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Abstract

We analyze an investment strategy for an investor with a savings plan
for retirement consisting on constraining the terminal wealth accumulated
after the savings period by setting an upper and lower bound. We carry
out a simulation of the terminal wealth after a savings period of thirty
years by using daily, monthly, weekly and yearly updates. We calculate
the percentiles of the final wealth and the corresponding lifetime annuity
that the pension saver will receive during the consumption period. We
observe how that the simulated values converge to the theoretical values
of the percentiles when the frequency of update increases. Finally, in the
numerical example the effect of inflation is also considered.

1 Introduction

We carry out a practical implementation of a new investment strategy for re-
tirement where the investor establishes and upper and a lower bound on the
terminal wealth. An investment plan is usually characterized by a period of
savings followed by a period of consumptions. We analyze the problem of set-
ting a dynamic investment strategy where an initial wealth is invested in order
to reach a target capital at the end of the savings period which is bounded by
some guaranteed upper and lower bounds. The proposed mechanism results in a
transparent and automatic investment product where the portfolio is rebalanced
automatically so that the accumulated wealth at any moment is constraint by
the lower and upper bounds.
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Donnelly et al. (2015) recently solved the portfolio selection problem of an
investor with a deterministic savings plan who is constrained to have no more
than a target wealth at retirement (an upper bound). Here we extend the results
of Donnelly et al. (2015) by adding also a lower bound to the terminal wealth and
implementing a numerical application. So, we assume that investors are willing
to give up large gains if a minimum terminal wealth is guaranteed. Therefore,
our contribution is about the reduction of the uncertainty of the terminal wealth
being too large or too low, by providing an smoothing mechanism which includes
an embedded guarantee on the terminal wealth.

The paper is organized as follows. In section 2 the background is presented.
In section 3 we present the mathematical problem to solve. In section 4 we
carry out the numerical illustration. Section 5 concludes.

2 Background

It is necessary to analyze the stochastic distribution of retirement wealth for
proposing investment strategies (Greninger et al., 2000; Basu et al., 2011; Gross-
man and Zhou, 1996; Browne, 1999).

There are many authors introducing some constraint on the portfolio or the
terminal wealth. Namely, Grossman and Zhou (1996) impose the constraint that
the terminal wealth must be at least some fraction of the initial wealth. On the
other hand, Korn and Trautmann (1995) set a constraint on the expected value
of the final wealth.

Recently, Donnelly et al. (2015) found that by constraining the final wealth
by using an upper bound, the investor increases their chance of attaining the
desired target retirement wealth, and even if he fails to reach it, he still has a
higher wealth than if he has no such upper bond. Note that Donnelly et al.
(2015) proposed a different formulation compared to Dhaene et al. (2005), in
which at least the target capital is attained with maximum probability. Don-
nelly et al. (2015) have also a different approach compared to Browne (1999),
as Browne (1999) maximizes directly the probability of reaching the target re-
tirement wealth. Here we consider the same approach as Donnelly et al. (2015)
but adding also a lower bound for the final wealth. Note that our approach is
also different from Gerrard et al. (2014) who analyzed the lowest part of the
terminal wealth distribution after savings and consumption.

Here we concentrate on the savings phase (by choosing a saving period of
thirty years) and we constrain the terminal wealth by using an upper and a
lower bound. Additionally, we also provide the corresponding values of the
lifetime annuities that the pension saver could receive during the consumption
period. Other relevant contributions where some constrain on the terminal
wealth is introduced can be found in Van Weert et al. (2010); Bouchard et al.
(2010); Gaibh et al. (2009); Boyle and Tian (2007); Cuoco (1997); Zariphopoulou
(1994), among others.

3 Presentation of mathematical problem to solve

We assume investment in a continuous-time market model over a finite time
horizon [0, T ] for an integer T > 0. We also refer to T as the terminal time.
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The market consists of one risky stock and one risk-free bond. The price
of the stock is driven by an 1-dimensional, standard Brownian motion W =
{W (t); t ∈ [0, T ]}. The Brownian motion is defined on a complete probability
space (Ω,F ,P). The risk-free bond has price process {S0(t); t ∈ [0, T ]} and the
risky stock has price process {S1(t); t ∈ [0, T ]} with dynamics

dS0(t) = rNS0(t) dt, dS1(t) = S1(t) (µdt+ σdW (t)) , (3.1)

with σ > 0, S0(0) = 1 and S1(0) being a fixed, strictly positive constant. We
assume that µ > rN.

The information available to investors is represented by the filtration

Ft := σ{W (s), s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ], (3.2)

where N (P) denotes the collection of all P-null events in the probability space
(Ω,F ,P).

Define the usual R-valued market price of risk

θ :=
µ− rN
σ

.

3.1 Investor

An investor starts with a fixed non-random initial wealth x0 > 0 and plans to
make a sequence of known future savings a > 0. Define C(t) to be the sum from
time 0 to time t of the investor’s planned discrete savings, with

dC(t) =

{
a if t = 1, 2, . . . , T − 1
0 otherwise.

In other words, at the end of each unit time period, the investor pays an amount
a > 0 into their fund.

A portfolio process π = {π(t); t ∈ [0, T ]} is a R-valued, square-integrable,
{Ft}-progressively measurable process. The investor follows a self-financed
strategy, investing at each instant t ∈ [0, T ] a monetary amount π(t) in the
stock such that the π = {π(t); t ∈ [0, T ]} is a portfolio process.

The wealth process Xπ = {Xπ(t); t ∈ [0, T ]} corresponding to a portfolio
process is the {Ft}-adapted, R-valued process given by the wealth equation

dXπ(t) = (rNX
π(t) + π(t)σθ) dt+ π(t)σ dW (t) + dC(t), Xπ(0) = x0 a.s.

(3.3)
Define the savings plan g of the investor, i.e. the discounted sum of the

future savings by the investor by

g(t) :=

∫ T

t

e−rN(s−t)dC(s), ∀t ∈ [0, T ]. (3.4)

Then the set of admissible portfolios for the investor’s initial wealth x0 > 0 is
defined to be

A := {π : Ω×[0, T ]→ R : Xπ(0) = x0, a.s. and Xπ(t)+g(t) ≥ 0, t ∈ (0, T ] a.s.}.

We say that a portfolio process π is admissible if π ∈ A.
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Define the state price density processH asH(t) := exp
(
−
(
rN + 1

2θ
2
)
t− θW (t)

)
,

for each t ∈ [0, T ]. A portfolio π must satisfy the budget constraint that

E (H(T )Xπ(T )) ≤ x0 + g(0). (3.5)

The utility function of the investor is the power utility function

U(x) :=
1

γ
xγ , x > 0,

for a fixed constant γ ∈ (−∞, 1) \ {0}. The investor seeks to maximise the
expected utility of their terminal wealth, subject to constraints on the range of
values of the terminal wealth.

Define the constant

A :=
θ

σ(1− γ)

and the process

Z(t) = exp

((
rN + θσA− 1

2
σ2A2

)
t+ σAW (t)

)
, ∀t ∈ [0, T ]. (3.6)

3.2 Problem with an upper bound

Donnelly et al. (2015) introduced the constrained problem with an upper bound
only, in which the investor seeks to maximize the expected utility of their ter-
minal wealth, subject to the wealth being bounded above by the upper bound
KU > 0.

In order to avoid the uninteresting case that the investor can immediately
be assured of maximizing the terminal utility, Donnelly et al. (2015) assume
that (x0 + g(0))erNT < KU and solve the following problem (Problem 4.1 in
Donnelly et al. (2015)):

Problem 3.1. Find π? ∈ A such that

E
(
U(Xπ?(T ))

)
= sup
π∈A
{E (U(Xπ(T )))},

and Xπ?(T ) ∈ [0,KU ], a.s.

Proposition 3.2. Proposition 4.5 in Donnelly et al. (2015). An optimal
investment strategy for Problem 3.1 is to invest the amount

π?(t) := A [1− Φ(d+ (t, P (t);KU ))] P (t) (3.7)

in the risky stock and the amount Xπ?(t) − π?(t) in the risk-free bond, in
which P (t) = (z0 + g(0))Z(t) and the function d+ is defined by

d±(t, y;KU ) :=
1

σA
√
T − t

(
ln

(
y

KU

)
+

(
rN ±

1

2
σ2A2

)
(T − t)

)
, ∀y > 0.

(3.8)
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The wealth process corresponding to this optimal investment strategy is

Xπ?(t) = P (t)− g(t)− c(t, P (t);KU ), (3.9)

in which

c(t, y;KU ) := yΦ(d+(t, y;KU ))−KUe
−rN(T−t)Φ(d−(t, y;KU )),

and Φ(z) denotes the cumulative standard normal distribution function at
z ∈ R.

In particular, the relationship between the investor’s initial wealth
Xπ?(0) = x0 and the shadow initial wealth z0 is

x0 = z0 − c(0, z0 + g(0);KU ). (3.10)

The proof is found in Donnelly et al. (2015).

3.2.1 Problem with a lower and an upper bound

Here we extend of the problem to include a lower bound KL ∈ (0,KU ), below
which the terminal wealth must not fall. Combined with the upper bound KU ,
this means that the investor’s terminal wealth lies in the range [KL,KU ].

The addition of a lower bound has already been well studied in the literature
(for example, see (Basak, 1995)).

In order to avoid both the uninteresting case that the investor can imme-
diately be assured of maximizing the terminal utility and the breaching of the
non-arbitrage condition, we assume that

Assumption 3.3. KL < (x0 + g(0)) erNT < KU .

Problem 3.4. Find π? ∈ A such that

E
(
U(Xπ?(T ))

)
= sup
π∈A
{E (U(Xπ(T )))},

and Xπ?(T ) ∈ [KL,KU ], a.s.

The next proposition gives an expression for the optimal terminal wealth for
Problem 3.4, when there is both a lower and upper bound constraint on the
terminal wealth.

Proposition 3.5. A solution to the constrained problem at the terminal time
T is

X?(T ) =(z0 + g(0))Z(T )−max {0, (z0 + g(0))Z(T )−KU}
+ max {0,KL − (z0 + g(0))Z(T )} ,

(3.11)

with the shadow wealth z0 > 0 chosen so that the budget constraint (3.5) is
satisfied with equality by X?, given the investor’s initial wealth X?(0) = x0, a.s.
and savings plan g.
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The proof is found in Appendix A. Next we derive the value and replicating
portfolio of the put option with maturity value max {0,KL − (z0 + g(0))Z(T )}.

Lemma 3.6. The price at time t ∈ [0, T ] of a European put option with ma-
turity value max {0,KL − (z0 + g(0))Z(T )} is given by p(t, P (t);KL) with

p(t, y;KL) := KLe
−rN(T−t)Φ(−d−(t, y;KL))− yΦ(−d+(t, y;KL)).

with d±(t, y;KL) defined by equation (3.8).
The replicating portfolio for the put option is to hold in the risky asset

at time t the amount πp (t, P (t);KL), with

πp (t, y;KL) := −AyΦ(−d+(t, y;KL)), ∀t ∈ [0, T ], y > 0 (3.12)

and the remaining amount p(t, P (t);KL) − πp (t, P (t);KL) in the risk-free
bond.

The proof is found in Appendix A. The optimal strategy for Problem 3.4 is
given next.

Proposition 3.7. An optimal investment strategy for Problem 3.4 is to
invest the amount

π?(t) := A [1− Φ(d+ (t, P (t);KU )− Φ(−d+ (t, P (t);KL))] P (t) (3.13)

in the risky stock and the amount Xπ?(t) − π?(t) in the risk-free bond, in
which P (t) = (z0 + g(0))Z(t) and the function d+ is defined by equation
(3.8).

The wealth process corresponding to this optimal investment strategy is

Xπ?(t) = P (t)− g(t)− c(t, P (t);KU ) + p(t, P (t);KL). (3.14)

In particular, the relationship between the investor’s initial wealth
Xπ?(0) = x0 and the shadow initial wealth z0 is

x0 = z0 − c(0, z0 + g(0);KU ) + p(0, z0 + g(0);KL). (3.15)

The proof follows trivially from the previous lemmas.
The relative value of the shadow initial wealth z0 over the investor’s actual

initial wealth x0 has a concrete interpretation. For the p-quantiles of the con-
strained terminal wealth that fall below the target wealth KU , it gives their
uplift over those for the unconstrained terminal wealth.

To see this, we calculate the p-quantiles under the constrained strategy. For
the constrained strategy, there is a probability mass at the target wealth KU .
For this reason we use the following generalised definition of the p-quantile.

Definition 3.8. The p-quantile for a random variable X is

Qp(X) = inf {y ∈ R : P [X ≤ y] ≥ p} ,
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with the convention that inf {∅} =∞.

Proposition 3.9 (p-quantiles). Suppose an investor has initial wealth x0 >
0 and follows the savings plan g. Define

βp := σA
√
T Φ−1(p) +

(
rN + θσA− 1

2
σ2A2

)
T. (3.16)

If the investor follows the optimal constrained strategy, i.e. the terminal
wealth is constrained to lie in the range [KL,KU ], then the p-quantile of the
investor’s terminal wealth X(T ) is

Qp(X(T ); (KL,KU )) = max
{
KL,min

{
KU , (z0 + g(0))eβp

}}
. (3.17)

The proof is found in Appendix A.

4 Numerical illustration

In this example, we fix the parameter values rN = 0, µ = 0.0343, σ = 0.1544,
A = 1 , T = 30, g = 0 and x0 = 300. Note that the choice of the parameters
implies that the investor’s risk aversion constant is γ = −0.44.

Here we describe the algorithm that calculates the real wealth accumulated
by the investor after the investment period. The values of KL and KU are set
to 225 and 450 respectively. For these vales of KL and KU we calculate the
shadow initial wealth z0 satisfying (3.15), which results z0 = 302.2626.

We do 10000 simulations of a T−dimensional vector of standard normal
random values W (t), t = 1, ...T . Then, we simulate the process S(t) according
to S(t) = S(t − 1)exp((rN + θσA − 1

2σ
2 A2)t + σAW (t)) for t = 2, ...T where

θ = µ−rN
σ and S(1) = 1. The real wealth process Xt is initialized with the value

of x0 = 300. We calculate the amount invested in stocks in the first investment
period, π(1) by using expression (3.13) for t = 1 where P (1) = (z0 + g(0))S(1)
and with the two following restrictions: 1) this amount cannot be higher than
the initial level of real wealth (x0 = 300), and 2) this amount must be positive.
Then, the simulation loop starts and for each moment in time j = 2, ..., 30 we
calculate which is the amount in stocks just before time j (updating the amount
in stock in the previous period π(j− 1) by using the factor S(j)/S(j− 1)). The
amount in bonds just before time j is given by the difference between the real
wealth and the amount in stocks at that time. Then, the amount invested in
stocks for the next period is calculated by using expression (3.13) but with the
following two restrictions: 1) this amount cannot be larger than the current real
wealth, and 2) this amount must be positive. Then, the loop jumps to the next
period. When the algorithm is finished, we calculate the quantiles of the real
wealth at T = 30. The quantiles, obtained by simulating the final wealth, can
be compared to the theoretical ones, those resulting from expression 3.17.

The algorithm is summarized as follows:

1. Initialize parameters (rN = 0, µ = 0.0343, σ = 0.1544, A = 1 , T = 30,
g = 0, x0 = 300, KL = 250 and KU = 415.)
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2. Compute z0 from x0 = z0 − c(0, z0 + g(0);G) + p(0, z0 + g(0);F ).

3. Do 10000 replications.

4. Simulate S(t) from S(t) = S(t− 1)exp((rN + θσA− 1
2σ

2 A2)t+ σAW (t))

for t = 2, ...T where θ = µ−rN
σ and S(1) = 1.

5. Calculate π(1) = max(min(A(1−Φ(d+(1, P (1));KU )−Φ(−d+(1, P (1);KL)))P (1), x0)0),
where P (1) = z0S(1).

6. Compute real wealth as the initial wealth x0.

7. For t = 2, ..., 30

7.1 Calculate the value invested in bonds as current real wealth minus
π(t− 1).

7.2 Compute the value of π(t− 1) after period t− 1.

7.3 Update real wealth at t as the sum of the two.

7.4 Calculate π(t) from
π(t) = max(min(A(1−Φ(d+(t, P (t));KU )−Φ(−d+(t, P (t);KL)))P (t), RealWealth(t), 0),
where P (t) = (z0 + g(0))S(t).

8. End of loop.

9. End of loop.

10. Compute quantiles of the real wealth at T = 30.

Table 1 shows the distribution of the real wealth at T = 30 for KL = 250
and KU = 415. The first column shows the values of p for the p-quantiles. The
second column shows the theoretical quantiles obtained by using expression
3.17. The next four columns show the quantiles of the simulated final wealth at
T = 30 for different updates: yearly, monthly, weekly and daily. Note how the
values of the quantiles converge to the theoretical values as the frequency of the
update increases.

We have also calculated the life-long annuity payable every year that a 65
year old investor will receive corresponding the final wealth ofX(T ) accumulated
after the investment period. The expression is:

Annuity(Age = 65, X(T )) =
X(T )∑111

t=66(1 + r)−(t−65)t−65P65

where r = 0 and the values for the survival probabilities t−65P65 have been calcu-
lated by using the Society of Actuaries Life Table available in the lifecontingencies
R package. The denominator in the previous expression is obtained by using
the axn function of the lifecontingencies R package.

R code for X(T ) = 415:

library(lifecontingencies)
data(soaLt)
soa08Act=with(soaLt, new(”actuarialtable”,interest=0,x=x,lx=Ix,name=”SOA2008”))
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Table 1: Table showing the distribution of the real wealth at T = 30 for KL =
250 and KU = 415.

Update: Theoretical Yearly Monthly Weekly Daily
p Qp(X(T ))

1% 250.0000 241.7170 246.1227 248.0315 249.0233
2.5% 250.0000 246.4381 248.1896 248.9851 249.5117
5% 250.0000 249.7004 249.3909 249.6616 249.8114
10% 250.0000 254.9273 250.8434 250.3659 250.1304
15% 250.0000 267.4020 254.2965 252.4664 251.3356
20% 290.3133 292.8727 283.4717 284.7746 285.8970
25% 334.3877 324.8488 328.2672 328.3217 328.3625
30% 379.6421 354.7174 371.8317 373.9506 376.4171
35% 415.0000 377.6660 402.7025 409.3999 412.5361
40% 415.0000 392.5784 409.1703 412.2969 413.8254
45% 415.0000 400.6617 411.3917 413.2157 414.2071
50% 415.0000 406.0062 412.6297 413.7881 414.4618
55% 415.0000 409.7468 413.5108 414.2082 414.6521
60% 415.0000 412.5056 414.2754 414.5923 414.8100
65% 415.0000 415.1566 414.9827 414.9076 414.9505
70% 415.0000 417.7468 415.6342 415.2297 415.0977
75% 415.0000 420.3110 416.3125 415.5666 415.2401
80% 415.0000 423.2772 417.0502 415.9280 415.4017
85% 415.0000 426.4701 417.9061 416.3479 415.5859
90% 415.0000 430.3906 419.1283 416.9107 415.8299
95% 415.0000 437.4809 421.1314 417.8511 416.2652

97.5% 415.0000 444.0110 423.4497 418.8456 416.6837
99% 415.0000 453.9527 426.0071 420.1559 417.3608
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axn(soa08Act, x=65, payment=”arrears”)
15.02172
415/axn(soa08Act, x=65, payment=”arrears”)
27.62666

The results are shown in Table 3. in Appendix B.

4.1 Inflation

Critically, when income streams are presented in real terms, retirement investors
choose flat or increasing real income streams over decreasing ones (Beshears
et al., 2014). However, in practice, income streams are mostly presented in
nominal terms rather than in real terms. It is difficult for the average person
to understand the potential heavy toll of inflation on their retirement income,
even though expected lifetimes are increasing.

We believe that the standard investment strategies followed by retirement
investors are sub-optimal. The investment strategy followed by individual who
wants a real income stream in retirement can have a considerable weighting
of inflation-indexed assets. Today, the only inflation-indexed assets that are
widely traded in the market are government-issued index-linked bonds (e.g.
TIPS, OATis, ILGs). However, index-linked bonds give a negative real return
to investors. They are highly demanded and in very short supply.

We believe that if inflation funds were introduced to the market, retirement
investors would invest heavily in them. These funds could consist of real assets,
such as infrastructure, commodities, equities, property. They would aim to
broadly track price inflation. They would aim to give a positive real return over
price inflation, although with some volatility around this.

The potential amount invested in inflation funds could be enormous, e.g.
the total value of pension assets in the US was around 108% in 2012 (around
$16 851 billion in 2012) according to Towers Watson (2013). The US index-
linked bond issuance is about 5% of this amount, e.g. in April 2012 it was
$866 billion (Krämer, 2013). Quite simply there is a massive potential demand
for inflation-indexed assets that cannot be satisfied by the current volume of
inflation-linked bonds.

Here we modify our algorithm so that some part of the wealth could be
investing in an inflation fund. The algorithm is essentially the same, but now
we assume that the amount not invested in stocks is giving some return. To
do so, we first do 10000 simulations of a bivariate normal sample of size T ,
(W1(t),W2(t)), t = 1..., T with mean values equal to 0, standard deviations
equal to 1 and correlation ρ equal to 0.5. Then, with these values we simulate
the stock process S1(t) according to S1(t) = S1(t−1)exp((r+θ1σ1A− 1

2σ
2
1 A

2)t+

σ1AW1(t)) for t = 2, ...T where µ1 = 0.0343, σ1 = 0.1544, θ1 = µ1−rN
σ1

and
S1(1) = 1. Then, we also simulate the values of the inflation fund process
S2(t) according to S2(t) = S2(t− 1)exp((r+ θ2σ2A− 1

2σ
2
2 A

2)t+σ2AW2(t)) for

t = 2, ...T where µ2 = 0.008, σ2 = 0.02, θ2 = µ2−rN
σ2

and S2(1) = 1. Then, we
use the values of S1(t), t = 1, ..., T to update the amount invested in stocks and
S2(t), t = 1, ..., T to update the rest of money every year.

Namely, in the algorithm previously described, we introduce the following
changes:
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1. Initialize parameters (rN = 0, µ1 = 0.0343, σ1 = 0.1544, µ2 = 0.008,
σ2 = 0.02, A = 1 , T = 30, g = 0, x0 = 300, KL = 250 and KU = 415.)

4. Simulate S1(t) = S1(t − 1)exp((rN + θ1σ1A − 1
2σ

2
1 A

2)t + σ1AW1(t)) for
t = 2, ...T and S2(t) = S2(t− 1)exp((rN + θ2σ2A− 1

2σ
2
2 A

2)t+ σ2AW2(t))
for t = 2, ...T where θ1 = α1−rN

σ1
and θ2 = α2rN

σ2
.

5. Calculate π(1) = max(min(A(1−Φ(d+(1, P (1));KU )−Φ(−d+(1, P (1);KL)))P (1), x0)0),
where P (1) = z0S1(1).

7.1. Subtract from the real wealth the amount π(t− 1) and update this differ-
ence by multiplying it by S2(t)/S2(t− 1).

7.4. Calculate π(t) from
π(t) = max(min(A(1−Φ(d+(t, P (t));KU )−Φ(−d+(t, P (t);KL)))P (t), RealWealth(t), 0),
where P (t) = (z0 + g(0))S1(t).

Table 2 shows the quantiles obtained by simulating the final wealth at T =
30, with KL = 250 and KU = 415 assuming that the amount not invested
in stocks is invested in an inflation fund with 0.8% return and 2% volatility.
The correlation used to simulate the bivariate normal distribution (as explained
previously in the algorithm) is 0.5.

We have also calculated the life-long annuity payable every year that a 65
year old investor will receive for the final wealth of X(T ) accumulated after the
investment period. The results are shown in Table 4 in Appendix B where the
value of r has been changed to 0.8% (the return assumed for the inflation fund).

5 Conclusion

We have shown the practical implementation of a new investment strategy that
has the advantage of constraining the final wealth accumulated after the invest-
ment period between a lower and an upper bound. In this way, the saver is
protected against extreme values, by providing an smoothing mechanism which
includes an embedded guarantee on the terminal wealth.

Another advantage of the proposed strategy is that the portfolio is rebal-
anced automatically so that the accumulated wealth at any moment is constraint
by the lower and upper bounds. We have also illustrated how the accumulated
wealth can be translated into a life-long annuity that the investor will receive,
which is easy to understand and communicate, increasing the transparency of
the investment mechanism.
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A Proof of optimal investment strategy in sim-
ple financial market model

Proof. of Proposition 3.5.
The proof is an adaption of the proof of [cite relevant proposition in the first

paper].
Assume that we have chosen z0 > 0 chosen so that the budget constraint

(3.5) is satisfied with equality by X?.
For the investor’s utility function, the first derivative U ′(x) = xγ−1, which

is a strictly decreasing function, has a strictly decreasing inverse

I(y) := y
1

γ−1 , y > 0.

We can show that for the constant

y := (z0 + g(0))γ−1e(γrN+ 1
2

γ
1−γ θ

2)T ,

we have
(z0 + g(0))Z(T ) = I(yH(T )).

We work with I(y(z0)H(T )) in the proof, rather than with (z0 + g(0))Z(T ) due
to the properties of I(x) and U ′(x): they are both strictly decreasing functions
of x.

LetX(T ) ∈ [KL,KU ], a.s. be any attainable final wealth so that E (H(T )X(T )) ≤
x0. We show that

E (U(X(T ))) ≤ E (U(X?(T ))) ,

in which

X?(T ) =

 KL I(yH(T )) ≤ KL

I(yH(T )) if I(yH(T )) ∈ (KL,KU )
KU I(yH(T )) ≥ KU .

As I and U ′ are strictly decreasing functions we can write:

X?(T ) =

 KL yH(T ) ≥ U ′(KL)
I(yH(T )) if yH(T ) ∈ (U ′(KL), U ′(KU ))
KU if yH(T ) ≤ U ′(KU )

As U is a concave function then for any a, b ∈ R, U(a)−U(b) ≤ U ′(b)·(a−b).
In particular,

U(X(T ))− U(X?(T )) ≤ U ′(X?(T )) · (X(T )−X?(T )), a.s.

Take expectations:

E (U(X(T ))− U(X?(T )))

≤E (U ′(X?(T )) · (X(T )−X?(T )))

≤E (U ′(X?(T )) · (X(T )−X?(T )) | yH(T ) ≥ U ′(KL)) · P [yH(T ) ≥ U ′(KL)]

+ E (U ′(X?(T )) · (X(T )−X?(T )) | yH(T ) ∈ (U ′(KL), U ′(KU ))) · P [yH(T ) ∈ (U ′(KL), U ′(KU ))]

+ E (U ′(X?(T )) · (X(T )−X?(T )) | yH(T ) ≤ U ′(KU )) · P [yH(T ) ≤ U ′(KU )] .

Observe that on the event [yH(T ) ∈ (U ′(KL), U ′(KU ))],

U ′(X?(T )) = U ′(I(yH(T ))) = yH(T )
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so that

E (U ′(X?(T )) · (X(T )−X?(T )) | yH(T ) > U ′(KU ))

=E (yH(T ) · (X(T )−X?(T )) | yH(T ) > U ′(KU )) .

Next observe that on the event [yH(T ) ≤ U ′(KU )], as X(T ) ∈ [KL,KU ] a.s,
then

X(T )−X?(T ) = X(T )−KU ≤ 0

and
U ′(X?(T )) = U ′(KU ) ≥ yH(T ).

The negative sign of X(T )−X?(T ) reverses the inequality U ′(X?(T )) ≥ yH(T ),
giving that on the event [yH(T ) ≤ U ′(KU )],

U ′(X?(T )) · (X(T )−X?(T )) ≤ yH(T ) · (X(T )−X?(T )).

On the event [yH(T ) ≥ U ′(KL)], as X(T ) ∈ [KL,KU ] a.s, then

X(T )−X?(T ) = X(T )−KL ≥ 0

and
U ′(X?(T )) = U ′(KL) ≤ yH(T ).

Due to the positive sign of X(T )−X?(T ), the inequality U ′(X?(T )) ≤ yH(T )
is maintained, giving

U ′(X?(T )) · (X(T )−X?(T )) ≤ yH(T ) · (X(T )−X?(T )).

In summary, we find that

E (U(X(T ))− U(X?(T ))) ≤ E (yH(T ) · (X(T )−X?(T ))) .

As both solutions satisfy the budget constraint (3.5), the last line in the above
inequality can be evaluated as

E (yH(T ) · (X(T )−X?(T ))) ≤ y · ((x0 + g(0))− (x0 + g(0))) = 0,

which means
E (U(X(T ))− U(X?(T ))) ≤ 0.

Hence

E
(
U(Xπ?(T ))

)
= sup
π∈A

E (U(Xπ(T ))) ≤ E (U(X?(T ))) ≤ E
(
U(Xπ?(T ))

)
,

i.e. Xπ?(T ) = X?(T ), a.s.

Proof. of Lemma 3.6.
From [cite relevant lemma in our first paper], a European call option with

maturity value max {0, (z0 + g(0))Z(T )−KL} is given by c(t, P (t);KL) with

P (t) := (z0 + g(0))Z(t), (A.1)

and
c(t, y;KL) := yΦ(d+(t, y;KL))−KLe

−rN(T−t)Φ(d−(t, y;KL)),
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in which the functions d±(t, y;KL) are defined by equation (3.8).
Thus by put-call parity, the value of the put option with the same strike

price KL satisfies

p(t, y;KL) = c(t, y;KL) +KLe
−rN(T−t) − y.

To find the replicating portfolio, we differentiate the put pricing function p to
get

pt(t, y;KL) = −yφ(d+(t, y;KL))σA

2
√
T − t

+ rNKLe
−rN(T−t)Φ(−d−(t, y;KL))

py(t, y;KL) = Φ(d+(t, y;KL))−1 = −Φ(−d+(t, y;KL)), pyy(t, y) =
φ(d+(t, y;KL))

yσA
√
T − t

.

By Ito’s formula,

dp(t, P (t)) = pt(t, P (t))dt+ py(t, P (t))dP (t) +
1

2
pyy(t, P (t))d [P ] (t),

in which
dP (t) = (rN + θσA)P (t)dt+ σAP (t)dW (t).

Substituting for: the derivatives of the pricing function p, the dynamics of P
and the candidate replicating portfolio πp (t, P (t)) := −AP (t) Φ(−d+(t, P (t))),
we find that the dynamics of the pricing function c satisfy the wealth equation
(3.3). Hence πp (t, P (t)) is the amount to be invested in the risky stock at time
t in order to replicate the payoff of the European put option.

Proof. of Lemma 3.9. Fix p ∈ (0, 1). From [cite relevant lemma in our first
paper], with no lower bound on the terminal wealth,

Qp(X(T ); (0,KU )) = min
{
KU , (z0 + g(0))eβp

}
.

It is useful to consider another investor who has the same savings plan g and
the same upper bound KU as the first investor. However, this second investor
has no lower bound on the terminal wealth, i.e. KL = 0, and starts with an
initial wealth x̃0 that satisfies

x̃0 = z0 − c(0, z0 + g(0);KU ).

. This second investor follows the optimal constrained strategy. Then, as g(T ) =
0, the wealth at time T of the second investor is

X̃(T ) = (z0 + g(0))Z(T )− g(T )− c(T, P (T );KU ) = min {KU , P (T )} .

Thus the terminal wealth of the constrained investor, who has a lower bound
KL on their terminal wealth, is related to that of the second unconstrained
investor by

X(T ) =

{
X̃(T ) if X̃(T ) ≥ KL

KL if X̃(T ) < KL.

The desired expression (3.17) follows by consideration of the last expression.

B Lifetime annuities
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Table 3: Distribution of the life-long annuity at 65 years old for KL = 250 and
KU = 415.

Update: Theoretical Yearly Monthly Weekly Daily
p Qp(Annuity(65))

1% 16.64 16.09 16.38 16.51 16.58
2.5% 16.64 16.41 16.52 16.58 16.61
5% 16.64 16.62 16.60 16.62 16.63
10% 16.64 16.97 16.70 16.67 16.65
15% 16.64 17.80 16.93 16.81 16.73
20% 19.33 19.50 18.87 18.96 19.03
25% 22.26 21.63 21.85 21.86 21.86
30% 25.27 23.61 24.75 24.89 25.06
35% 27.63 25.14 26.81 27.25 27.46
40% 27.63 26.13 27.24 27.45 27.55
45% 27.63 26.67 27.39 27.51 27.57
50% 27.63 27.03 27.47 27.55 27.59
55% 27.63 27.28 27.53 27.57 27.60
60% 27.63 27.46 27.58 27.60 27.61
65% 27.63 27.64 27.63 27.62 27.62
70% 27.63 27.81 27.67 27.64 27.63
75% 27.63 27.98 27.71 27.66 27.64
80% 27.63 28.18 27.76 27.69 27.65
85% 27.63 28.39 27.82 27.72 27.67
90% 27.63 28.65 27.90 27.75 27.68
95% 27.63 29.12 28.03 27.82 27.71

97.5% 27.63 29.56 28.19 27.88 27.74
99% 27.63 30.22 28.36 27.97 27.78
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Table 4: Distribution of the life-long annuity at 65 years old for KL = 250
and KU = 415. Yearly: final wealth simulated with inflation 0.8% return, 2%
volatility, ρ = 0.5. Life-long annuity calculated with yearly interest rate of 0.8%
.

Update: Yearly
p Qp(Annuity(65))

1% 18.17
2.5% 19.02
5% 19.96
10% 21.33
15% 22.73
20% 24.5
25% 26.61
30% 28.73
35% 30.4
40% 31.64
45% 32.61
50% 33.4
55% 34.11
60% 34.73
65% 35.4
70% 36.05
75% 36.77
80% 37.51
85% 38.43
90% 39.52
95% 41.19

97.5% 42.52
99% 44.21
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