgeable drawback when requesting that the supervisory authorities change the risk

measure if decision makers are able to justify the GlueVaR selection process. For example,

these measures may be used to analyze variations from one year to next in the implicit risk

attitude of boundary cases when the VaRα is applied to assess the annual risk. Second,

the VaRα was chosen as the risk measure of reference because of its application in practice,

but the calibration strategy of the GlueVaR measures could easily be adapted to other

risk measurement problems. Similarly, indicators other than the degree of orness might

be considered in the GlueVaR measure choice. For instance, optimal GlueVaR solutions

with the associated minimum and maximum areas under the quotient functions could be

selected to reflect extreme risk attitudes of decision-makers.
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[7] J. Belles-Sampera, J. M. Merigó, M. Guillén, and M. Santolino, “Indicators for

the characterization of discrete Choquet integrals,” Information Sciences, vol. 267,

pp. 201–216, 2014.

[8] J. Belles-Sampera, M. Guillén, and M. Santolino, “Beyond Value-at-Risk: GlueVaR

distortion risk measures,” Risk Analysis, vol. 34, no. 1, pp. 121–134, 2014.

29



[9] R. development core team, R: A language and environment for statistical computing,

2015.

[10] D. Denneberg, Non-Additive Measure and Integral. Dordrecht: Kluwer Academic

Publishers, 1994.

[11] V. Torra and Y. Narukawa, Modeling Decisions: Information Fusion and Aggregation

Operators. Springer, Berlin, 2007.

[12] J. Fernández Salido and S. Murakami, “Extending Yager’s orness concept for the

OWA aggregators to other mean operators,” Fuzzy Sets and Systems, vol. 139, no. 3,

pp. 515–542, 2003.

[13] L. Zhu and H. Li, “Tail distortion risk and its asymptotic analysis,” Insurance:

Mathematics and Economics, vol. 51, pp. 115–121, JUL 2012.

[14] A. Tsanakas and P. Millossovich, “Sensitivity Analysis Using Risk Measures,” WP

available at SSRN, 2014.

[15] F. Bellini and E. R. Gianin, “Haezendonck-Goovaerts risk measures and Orlicz quan-

tiles,” Insurance: Mathematics and Economics, vol. 51, pp. 107–114, JUL 2012.

[16] F. Bellini, B. Klar, A. Mueller, and E. R. Gianin, “Generalized quantiles as risk

measures,” Insurance: Mathematics and Economics, vol. 54, pp. 41–48, JAN 2014.

[17] J. Dhaene, A. Kukush, D. Linders, and Q. Tang, “Remarks on quantiles and distor-

tion risk measures,” European Actuarial Journal, vol. 2, no. 2, pp. 319–328, 2012.

30



[18] M. Goovaerts, D. Linders, K. Van Weert, and F. Tank, “On the interplay between

distortion, mean value and Haezendonck-Goovaerts risk measures,” Insurance: Math-

ematics and Economics, vol. 51, no. 1, pp. 10–18, 2012.

[19] J. Belles-Sampera, M. Guillén, and M. Santolino, “Relationship between gluevar and

tail distortion risk measures,” Riskcenter Working Paper, 2014.
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Appendix. Calibration of GlueVaR parameters

To apply the GlueVaRω1,ω2

β,α risk measures values need to be assigned to the parameters

defining the risk measure. All the steps required in calibrating GlueVaR risk measures are

described here. The criterion followed in the calibration procedure is the need to obtain

the same risk measure value with the GlueVaR measures as obtained with the VaR99.5%.

Moreover, the selection of the risk measure is restricted to the subfamily of candidates to

be tail-subadditive GlueVaR measures (8). The strategy for calibrating the parameters is

as follows:

• Minimum and maximum admissible values of the α and β confidence levels have to

be determined, αmin and βmax.;

• Let us assume that Z random variable represents the overall risk. A set of d × d

constrained optimization problems is defined at this step:

Pi,j : min
ω1,ω2

| GlueVaRω1,ω2

βj ,αi
(Z)− VaR99.5% (Z) |,

subject to
0 ≤ ω1 ≤ 1,

0 ≤ ω2,

ω1 + ω2 ≤ 1

where i, j = 1, ...d, αi = αmin +
i− 1

d− 1
(βmax − αmin), βj = αi +

j − 1

d− 1
(βmax − αi).

Flexibility rises with the number of partitions d, as do computational costs. Con-

straints are fixed to guarantee that the GlueVaR can satisfy αi-tail subadditivity.
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• An optimization algorithm should be used to solve this set of problems. If Pi∗,j∗

represents the problem for which the minimum value of the objective function is

reached and (ω∗1, ω
∗
2) is the associated solution, then a GlueVaR

ω∗1 ,ω
∗
2

βj∗ ,αi∗
is found that

can satisfy the αi∗-tail subadditivity property and gives similar reserve values to

those obtained with VaR99.5% when applied to the overall risk of the company. Pi,j

problems may not have solutions. Were this to be the case, then the optimization

criteria would have to be revised, including a lower αmin, a higher βmax and/or a

larger d.

• More than one GlueVaR solution is frequently found. Alternative combinations of

parameter values return the same objective function value, or a value that differs

insignificantly. In this situation, solutions could be ranked in accordance with the

underlying risk attitude involved. Aggregation indicators are useful for characteriz-

ing the aggregate underlying risk attitude of the agent when using each risk measure.

Here, we propose ranking the solutions based on the value of the aggregation indica-

tors associated with each optimal risk measure. With this goal in mind, degrees of

orness are computed for (multiple) optimal GlueVaR
ω∗1 ,ω

∗
2

βj∗ ,αi∗
solutions. Two particular

GlueVaR measures among the set of solutions are of special interest:

Lower-limit solution. Selection of the GlueVaR risk measure with the associated

minimum degree of orness;

Upper-limit solution. Selection of the GlueVaR risk measure with the associated

maximum degree of orness.
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In other words, boundaries of the degree of orness are detected. Optimal GlueVaR

risk measures linked to boundaries reflect the extreme risk attitudes of agents when

the random variable Z is analyzed.
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Figure 3: Quotient functions of optimal solutions with maximum (left) and minimum (right) degrees of

orness in the original dataset (upper) and the modified dataset with catastrophic observations (lower).

Note: Dashed curve indicates the upper-bound quotient function curve, i.e. 1
u for all 0 ≤ u ≤ 1.
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