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1.   Hereditary cancer syndromes 
 
The cell is the basic structural, functional and reproductive unit of life. In multicellular 

organisms cells are organized in tissues and organs and evolution has provided them 

with sophisticated regulatory mechanisms to control their properties, such as 

interaction, motility or division. However, these mechanisms may sometimes fail. We 

call cancer to a collection of diseases characterized by an uncontrolled division of cells, 

which can also invade surrounding tissues or even spread to distant organs. 

 

Cancerous cells are able to both maintain proliferative signals and elude those that are 

antiproliferative. They can resist cell death and present a limitless replicative potential. 

Moreover, they can induce the generation of new blood vessels from pre-existing ones, 

which is known as angiogenesis, and activate the invasion to adjacent tissues and the 

dispersion to other organs, known as metastasis (Hanahan and Weinberg, 2000). 

During the last decade three more properties of cancerous cells have been proposed: 

genome instability, deregulation of cell metabolism and avoidance of immune 

destruction. Moreover, a new important concept known as “tumour microenvironment”, 

which considers their capacity of promoting inflammation by the recruitment of normal 

cells, has emerged (Hanahan and Weinberg, 2011). Another major concept is the 

“cancer stem cell”, which implies that not all cells present in a tumour would be 

tumourigenic but only a specific subgroup with self-renewal properties, the cancer stem 

cells, would be the ones generating the tumour (Tan et al., 2006).  

 

In the predisposition to develop cancer there is a combination of inherited and 

environmental factors. Considering these two factors cancer can be classified into 

sporadic, familial or hereditary. Sporadic cancers account for 70-80% of all cancers 

and they appear over the lifetime of single individuals as a result of an accumulation of 

mutations in genes mainly due to environmental factors. About 10-20% of cancers are 

considered familial, since they appear in several members within a family. In these 

cancers there is a clear aggregation that can be caused by unidentified genetic factors, 

including more than a single gene, or due to the exposure of family members to a 

particular environment. Finally, hereditary cancer, which accounts for 5-10% of all 

cancers, appears in individuals within a family with a clear inheritance pattern and 

normally environmental factors represent a minor role. 
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Hereditary cancer syndromes are genetic inherited disorders that predispose the 

affected individuals within a family to develop cancer due to inherited mutations in 

particular genes. The mutated genes responsible for cancer syndromes can be 

oncogenes or, mostly, tumour suppressor genes (TSGs). Oncogenes are mutated 

forms of proto-oncogenes, which work as promoters of cell proliferation and survival in 

normal cells. These proto-oncogenes can induce cancer when they acquire dominant 

gain-of-function mutations. Examples of oncogenes are RET, KIT and MET. TSGs 

prevent normal cells from the acquisition of tumourigenic properties; hence loss-of-

function mutations in TSGs can lead to tumourigenesis. TSGs can be classified in 

“gatekeepers” and “caretakers” (Kinzler and Vogelstein, 1996). Gatekeeper genes 

inhibit cell proliferation, induce apoptosis and promote differentiation, such as RB or 

APC. Caretaker or stability genes are responsible for the maintenance of DNA integrity 

and are involved in repairing DNA damage, such as MLH1 or ATM. A third group of 

TSGs called “landscapers” that would be involved in the control of tumour 

microenvironment, has been proposed (Michor et al., 2004). 

 

The majority of cancer syndromes are caused by pathogenic mutations in TSGs. They 

present a dominant inheritance pattern, where the presence of only one mutated allele 

is needed to develop the disorder. However, and according to Knudson’s second-hit 

inactivation, the loss of both alleles of a TSG is necessary for tumour development 

(Knudson, 1971), thus TSGs act in a recessive manner at the cellular level. 

 

Examples of hereditary cancer syndromes are hereditary breast and ovarian cancer 

(HBOC), hereditary nonpolyposis colon cancer (HNPCC) or Lynch syndrome, familial 

adenomatous polyposis (FAP) and the neurofibromatoses. 

 

2.   Neurofibromatoses and RASopathies 

 
The neurofibromatoses are a group of three hereditary cancer syndromes 

characterized by the development of tumours in the nervous system. 

Neurofibromatosis type 1 (NF1; MIM 162200), Neurofibromatosis type 2 (NF2; MIM 

101000) and schwannomatosis (MIM 162091 and 615670) share an occurrence of 

tumours in tissues derived from the neural crest, especially from Schwann cells (SCs) 

or their precursors.  
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NF1, also known as von Recklinghausen disease, is caused by mutations in the NF1 

gene (Viskochil et al., 1990; Cawthon et al., 1990b; Wallace et al., 1990). NF1 is 

located at 17q11.2 region (Barker et al., 1987; Wallace et al., 1990) and its product 

neurofibromin is mainly a negative regulator of RAS protein (Ballester et al., 1990;  

Martin et al., 1990; Xu et al., 1990; Bollag and McCormick, 1991). The most 

characteristic clinical manifestation of NF1 is the presence of multiple benign tumours 

in the peripheral nerves called neurofibromas. NF2 is caused by mutations in the NF2 

gene (Trofatter et al., 1993; Rouleau et al., 1993). NF2 is located at 22q12.2 and 

encodes the protein merlin, a scaffolding protein that links actin filaments to the cell 

membrane (Trofatter et al., 1993; Rouleau et al., 1993). The appearance of bilateral 

schwannomas in the vestibular nerves, which are highly homogeneous SC tumours, is 

the most distinctive trait of NF2 patients. Schwannomatosis is caused by mutations in 

both SMARCB1 and LZTR1 genes. SMARCB1 is located at 22q11.23 region 

(Versteege et al., 1998) and encodes a subunit of the SWI/SNF chromatin-remodelling 

complex. About 50% of inherited cases of the disease are related to SMARCB1 

(Hulsebos et al., 2007; Sestini et al., 2008; Hadfield et al., 2008). In the 80% of cases 

with no mutation in SMARCB1, mutations in the LZTR1 gene have been recently found 

(Piotrowski et al., 2014). Located closely to SMARCB1, at 22q11.21, LZTR1 has been 

related to the stabilization of the cellular Golgi complex. The main clinical 

manifestations of schwannomatosis are similar to those of NF2 with the appearance of 

multiple schwannomas, but rarely at the vestibular nerve. 

 

NF1 can also be classified as a RASopathy. The RASopathies are a group of 

developmental disorders caused by mutations in genes that encode components of the 

RAS/MAPK pathway. For some of them there is genetic heterogeneity and can be 

caused by mutations in several RAS/MAPK genes. Other RASopathies are associated 

with mutations in single genes of the pathway. RASopathies predispose patients to 

short stature, cognitive impairment, and also to the development of some tumours 

(Simsek-Kiper et al., 2013). Taken together the prevalence of RASopathies is about 

1:1000 (https://rasopathiesnet.org). In addition to NF1, RASopathies also include, 

among others, Noonan syndrome, Cardio-Facio-Cutaneous (CFC) syndrome, Costello 

syndrome, Noonan syndrome with multiple lentigines (NSML; also named LEOPARD 

syndrome), and Legius syndrome. 
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3.   Neurofibromatosis type 1: clinical manifestations 

 
NF1 is a genetic disorder inherited as autosomal dominant, with half of the cases being 

de novo. Its incidence at birth is of 1:2500 individuals and its minimum prevalence of 

1:4000 – 1:5000 individuals (Huson et al., 1989). It presents a complete penetrance at 

the age of eight (DeBella et al., 2000). NF1 shows a high variability in its clinical 

manifestations, affecting several tissues and being the most distinctive a high 

predisposition to develop neural crest-derived tumours, especially in the Peripheral 

Nervous System (PNS).  

 

The most frequent clinical traits are alterations of skin pigmentation called café-au-lait 

macules (CALMs) and skin-fold freckling, hamartomas of the iris called Lisch nodules, 

and the development of multiple peripheral nerve sheath tumours. Among these 

tumours, dermal neurofibromas (dNFs) are the most frequent, affecting almost all 

(~99%) NF1 patients and whose number is variable, ranging from tens to thousands 

among patients. Around 30% of NF1 patients have clinically visible plexiform 

neurofibromas (pNFs; Huson et al., 1988), which originate from multiple nervous 

fascicles and are thought to be originated during embryonic development (Riccardi, 

1992). dNFs do not progress towards malignancy but certain pNFs transform into a 

type of soft-tissue sarcoma called malignant peripheral nerve sheath tumours 

(MPNSTs), that can also arise de novo or from internal neurofibromas. NF1 patients 

have an 8–13% lifetime risk of developing an MPNST (Evans et al., 2002), which is the 

leading cause of NF1-related mortality. 

 

Concerning NF1 tumourigenesis, in addition to dNFs, pNFs and MPNSTs, NF1 

patients can also develop other tumours, such as optic pathway gliomas, 

gastrointestinal tumours (GISTs), pheochromocytomas, glomus tumours of the digits, 

juvenile chronic myelomonocytic laeukemia (JCML), glioblastomas and 

rhabdomyosarcomas (reviewed in Brems et al., 2009). It has also been associated a 

higher risk of developing breast cancer in NF1 patients than in the general population 

(Sharif et al., 2007; Wang et al., 2012). Other traits associated to NF1 are specific 

osseous lesions (including dysplastic scoliosis, sphenoid wing dysplasia and long 

bones dysplasia, such as tibial pseudoarthrosis), short stature, macrocephaly, 

cardiovascular pathologies and cognitive problems.  
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The diagnostic criteria of NF1 approved in the US National Institutes of Health (NIH) 

Consensus Conference in 1987 (NIH, 1988) are: 

- Six or more CALMs greater than 5 mm in prepubertal individuals and over 15 

mm in postpubertal individuals  

- Two or more neurofibromas of any type or one pNF  

- Freckling in the axillary or inguinal regions  

- Optic glioma  

- Two or more Lisch nodules (iris hamartomas)  

- A distinctive osseous lesion such as sphenoid dysplasia or thinning of long 

bone cortex with or without pseudoarthrosis  

- A first-degree relative (parent, sibling or offspring) with NF1 according to the 

above criteria 

An individual is diagnosed with NF1 if two or more of these criteria are present. 

 

4.   NF1 gene 

 
4.1.  Genomic region, gene structure and expression 

 
The NF1 gene is located at the pericentromeric region q11.2 of chromosome 17. It 

spans ~300Kb and it is considered a large gene, consisting of 60 exons (including 

three alternatively spliced exons 9a, 23a and 48a). Three genes, transcribed from the 

complementary DNA strand with respect to the NF1 gene, OMGP, EV12A, and EV12B, 

are embedded in the large intron 27b (Cawthon et al., 1990a; Cawthon et al., 1991; 

Viskochil et al., 1991). The promoter region is located in a ~10Kb CpG-rich region 

(Rodenhiser et al., 1993) and contains several conserved binding motifs to 

transcription factors (Hajra et al., 1994). The 3’UTR region spans 3.5kb. Exons 21 to 

27a encode a functional domain called GAP Related Domain (GRD). The NF1 gene is 

located in a genomic region that contains three low-copy repeats (called REP-A, REP-

B and REP-C), which are paralogous regions that flank NF1. These repeats, together 

with SUZ12 gene and SUZ12P1 pseudogene, are responsible for the generation of 

large deletions (also known as microdeletions) that arise via nonallelic homologous 

recombination (see section 4.3. and Figure 2).  
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Several NF1 pseudogenes located at different chromosomes, including 2, 12, 14, 15, 

18, 21, and 22, have been described (Legius et al., 1992; Gasparini et al., 1993;  

Suzuki et al., 1994; Purandare et al., 1995; Cummings et al., 1996; Kehrer-Sawatzki et 

al., 1997). These NF1-related sequences present different degrees of sequence 

homology with NF1 and are suggested to have arisen by duplication and transposition 

of the NF1 locus. Some of them are transcribed (Yu et al., 2005) but they are not totally 

processed and consequently they are not functional, although they can hinder the 

genetic analysis of the NF1 gene. 

 

The expression of NF1 is found in nearly all adult tissues but it is especially relevant in 

the brain and the PNS (Wallace et al., 1990; Daston et al., 1992). The full-length NF1 

mRNA transcript is about 11 to 13 kb and five different isoforms have been identified 

(Nishi et al., 1991; Gutman et al., 1993; Danglot et al., 1995; Kaufmann et al., 2002), 

being the main ones type I and type II. Type I isoform contains 57 exons and type II 

contains, in addition, the alternative spliced exon 23a, which is introduced within the 

GRD (Nishi et al., 1991). This type II isoform is the most abundant NF1 transcript found 

in adult tissues (Teinturier et al., 1992) and it is translated to a neurofibromin that 

presents a lower capacity of negatively regulate RAS than type I isoform (Uchida et al., 

1992; Andersen et al., 1993). 

 

4.2.  Neurofibromin 

 
The product of NF1 gene is the protein neurofibromin. This protein has 2818 

aminoacids and a molecular mass of 250-280 kDa (DeClue et al., 1991; Gutmann et 

al., 1991). It is ubiquitously expressed, but its main expression is in the nervous system 

in neurons, oligodendrocytes and nonmyelinating SCs (Daston et al., 1992; Nordlund 

et al., 1993). It is highly conserved among vertebrates (Bernards et al., 1993). 

 

Two neurofibromin domains have been so far well characterized at a functional level: 

the GRD (Ballester et al., 1990; Martin et al., 1990; Xu et al., 1990) and the contiguous 

SEC14-PH domain (Aravind et al., 1999). The GRD has 360 aminoacids, it is 

conserved among species and it contains an arginine finger structure that interacts 

with RAS protein (Scheffzek et al., 1998). This interaction stabilizes the transition state 

of the GTPase reaction and favours the RAS-GTPase activity; so active RAS-GTP is 
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inactivated to RAS-GDP. The SEC14-PH domain is composed of the Sec14p 

homologous segment and a PH-like domain, it is contiguous to the GRD and it has 256 

aminoacids. SEC14-PH is involved in lipid-regulated processes and it has been shown 

to promote the interaction of neurofibromin to the cell phospholipids (D'Angelo et al., 

2006; Welti et al., 2007). 

 

Other functional binding domains in neurofibromin have been proposed, such as to 

syndecan (Hsueh et al., 2001); a nuclear localization signal (NLS; Vandenbroucke et 

al., 2004); a cystein-serine rich domain (CSRD) as a PKA recognition site (Izawa et al., 

1996); to cytoskeletal proteins, such as tubulin (Gregory et al., 1993; Bollag et al., 

1993), actin (Gutmann et al., 2001; Li et al., 2001) and keratin (Koivunen et al., 2000); 

to the molecular motor kinesin-1 (Hakimi et al., 2002); and to other regulators of 

RAS/MAPK pathway, such as SPRED1 (Stowe et al., 2012). 

 

Neurofibromin is a GTPase Activating Protein (GAP) that negatively regulates RAS 

activation (Figure 1). Its degradation is mediated by the ubiquitin-proteasome pathway 

(Cichowski et al., 2003). RAS is a cytoplasmic protein anchored to the inner cell 

membrane that transduces extracellular signals from the membrane receptors to 

intracellular pathways (Figure 1). RAS proteins act as binary molecular switch that can 

alternate active states, when bound to GTP, and inactive states, when bound to GDP 

(Figure 1). These changes are regulated by two kind of mediators: Guanine Exchange 

Factors (GEFs), which promotes the release of GDP, enabling the binding of GTP, and 

GAP proteins, which stimulate hydrolysis of GTP bound to RAS.  

 

RAS proteins are involved in several signalling pathways that control different cellular 

processes. The main ones are the RAS/RAF/MEK/ERK pathway (also known as 

RAS/MAPK), especially involved in cell proliferation and the RAS/PI3K/AKT/mTOR 

pathway, that especially promotes cell survival and growth (Figure 1). Gain-of-function 

mutations of RAS gene and loss-of-function mutations in NF1 result in an increased 

activity of RAS and a permanent stimulation of the signalling pathways that can lead to 

tumourigenesis. In fact, it has been observed that loss of neurofibromin is correlated 

with high levels of RAS in NF1-associated tumours and derived cells (Basu et al., 

1992; DeClue et al., 1992; Guha et al., 1996). 
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Figure 1. Regulation of RAS signalling pathways by neurofibromin. Activation of RAS requires 
exchange of GDP for GTP downstream from receptor tyrosine kinase (RTK) activation. The hydrolysis of 
GTP to GDP is catalysed by neurofibromin. Activated RAS regulates the downstream ERK and PI3K 
pathways involved in cell proliferation and survival, respectively. Modified from Katz et al., 2009. 
 

Neurofibromin has also been shown to regulate the cAMP pathway by regulating 

adenylyl cyclase (AC) activity in yeast (Tanaka et al., 1989; Tanaka et al., 1990), in 

Drosophila (Guo et al., 1997) and in mice (Tong et al., 2002). The AC/cAMP/PKA 

pathway has many roles, especially in cell metabolism, proliferation and differentiation. 

Increased levels of cAMP inhibit the proliferation of most cell types, and it has been 

proposed that altered levels of cAMP can lead to cancer.  

 

4.3.  Constitutional mutational spectrum 

 
The mutation rate of NF1 is one of the highest among human genes (Friedman, 1999). 

The detection of mutations is complex because of the large size of the gene, the 

diverse spectrum of mutations identified so far, and the presence of pseudogenes. 

There is a high number of mutations distributed throughout the NF1 gene and few of 
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them are recurrent. However, NF1 does not seem to present any mutational hot spot 

(Messiaen and Wimmer, 2008). 

 

NF1 patients show a wide spectrum of constitutional mutations. The majority (~93%) 

are point mutations, including splicing (~27%), insertion/deletions (~26%), nonsense 

(~21%), and missense mutations (18%). The remaining mutations consist of intragenic 

deletions/duplications (~2%) and microdeletions that span NF1 and neighbouring 

genes (~5%; Messiaen and Wimmer, 2008). In a recent study, a targeted next-

generation sequencing (NGS) of NF1 in 246 patients obtained similar percentages of 

these types of constitutional mutations (Pasmant et al., 2015). Approximately 90% of 

NF1 microdeletions (Types-1, -2, and -3) are recurrent and arise via nonallelic 

homologous recombination between low-copy repeats (REPs) or between the SUZ12 

gene and SUZ12P1 pseudogene (Figure 2). REP-A and REP-C regions mediate Type-

1 deletions, which are the most frequent (~77%; Figure 2). These regions span 1.4 Mb 

and contain NF1 and 14 other protein-coding genes (Dorschner et al., 2000; Lopez 

Correa et al., 2000; Jenne et al., 2001). Type-2 deletions are less frequent (~9%) and 

typically appear in the context of somatic mosaicism. The distance between their 

breakpoints, which are located at the SUZ12 gene and its pseudogene SUZ12P1, 

spans 1.2 Mb (Petek et al., 2003; Figure 2). The REP-B and REP-C regions are 

involved in the rare Type-3 deletions (~4%), which are 1.0 Mb in length (Bengesser et 

al., 2010; Pasmant et al., 2010; Zickler et al., 2012; Figure 2). In the remaining ~10% of 

constitutional NF1 microdeletions, the so-called atypical deletions, the REPs are not 

involved in the generation of the breakpoint (Pasmant et al., 2010; Zickler et al., 2012; 

Figure 2). A new type of microdeletion, caused by insertions associated to SVA 

(SINE/variable number of tandem repeats/Alu) retrotransposons in the breakpoints, 

has been recently identified (Wimmer et al., 2011; Vogt et al., 2014; Hsiao et al., 2015).  

 

Sometimes, constitutional mutations are not inherited directly from the germline and 

occur post-zygotically. When this happens the affected individual is composed of two 

genetically different cell populations, resulting in mosaicism. This can be somatic, if 

only somatic cells are affected; germline, when the mutation affects the gametes; or 

gonadosomatic, if the mutation is affecting both the somatic and the germ lines. In 

NF1, examples of the three types are found (Kehrer-Sawatzki and Cooper, 2008) and 
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mosaicism can present as a mild generalized NF1 phenotype if all embryonic layer 

derivatives are affected (NF1 generalized mosaicism), or can be characterized by the 

limitation of NF1 signs to specific areas of the body when only some of the layer 

derivatives are affected by the mutation (NF1 segmental mosaicism). 

 

 

 

 

 

 

 

 
Figure 2. NF1 region and types of constitutional microdeletions. Schematic representation of the NF1 
region at 17q11.2. NF1 gene is represented by a green box, protein-coding genes are represented by blue 
boxes, and paralogous regions REPs are represented by pink boxes. Brown long rectangles show the four 
types of NF1 constitutional microdeletions: Type-1 (mediated by REP-A and REP-C), Type-2 (mediated by 
the SUZ12 gene and its pseudogene SUZ12-P), Type-3 (mediated by REP-B and REP-C) and atypical 
(neither the REPs nor SUZ12/SUZ12-P are involved in the deletion). 
 

4.4.  Somatic mutational spectrum 

 
Several findings indicate that the NF1 gene is a TSG. It is inactivated in all NF1-

associated tumours, all bearing somatic second-hit mutations affecting the wild type 

allele (reviewed in De Raedt et al., 2008). The number of NF1 somatic mutations 

identified so far is, however, limited because of the few number of analysis performed 

in tumours such as dNFs, and the presence of cellular heterogeneity in these tumours. 

Biallelic inactivation of the NF1 gene is a key event in the development of dNFs 

(Colman et al., 1995; Sawada et al., 1996; Serra et al., 1997; Daschner et al., 1997;  

John et al., 2000) and pNFs (Daschner et al., 1997; Kluwe et al., 1999b; John et al., 

2000), being SCs the ones bearing the second-hit inactivation (Kluwe et al., 1999a; 

Serra et al., 2000; Wallace et al., 2000; Maertens et al., 2006a). MPNSTs also show 

somatic mutations in NF1 (Legius et al., 1993; Lothe et al., 1995). In CALMs the 

somatic mutation occurs in the melanocytes (Maertens et al., 2007; De Schepper et al., 

2008). In tibial pseudoarthrosis double inactivation of NF1 has also been found 

(Stevenson et al., 2006). Other NF1 traits, such as GISTs, pheochromocytomas, 

JCML, and glomus tumours of the digits, have also been observed to bear the biallelic 
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inactivation of the gene (De Raedt et al., 2008; Brems et al., 2009; Laycock-van Spyk 

et al., 2011). 

 

Several studies have analyzed NF1 somatic mutations in dNFs, concluding that ~75% 

are due to point mutations (i.e., nonsense, missense, small insertion/deletion, and 

splicing mutations) and intragenic deletions, and the remaining ~25% are evidenced by 

loss of heterozygosity (LOH; Serra et al., 2001; Maertens et al., 2006a; De Raedt et al., 

2006; Thomas et al., 2010; Garcia-Linares et al., 2011; Thomas et al., 2012). The 

mechanistic causes of LOH are mitotic recombination in ~65% of cases and genomic 

deletions of 80 kb to 8 Mb in the remaining ~35% (De Raedt et al., 2006; Garcia-

Linares et al., 2011). Biallelic inactivation evidenced by LOH has not been found in 

NF1 microdeletion patients (De Raedt et al., 2006). LOH has also been detected in 30-

60% of pNFs (Kluwe et al., 1999b; Rasmussen et al., 2000; Steinmann et al., 2009). In 

MPNSTs, 60-90% of the NF1 second-hit inactivation is due to genomic deletions 

(Upadhyaya et al., 2008b; Bottillo et al., 2009). No epigenetic mechanisms as 

causative of a somatic inactivation of the NF1 gene have been reported in NF1-

associated tumours (Horan et al., 2000; Harder et al., 2004; Fishbein et al., 2005). 

 

4.5.  Genotype-phenotype correlations 

 
There is a high clinical heterogeneity in NF1, even among individuals carrying the 

same mutation. Members from a same family or unrelated patients bearing the same 

NF1 mutation can present different number and location of clinical manifestations 

(Szudek et al., 2000; Szudek et al., 2002; Szudek et al., 2003). Epidemiologic studies 

suggest that the underlying cause of this phenotypic variability can be due to different 

factors, such as age or environmental conditions. A molecular cause can be explained 

by the effect of modifier genes that could exert a more subtle effect by changing the 

efficiency of different steps in tumourigenesis and other traits, such as CALMs (Easton 

et al., 1993; Wiest et al., 2003). 

 

Despite of this, some genotype-phenotype correlations regarding the constitutional 

mutation have been reported so far. The main one involves the ~5% of NF1 patients 

bearing constitutional microdeletions that encompass NF1 and neighbouring genes. 

These patients, compared to the general NF1 population, present a more severe 
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clinical phenotype, including dysmorphic features (Kayes et al., 1994; Leppig et al., 

1997; Pasmant et al., 2010), learning disabilities (Kayes et al., 1994; Pasmant et al., 

2010), cardiovascular malformations (Venturin et al., 2005), childhood overgrowth 

(Pasmant et al., 2010) and a higher number of dNFs and pNFs at an earlier age (Wu et 

al., 1995; Leppig et al., 1997). In addition, and most importantly, NF1 microdeletion 

patients present an increased lifetime risk for the development of MPNSTs (De Raedt 

et al., 2003). Besides these large deletions, two point mutations have also been 

significatively correlated with specific NF1 phenotypes. The intragenic deletion c.2970-

2972delAAT leads to a 3-bp in-frame deletion in exon 17 and it is correlated with the 

presence of CALMs and the absence of dNFs and pNFs (Upadhyaya et al., 2007). 

Recently, two new missense mutations, c.5425C>T and C>G, that lead to the 

p.Arg1809Cys aminoacid substitution in neurofibromin, have been significatively 

associated with also a mild phenotype, consisting of the presence of CALMs, the 

absence of dNFs and pNFs and, in some cases, facial Noonan-like features 

(Rojnueangnit et al., 2015; Pinna et al., 2015). 

 

5.   Neurofibroma 

  
5.1.  Molecular and cellular pathogenesis 

 
Neurofibroma is the most common NF1-associated tumour and the most characteristic 

trait of NF1. It is a benign tumour arising in peripheral nerves. Normal peripheral 

nerves are well-organized structures that contain neuronal axons. Each axon is 

surrounded by one SC, forming a protective sheath and a nerve fiber. Several nerve 

fibers cluster into nerve fascicles and each fascicle is then enclosed by concentric 

layers of perineurial cells. Multiple fascicles, fastened by connective tissue, constitute 

an individual nerve. Different cell types are found in nerve fascicle, including SCs, 

neural and perineurial cells, fibroblasts, endothelial cells and, sometimes, mast cells. 

During neurofibroma formation, the interaction among these cells is disrupted and the 

normal nerve structure is consequently lost. SCs are dissociated from nerves and the 

perineurium is disturbed. The most abundant cell type representing the 60-80% of 

neurofibroma cells is SC (Krone et al., 1983; Peltonen et al., 1988), which expresses 

the S100 protein. S100 can be immunohistochemically detected. Perineurial cells, 
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fibroblasts, mast cells, and an abundant extracellular matrix rich in collagen are also 

present in the neurofibroma.  

 

A double inactivation of the NF1 gene has been found in neurofibromas (Colman et al., 

1995; Sawada et al., 1996; Serra et al., 1997). Subsequent molecular analyses 

showed that only a subpopulation of SCs bore the biallelic inactivation of the NF1 gene 

(SCNF1–/–), while other SCs (SCNF1+/–) and fibroblasts within the neurofibroma did not 

present the second-hit mutation (Serra et al., 2000). Moreover, SCs lacking 

neurofibromin showed increased RAS activity and proliferative advantage compared to 

other neurofibroma cell components (Sherman et al., 2000; Muir et al., 2001). The 

advance of Nf1-deficient mouse models also supports that SCNF1–/– or a precursor is 

the initiating cell type in neurofibroma formation (Zhu et al., 2002).  

 

Neurofibroma formation would be triggered by a second-hit inactivation of NF1 in SCs 

or precursor cells (Figure 3), which may initiate the development of the tumour by 

activating a cascade of changes in other cell types as a result of their interdependency 

(Cichowski and Jacks, 2001). NF1 heterozygosity in the tumour environment 

contributes to neurofibroma development in mouse models (Zhu et al., 2002). 

Infiltrated mast cells have been considered as an important player in neurofibroma 

formation (Riccardi, 1981; Johnson et al., 1989) and it has been demonstrated that in 

mice, SCNF1–/– alter neurofibroma microenvironment by secreting Kit ligand (KitL), 

which stimulates mast cell migration (Yang et al., 2003). SCNF1–/– have also been found 

to secrete other growth factors that promote angiogenesis (Mashour et al., 2001; 

Kawachi et al., 2003). Thus, the NF1 haploinsufficiency present in neurofibroma 

environment would promote its formation in mice, but it should be addressed if this also 

occurs in human neurofibromas, given the differences that RAS-driven tumour types 

show between mice and humans (Hamad et al., 2002).  

 

5.2.  Neurofibroma subtypes: dNF and pNF 

 
There is still no agreement among pathologists and clinicians on how to classify the 

different types of neurofibromas. Traditionally two neurofibromas subtypes have been 

defined: dermal neurofibromas (dNFs) and plexiform neurofibromas (pNFs).  
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Dermal neurofibromas are benign tumours affecting nearly all NF1 patients (Figure 3). 

Their size ranges from one millimetre to some centimetres and their number is also 

variable. Both size and number of dNFs increase with age. They typically arise in 

single peripheral nerves from the skin during puberty. Some dNFs can cause 

malformation and itching, but they have not been reported to acquire a malignant 

transformation. They have also been suggested to be hormone-responsive, as their 

number and growth increase during puberty and pregnancy (Dugoff and Sujansky, 

1996). More recently, some studies have also suggested that multipotent skin-derived 

precursors (SKPs) present in the hair follicles may contribute to dermal neurofibromas 

both in mice and humans (Le et al., 2009; Jouhilahti et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3. Tumourigenesis of the PNS in NF1 patients. NF1 is caused by loss of function of the NF1 
gene. A second-hit inactivation of NF1 in Schwann cells (SCs) from NF1 patients is necessary for the 
development of a neurofibroma. Dermal neurofibromas (dNFs) are the most common benign peripheral 
nerve sheath lesions and appear in the skin of virtually all NF1 patients. Plexiform neurofibromas (pNFs) 
affect the total length of a peripheral nerve in almost half of the patients. Some pNFs have a significant 
propensity to undergo malignant transformation to MPNST, which can also arise outside of this context. 
Modified from Katz et al., 2009. Images taken from Ferner, 2007. 
 

Plexiform neurofibromas are benign tumours affecting around 30-50% of NF1 patients 

(Huson et al., 1988; Ferner, 2007; Figure 3). They are bigger than dNFs and can 

spread along a total length of a peripheral nerve. They are thought to be congenital 

and arise in multiple nerve fascicles during childhood. A recent study in mice has 
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shown that a specific population of SC precursors in embryonic nerve roots are the 

cells of origin of pNFs (Chen et al., 2014). They are not hormonally responsive. About 

10% of patients bearing pNFs have been reported to develop MPNSTs (Evans et al., 

2002). 

 

A third class of neurofibroma, called subcutaneous neurofibroma, has also been 

defined. These tumours localize in lower layers of skin and are thought to be the cause 

of pain and neurological problems. Individuals with subcutaneous neurofibromas are 

more likely to have also MPNSTs (Tucker et al., 2005). 

 

5.3.  pNF malignant transformation to MPNST 

 
A specific type of neurofibroma, called atypical neurofibroma has also been defined. 

This tumour is pathologically characterized by the presence of more hypercellular 

regions than a dNF or a pNF, with cells having bigger and hyperchromatic nuclei, but 

with no mitoses detected. At the clinical level, they are often symptomatic presenting 

with pain. They also frequently show an increased glucose uptake on fluorine-18-

labeled-fluorodeoxyglucose (18F-FDG)-positron emission tomography (PET) scan 

(Ferner et al., 2008). These tumours have been suggested to be a transition state 

between a benign pNF and a MPNST (Nielsen et al., 1999; Brems et al., 2009; Beert et 

al., 2011). 

 

6.   MPNST 

 
MPNST is a rare and aggressive tumour that account for 3-10% of all soft-tissue 

sarcomas (Katz et al., 2009). It is mostly developed in limbs and trunk (Ducatman et 

al., 1986; Sorensen et al., 1986) and around 50% are associated to NF1 patients, while 

the other 50% develop sporadically (Ducatman et al., 1986). The average lifetime risk 

of developing an MPNST in NF1 patients is 8-13% (Evans et al., 2002; Figure 3), being 

this risk two or three times higher in patients bearing an NF1 microdeletion (De Raedt 

et al., 2003). Its estimated annual incidence is of 0.16%, compared with 0.001% in the 

general population (Ducatman et al., 1986). The mean age of MPNST diagnosis in 

NF1 patients is of 26 years old (Evans et al., 2002) and it is difficult to clinically 

diagnose, due to the presence of multiple benign tumours in the PNS. Clinical signs of 
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MPNST development are changes in neurofibroma texture, rapid tumour growth, 

recent pain and neurological deficit. Due to its invasive growth, propensity to 

metastasize, and limited sensitivity to chemotherapy and radiation, MPNST has a poor 

prognosis (Brems et al., 2009). MPNST is the leading cause of NF1-related mortality, 

being the 5-year survival rate of NF1 patients with MPNST of 21% (Evans et al., 2002; 

Friedrich et al., 2007). By using 18F-FDG-PET scan, MPNSTs can be differentiated 

from most benign neurofibromas (Ferner et al., 2008).  

 

MPNSTs are highly hyperploid tumours characterized by the occurrence of many 

chromosomal aberrations. First cytogenetic and fluorescence in situ hybridization 

(FISH) analyses showed complex karyotypes with several chromosomal 

rearrangements, including translocations, duplications and numerical gains and losses 

(Glover et al., 1991; Plaat et al., 1999; Mechtersheimer et al., 1999; Mertens et al., 

2000). Unlike specific translocations found in other sarcomas (Barretina et al., 2010), 

no consistent chromosomal aberrations have been so far associated to MPNST 

pathogenesis. However, many studies using cytogenetics (Plaat et al., 1999), 

chromosomal comparative genomic hybridisation (CGH; Mechtersheimer et al., 1999; 

Schmidt et al., 2000), array CGH (Kresse et al., 2008; Mantripragada et al., 2009; 

Beert et al., 2011; Du et al., 2013), and single nucleotide polimorphism (SNP) array 

(Upadhyaya et al., 2012) have identified some recurrent somatic copy number 

alterations (SCNAs). These SCNAs include known TSGs and oncogenes drivers of 

MPNST pathogenesis and may also include some other candidate genes. The most 

recurrent SCNAs found are gains in chromosomes 7, 8q and 17q and losses in 1p, 9p, 

10 and 11q, being genomic gains more abundant than losses in the MPNST genome. 

 

6.1.  Genes contributing to MPNST pathogenesis 

 
 6.1.1. Tumour suppressor genes 

 
Somatic second-hit mutations in NF1 gene have been found in 40-90% of NF1-

associated MPNSTs (Legius et al., 1993; Upadhyaya et al., 2008a; Bottillo et al., 2009; 

Zhang et al., 2014; Lee et al., 2014) but this seems to be insufficient for MPNST 

formation, hence an accumulation of additional genetic alterations is needed. In 
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addition to NF1 gene, the most recurrent genetic alterations found in MPNSTs are in 

the tumour suppressor genes CDKN2A, TP53 and PTEN. 

 

Alterations in the CDKN2A locus have been frequently detected in MPNSTs. CDKN2A 

encodes two proteins: p16/INK4A and p14/ARF. Protein p16 [or inhibitor of CDK4A 

(INK4a)] is a cell cycle inhibitor that inhibits pRb pathway, leading to cellular 

senescence. Protein p14, result of an alternate open reading frame (ARF) of the 

CDKN2A gene, is also a cell cycle inhibitor that activates p53 function. This locus has 

been found deleted in 40-80% of MPNSTs analyzed in various studies (Berner et al., 

1999; Kourea et al., 1999; Nielsen et al., 1999; Perrone et al., 2003; Holtkamp et al., 

2008; Mantripragada et al., 2008; Beert et al., 2011; Lee et al., 2014). Point mutations 

and promoter methylation have scarcely detected as mechanisms of CDKN2A 

inactivation (Berner et al., 1999; Kourea et al., 1999; Perrone et al., 2003; Lee et al., 

2014). It is also important to highlight that in a recent study, CDKN2A has also been 

deleted in nearly all pre-malignant atypical neurofibromas studied, suggesting that this 

alteration is an early event in the malignant transformation of pNF to MPNST (Beert et 

al., 2011). Deletions in the RB gene, which encodes another negative regulator of cell 

cycle, pRb, have also been detected in MPNSTs (Mawrin et al., 2002; Mantripragada 

et al., 2008).  

 

Many studies have also found TP53 to be altered in MPNSTs. TP53 encodes p53 

protein, an important regulator of both DNA repair and apoptosis mechanisms. Some 

first studies using cytogenetics or microsatellite analysis showed the presence of LOH 

in the short arm of chromosome 17 (17p), where TP53 is located, suggesting a 

possible role of this gene in MPNST pathogenesis (Menon et al., 1990; Jhanwar et al., 

1994; Lothe et al., 1995). Point mutations in TP53 have also been found (Legius et al., 

1994; Birindelli et al., 2001; Lothe et al., 2001; Holtkamp et al., 2007; Upadhyaya et al., 

2008a; Verdijk et al., 2010). However, the percentage of MPNST bearing mutations in 

TP53 is highly variable among studies, due to the small number of tumours analyzed 

or to the restriction to specific exons in the mutational analyses. Taken together, these 

studies found point mutations in TP53 in less than 20% of the NF1-associated 

MPNSTs analyzed. LOH in TP53 has been found in a higher percentage of MPNSTs 

(40-55%) than point mutations (Holtkamp et al., 2008; Upadhyaya et al., 2008a; Beert 

et al., 2011). In a recent study, the combination of whole exome sequencing, SNP 
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array and RNA-seq techniques detected TP53 deletions and point mutations in 46% 

and 27% of 26 NF1-associated MPNSTs, respectively (Lee et al., 2014), confirming the 

results found in previous studies. However, biallelic TP53 inactivation is low (Lothe et 

al., 2001; Lee et al., 2014) and it has been suggested that TP53 haploinsufficiency, in 

cooperation with alterations in other genes, would be sufficient for MPNST 

tumourigenesis (Brosius et al., 2014; Rahrmann et al., 2014). Amplifications in MDM2, 

a negative regulator of TP53, have also been found (Wallander et al., 2012). 

 

Alterations in PTEN gene, which encodes a phosphatase that negatively regulates 

PI3K and consequently inhibits pro-survival signalling, have also been detected in 

~50% of MPNSTs analyzed either for deletions (Holtkamp et al., 2008; Perrone et al., 

2009) or promoter methylation (Bradtmoller et al., 2012). 

 

The advances of several genetically engineered mice (GEM) models support the role 

of the TSGs NF1, CDKN2A, TP53, and PTEN in MPNST development. These are the 

knockouts Nf1+/–; p53+/– (Cichowski et al., 1999; Vogel et al., 1999) and Nf1+/–; 

p16Inka4/p19Arf–/– (Joseph et al., 2008) and the conditional knockouts Nf1 fl/fl; Pten fl/fl; 

Dhh-Cre and Nf1 fl/fl; Pten fl/+; Dhh-Cre (Keng et al., 2012a). 

 

6.1.2. Oncogenes  

 
In addition to TSGs, some oncogenes have also been found altered in MPNSTs. Most 

of them encode receptor tyrosine kinases (RTKs) or their ligands, which are both 

involved in proliferation, survival, migration and invasion, among other cellular 

properties. Some of these genes, such as EGFR, PDGFR or VEGF, are 

overexpressed in MPNSTs, leading to the activation of their downstream effectors 

(reviewed in Katz et al., 2009). 

 

EGFR is amplified in at least 30% of the NF1-asociated MPNSTs analyzed so far 

(Perry et al., 2002; Holtkamp et al., 2008; Perrone et al., 2009; Du et al., 2013). The 

ERBB2 gene, which encodes the EGFR family receptor HER2, has also been found 

amplified (Storlazzi et al., 2006; Holtkamp et al., 2008). Amplifications in PDGFR 

(Holtkamp et al., 2006; Mantripragada et al., 2008; Perrone et al., 2009; Zietsch et al., 

2010; Upadhyaya et al., 2012) and other receptors, such as KIT (Holtkamp et al., 2006; 
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Zietsch et al., 2010), MET (Mantripragada et al., 2008; Upadhyaya et al., 2012) or 

IGF1R (Yang et al., 2011) have also been found. Moreover, recent functional 

evidences of a role of these oncogenes in MPNST pathogenesis have been showed: 

EGFR (Holtkamp et al., 2008; Byer et al., 2013; Du et al., 2013; Wu et al., 2014; 

Rahrmann et al., 2014); ERBB2 (Stonecypher et al., 2005) and its ligand Neuregulin-1 

(NRG1; Eckert et al., 2009; Kazmi et al., 2013; Brosius et al., 2014); PDGFRB (Ohishi 

et al., 2013); MET (Torres et al., 2011). Activating gain-of-function point mutations 

have not been detected in these oncogenes in cell lines derived from MPNSTs, 

suggesting that the main mechanism underlying their activation would be by genomic 

amplification (Sun et al., 2012).   

 

In addition, some other genes showing to be amplified and/or overexpressed in 

MPNSTs have been proposed to have an oncogenic role in MPNST pathogenesis, 

which in some cases is also supported by recent functional studies. Examples are the 

gene TOP2A, that encodes DNA topoisomerase II alpha, an helicase frequently 

targeted with anticancer agents (Skotheim et al., 2003; Storlazzi et al., 2006; Kresse et 

al., 2008; Kolberg et al., 2015); BIRC5, that encodes the antiapoptotic protein survivin 

that have also a role in promoting cell division (Levy et al., 2004; Storlazzi et al., 2006; 

Kresse et al., 2008; Kolberg et al., 2015); AURKA, which encodes the promitotic 

protein Aurora Kinase A (Levy et al., 2004; Patel et al., 2012; Mohan et al., 2013); and 

the chemokine receptor gene CXCR4 (Mo et al., 2013; Hattermann et al., 2013).   

 

6.1.3. Other genes 

 
In addition to TSGs and oncogenes, other genes have been associated with MPNST 

pathogenesis. Some neural crest stem cell markers, such as TWIST1 and SOX9 are 

overexpressed in MPNSTs and have been found to be functionally involved in cell 

chemotaxis and cell survival, respectively (Miller et al., 2006; Miller et al., 2009). EYA4, 

a potential transcriptional target of SOX9 involved in development, is also 

overexpressed in MPNSTs (Miller et al., 2010). Activation of the Wnt/beta-catenin 

signalling pathway, involved in many cellular processes including differentiation, 

proliferation and migration, and also with cancer, have also been associated with 

MPNST pathogenesis (Watson et al., 2013; Luscan et al., 2014). 
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MicroRNAs (miRNAs) have been demonstrated to have an important role in cancer, 

either if they act as TSGs when their function is lost, or as oncogenes if the gain 

function. Some miRNAs have been found to be downregulated in MPNSTs, such as 

miR-34a (Subramanian et al., 2010), miR-204 (Gong et al., 2012), miR-29c (Gong et 

al., 2012) and miR-210 (Wang et al., 2013). An overexpressed miRNA found to be 

oncogenic in MPNSTs is miRNA-21 (Itani et al., 2012). 

 

6.2.  Epigenetics 

 
Alterations in DNA methylation and histone modifications are a common feature in 

cancer. Hence, inactivation of TSGs and activation of oncogenes can be caused by 

mutations and also by epigenetic modifications. In general, gene promoter 

hypermethylation is associated to transcriptional silencing, while gene hypomethylation 

is associated to overexpression. In addition to DNA methylation, histones can be also 

post-translationally modified to regulate the conformation of the chromatin. Some 

histone marks are associated to gene expression, such as acetylation of lysine 9 of 

histone 3 (H3K9ac). Other modifications are associated to transcriptional repression, 

such as dimethylation of lysine 9 of histone 3 (H3K9me2) or trimethylation of lysine 27 

of histone 3 (H3K27me3). 

 

Some players in chromatin remodelling mechanisms have been postulated to have an 

important role in MPNST pathogenesis. This is the case of SUZ12 gene. SUZ12 is 

located at 17q11.2 region, closely to NF1, and it has been found to be the gene 

responsible for the elevated risk for MPNST development in NF1 microdeletion 

patients (De Raedt et al., 2003; De Raedt et al., 2014) and to act as a TSG 

cooperating with NF1 and CDKN2A in the development of MPNSTs (De Raedt et al., 

2014; Lee et al., 2014; Zhang et al., 2014). SUZ12 is a component of the Polycomb 

Repressor Complex 2 (PRC2), a group of proteins with histone methyltransferase 

activity that trimethylate lysine 27 of histone H3 (H3K27me3), thus marking chromatin 

to be transcriptionally silent. Mutations in other PRC2 components, such as EED gene, 

have also been associated to MPNST development (De Raedt et al., 2014; Lee et al., 

2014). Another member of PRC2, EZH2, have recently found to act, in this case, as an 

oncogene in MPNST tumourigenesis (Zhang et al., 2014; Zhang et al., 2015). 
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Another group of chromatin remodelers, the histone deacetylases (HDACs), which are 

enzymes that remove the acetyl group from acetylated lysines from histones, have also 

proposed to have a role in MPNST pathogenesis (Lopez et al., 2011), especially the 

HDAC8 member (Lopez et al., 2015). 

 

Regarding the association of DNA methylation with MPNST pathogenesis, the most 

robust finding is the inactivation of PTEN by promoter methylation found in some 

MPNSTs (Bradtmoller et al., 2012). In addition, only one study has been published so 

far comparing the methylomes of MPNSTs and neurofibromas, in which no significant 

global hypomethylation was observed in MPNSTs, in contrast to what has been 

reported for other tumours, although hypomethylation was significant in satellite 

repeats (Feber et al., 2011). Recently, the overexpression of TAGLN gene, which 

encodes the actin-associated protein transgelin, has been associated to 

hypomethylation in its promoter region in NF1-associated MPNSTs (Park et al., 2014). 

In another study, hypermethylation of the gene promoter of RASSF1A, a TSG involved 

in cancer development, has been found in 60% of MPNSTs analyzed and has also 

been associated to a poor prognosis (Danielsen et al., 2015). 

 

6.3.  Sporadic MPNST 

 
Half of MPNSTs within the general population occur sporadically and are not 

associated to NF1 patients (Ducatman et al., 1986). Although sporadic MPNSTs are 

histologically indistinguishable from those NF1-associated, they present some different 

clinical features. Sporadic MPNSTs are less aggressive than NF1-associated ones, 

being their 5-year survival rate of 42%, compared to 21% in NF1 patients (Evans et al., 

2002). Possible explanations of this difference in prognosis are that NF1-associated 

MPNSTs have a greater propensity to metastasize than sporadic ones, as well as they 

are more difficult to detect in NF1 patients due to their tumour burden and that most of 

these NF1-associated MPNSTs arise in preexisting pNFs (Ducatman et al., 1986). 

Moreover, sporadic MPNSTs appear later in a lifetime of an individual: the mean age of 

diagnosis is of 62 years old, compared to 26 in NF1 patients (Evans et al., 2002). 
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Sporadic MPNSTs have also been found to bear somatic mutations in the NF1 gene, 

indicating that these somatic events share common characteristics with the NF1-

associated ones (Bottillo et al., 2009; Zhang et al., 2014; Lee et al., 2014). Regarding 

SCNAs in sporadic MPNSTs, the most recurrent gains and losses are similar to those 

from NF1-associated MPNST (reviewed in Yang and Du, 2013). Mutations in the TSGs 

CDKN2A (Lee et al., 2014), TP53 (Birindelli et al., 2001; Holtkamp et al., 2007; Lee et 

al., 2014; Verdijk et al., 2010) and SUZ12 (Lee et al., 2014; Zhang et al., 2014) have 

also been found in sporadic MPNSTs. Genomic amplifications encompassing EGFR, 

PDGFR, MET, IGF1R and other oncogenes are also present in sporadic MPNSTs 

(reviewed in Yang and Du, 2013).  

 

The conditional GEM knockout model with a total loss of PTEN expression and the 

overexpression of EGFR, Pten fl/fl; Dhh-Cre; Cnp-EGFR, is able to generate MPNSTs 

sporadically (Keng et al., 2012b). This suggests a potential important role of these two 

genes in sporadic MPNSTs. 

 

6.4.  Therapeutical approaches for MPNSTs 

 
Due to its invasive growth, propensity to metastasize, and limited sensitivity to 

chemotherapy and radiation, MPNSTs from NF1 patients have a poor prognosis 

(Brems et al., 2009). Up to now, only surgical resection is the basis of MPNST clinical 

management. 

 

Some clinical trials with single agents have been performed so far with no conclusive 

results after phase II. These include a study targeting EGFR with erlotinib (Albritton et 

al., 2006); a trial using sorafenib that inhibits the RTKs VEGFR2, C-KIT and PDGFR 

and the RAS effectors C-RAF and B-RAF (Maki et al., 2009) and another clinical trials 

also targeting C-KIT with imatinib (Chugh et al., 2009). There are now some ongoing 

clinical trials for the treatment of MPNSTs, which have completed phase I and include 

several combined therapies with two or three chemical inhibitors. Among them, there 

are one trial co-targeting hedgehog signalling and gamma-secretase, two trials 

combining the inhibition of RTKs with chemotherapy and a fourth trial using mTOR 

inhibitors together with the inhibition of the heat shock protein HSP90 (www.ctf.org).  
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In an effort to in vitro study different biological characteristics and potential drugs for 

MPNST treatment, several cell lines have been derived from human tumours. These 

lines, although they can be heterogeneous in some of their biological features, they 

recapitulate most of the genomic and transcriptomic profiles of the primary MPNSTs 

from they have been established, especially at early passages, and they have been 

claimed as a primary tool for the identification of genes and molecular pathways 

involved in MPNST pathogenesis and potential therapeutic targets (Miller et al., 2006). 

Some of the currently available NF1-associated MPNST-derived cell lines are S462 

(Frahm et al., 2004), T265 (Badache and De Vries, 1998), ST88-14 (Fletcher et al., 

1991), sNF96.2 (Perrin et al., 2007), 90-8 (Glover et al., 1991), and NMS-2 (Imaizumi 

et al., 1998). Some other cell lines have also been derived from sporadic MPNSTs, 

such as STS26T (Dahlberg et al., 1993), HS-Sch-2 (Sonobe et al., 2000) and HS-PSS. 

Many in vitro treatments with different agents have been performed so far using these 

MPNST cell lines. 

 

A step forward in the identification of potential therapeutic targets is the use of in vivo 

pre-clinical models. New potential therapeutic targets have been recently identified with 

either GEM modelling MPNST development or MPNST xenograft mice (especially from 

MPNST cell lines), which are summarized in Table 1. 

 

The use of a combined treatment inhibiting two (or more) molecular targets is stressed 

in these approaches. Our group has recently developed the first orthoxenograft mouse 

model from primary MPNSTs, where sorafenib, in combination with doxorubicin or 

rapamycin, was found to reduce tumour growth (Castellsague et al., 2015). These 

assays, either in transgenic or xenograft mice, generate a source of potential 

treatments to be tested in further clinical trials. This is the case for mTOR and Hsp90 

combined treatment (De Raedt et al., 2011), which is now being tested in a clinical trial, 

as mentioned above. Most of these treatments combine the inhibition of the activated 

RAS signalling due to NF1 loss of function (either MAPK or mTOR signalling) with the 

inhibition of another target involved in other cellular processes. 
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Mouse model Target (inhibitor) Reference 
mTOR (rapamycin) Johannessen et al., 2008 

mTOR (rapamycin) + Hsp90 (IPI-504) De Raedt et al., 2011 

CXCR4 (AMD3100) Mo et al., 2013 

mTOR (everolimus) + Mek (PD03259010) Watson et al., 2014 

Mek (PD03259010) + Brd4 (JQ1) De Raedt et al., 2014 

Genetically 
engineered 

mice 

Brd4 (JQ1) Patel et al., 2014 

HDACs (PCI-24781, SAHA, MS-275) Lopez et al., 2011 

MET/VEGFR2 (XL184) Torres et al., 2011 

BIRC5 (YM155) Ghadimi et al., 2012b 

AURKA (MLN8237) Patel et al., 2012 

PI3K/mTOR (XL765) Ghadimi et al., 2012a 

MEK (PD03259010) Jessen et al., 2013 

RTK (imatinib) Ohishi et al., 2013 

RTK (imatinib) + RTK/KIT (PLX3397) Patwardhan et al., 2014 

JAK2/STAT3 (FLLL32) Wu et al., 2014 

mTOR (everolimus) + proteasome (bortezomib) + RT* Yamashita et al., 2014 

HDAC8 (PCI-34051, PCI-48012) Lopez et al., 2015 

MPNST 
cell lines 

Subcutaneous 
xenografts 

EZH2 (3-deazaneplanocin A) Zhang et al., 2015 

mTOR (rapamycin) Bhola et al., 2010 Subcutaneous 
xenografts CDK4/6 (palbociclib) Perez et al., 2015 

AURKA (MLN8237) Mohan et al., 2013 

Primary 
MPNSTs 

Orthoxenografts RTK (sorafenib) + mTOR (rapamycin)+ Castellsague et al., 2015 

 
Table 1. Recent pre-clinical in vivo treatments for NF1-associated MPNSTs. Molecular targets and 
chemical inhibitors used for the treatment of MPNSTs in pre-clinical mouse models including 
genetically engineered mice and xenograft mice. *RT, radiotherapy; +, combination of sorafenib 
plus doxorubicin was also studied. 
 

7.   Role of kinesins in cell division and cancer 

 
Kinesins are proteins that act as molecular motors travelling unidirectionally along 

microtubules in a cell. The kinesin superfamily has more than 650 members (Miki et 

al., 2005) and in humans 45 kinesin genes have been identified, with some members 

being involved in disease (Hirokawa et al., 2010). Kinesins have been classified into 14 

subfamilies, from kinesin-1 to kinesin-14, according to phylogenetic analysis of the 

motor domain (Lawrence et al., 2004). They have two main roles in cell physiology: 

intracellular vesicle and organelle transport (Hirokawa et al., 2009) and cell division 

(Wordeman, 2010).  
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Table 2. Function of human kinesins in cell division and expression in cancer. Name of mitotic 
kinesins (and other aliases for some of them). The main function in cell division and their expression reported 
in some cancers is shown. Modified from Rath and Kozielski, 2012. * KIF4B has same functions than KIF4A. 
 

At present, 16 kinesins have been involved in participating at different stages of mitosis 

and cytokinesis (Table 2, reviewed in Rath and Kozielski, 2012). Among their several 

functions are the bipolar spindle formation and maintenance in prophase, driven by 

kinesins KIF11 (also known as EG5), KIF2A, KIFC1 (aka HSET) and KIF15; the 

chromosome congression and alignment in metaphase, conducted by kinesins KIF10 

(aka CENPE), KIF14, KIF18A and KIF18B and KIF22 (aka KID); or the cytokinesis, 

driven by KIF14, KIF23 (aka MKLP1), KIF20A (aka MKLP2), KIF20B (aka MPP1) and 

Name Other 
name Functions in cell division Expression status in cancer 

KIF2A  
Microtubule minus end-

depolymerizing motor required for 
bipolar spindle formation 

Overexpression promotes the 
development of squamous cell carcinoma 

of the tongue 

KIF2B  
Involved in kinetochore–microtubule 

dynamics to promote mitotic 
progression 

 

KIF2C MCAK 
Microtubule depolymerizing motor 

required for chromosome 
congression and alignment 

Prognostic marker in colon cancer. 
Overexpressed in gastric cancer and 

during breast tumourigenesis 

KIF4A*  
Participates in chromosome 

condensation, anaphase spindle 
formation and cytokinesis 

Amplified and overexpressed in cervical 
cancer. Prognostic marker for lung cancer 

KIF10 CENPE 
Participates in microtubule–

kinetochore capture and mitotic 
checkpoint signalling 

Downregulated in hepatocellular 
carcinoma. Overexpressed in certain types 

of breast cancer 

KIF11 EG5 
Required for the separation of 
duplicated centrosomes during 

spindle formation 

Highly expressed in blast crisis chronic 
myelogenous leukaemia. Overexpressed 

in pancreatic cancer 

KIF14  
Required for chromosome 

congression and alignment and 
cytokinesis 

Predictor of grade and outcome in breast 
cancer and ovarian cancer. Prognostic 

marker in lung cancer 

KIF15  Required for maintenance of spindle 
bipolarity Breast cancer tumour antigen 

KIF18A  Involved in chromosome 
congression 

Overexpressed in colorectal cancer. 
Associated with tumour grade and poor 

survival in breast cancer 

KIF18B  Involved in the regulation of 
microtubule dynamics  

KIF20A MKLP2 Essential for cytokinesis Overexpressed in pancreatic cancer 

KIF20B MPP1 Probably required for completion of 
cytokinesis Overexpressed in bladder cancer 

KIF22 KID 
Generates polar injection forces 

essential for chromosome 
congression and alignment 

 

KIF23 MKLP1 Essential for cytokinesis Overexpressed in glioma 

KIFC1 HSET Essential for bipolar spindle 
assembly and proper cytokinesis 

Highly predictive of brain metastasis of 
lung cancer. Overexpression leads to 

docetaxel resistance in breast cancer cells 
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KIFC1. Some members have multiples roles during cell division, such as KIFC1, 

KIF14; or the members KIF4A and KIF4B, which have been both involved in regulating 

chromosome structure and dynamics in metaphase, anaphase and cytokinesis. 

Moreover, some kinesins have dual functions, in both cell division and intracellular 

trafficking during neuronal development, like KIF2A, KIF4A or KIF4B. 

 

Over the past years, some of the kinesins involved in cell division have been found 

deregulated in several cancers, such as breast, hepatic, pancreatic, bladder and 

colorectal cancer and some leukaemias (summarized in Table 2). Hence kinesins have 

emerged as potential targets for the development of antitumoural drugs. There are 

currently several ongoing and completed clinical trials with different compounds 

inhibiting the kinesin KIF11, one compound inhibiting KIF10 and one peptide as a 

KIF20B inhibitor (Rath and Kozielski, 2012; clinicaltrials.gov). 

 

8.   Searching driver genes of tumourigenesis by using regional genomic 

information  

 
Several studies from the past few years have revealed that some regions of the human 

genome, ranging from kilobases to megabases, can be variable in terms of their copy 

number across individuals. These copy number variations (CNVs) represent inter-

individual differences in gene number and expression at the constitutional level that 

can have an impact on the phenotypic variation, including disease predisposition. In 

contrast, SCNAs, present in somatic tissues, are different from constitutional CNVs 

and they do not represent a natural constitutional variation on copy number, but 

aberrant alterations in the number of copies of specific genomic regions, which are 

found enriched in the genomes from tumours. SCNAs are frequent in many cancers 

and the identification of these genomic regions that undergo alterations in specific 

cancers represents a powerful way to discover genes contributing to tumour 

development and maintenance (Beroukhim et al., 2010).  

 

The influence of SCNAs in the expression of the genes they contained has been 

studied in several solid tumours. About 40-60% of highly amplified genes in breast 

cancer samples have shown to be also overexpressed (Hyman et al., 2002; Pollack et 
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al., 2002) or have been associated to gene-expression subtypes (Bergamaschi et al., 

2006). Specific SCNAs have been significantly associated to direct copy number-

driving changes in gene expression in glioblastoma multiforme (Lee et al., 2008b; de 

Tayrac et al., 2009), laryngeal squamous cell carcinoma (Jarvinen et al., 2006) and 

bladder (Lee et al., 2008b), prostate (Phillips et al., 2001; Chaudhary and Schmidt, 

2006; Rose et al., 2010) and colon cancer (Loo et al., 2013). In an elegant study, 

homozygous and heterozygous deletions in the NF1 gene were correlated to 

neurofibromin expression levels in a set of soft-tissue sarcomas other than MPNSTs 

(Barretina et al., 2010). SCNAs in some chromosomes from multiple myeloma have 

also been correlated to gene expression levels (Samur et al., 2013). Moreover, the 

impact of SCNAs on the proteome of breast cancer cell lines has been also studied 

(Geiger et al., 2010). 

 

In addition, it is well known that epigenetics also influences gene expression. As a 

general rule, specific hypermethylation of promoter CpG islands are associated to 

gene silencing at single level. Nevertheless, inactivation of the gene expression of a 

large genomic region can also be caused by epigenomic mechanisms. This is the case 

of long-range epigenetic silencing (LRES), a phenomenon by which DNA 

hypermethylation and chromatin remodeling suppress the expression of genes placed 

contiguous in specific gross genomic locations, which was defined and first identified in 

colorectal cancer (Frigola et al., 2006). LRES has also been detected in prostate 

(Coolen et al., 2010), bladder (Stransky et al., 2006), breast (Novak et al., 2008; Hsu et 

al., 2010), gastric (Park et al., 2011; Kang et al., 2015), and in a subtype of renal 

(Dallosso et al., 2009) cancer. Thus, in some tumours, loss of gene expression would 

occur through LRES with similar implications as a genomic deletion. In a similar 

manner, a mechanism called long-range epigenetic activation (LREA), characterized 

by the gain of active chromatin histone marks and loss of repressive marks within 

genomic regions encompassing some oncogenes, have been recently identified in 

prostate cancer (Bert et al., 2013).  

 

In order to obtain a better insight in cancer biology it is important to separate genetic 

alterations that really contribute to tumourigenesis (driver mutations) from those that 

have no effect in the generation of the tumour (passenger mutations; Stratton et al., 

2009). One way of discriminating these two types of mutations is studying genes at a 
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single level by assessing their point mutational status, their promoter methylation 

status or their individual expression levels. On the other hand, SCNAs are frequent in 

some types of tumours. Studying how the expression of the genes located at specific 

genomic regions that are altered by copy number changes (or epigenomic 

phenomena) is really influenced by these mechanisms can represent another way for 

discriminating those mutations that are driver from those that are passenger. 

Moreover, both strategies can be considered, and the regional information can be used 

together with information on both the mutational and promoter methylation status at the 

single gene level, in a more exhaustive approach. 

 

This thesis is contained in a larger project whose aim is the integration of genome-wide 

expression data, data coming from genome structural analysis, epigenetic data from 

DNA methylation, and a collection of point mutations from whole-exome sequencing 

from MPNST samples, in order to find mutated genes that are drivers of MPNST 

pathogenesis. In this thesis, data coming from regional information, especially at the 

transcriptomic level, has been used to find genes involved in the pathogenesis of NF1-

associated MPNSTs. 
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Malignant peripheral nerve sheath tumours (MPNSTs) mainly arise from pre-existing 

benign plexiform neurofibromas (pNFs). While pNFs do not show gross genomic 

alterations, MPNSTs present a hyperploid genome with multiple and recurrent somatic 

copy number alterations (SCNAs). We hypothesized that these SCNAs would have an 

impact on gene expression in a regional manner, which can be informative when 

studying MPNST pathogenesis. This regional transcriptomic information could be 

employed for finding genes involved in the pathogenesis of MPNSTs from 

neurofibromatosis type 1 (NF1) patients, including some potential therapeutic targets. 

 

The main objective of this thesis project was to characterize the MPNST genome and 

further identify genes and molecular mechanisms involved in the pathogenesis of 

MPNSTs arising in the context of NF1. 

 

To achieve this, three specific aims were proposed: 

 

1) To develop two qPCR assays for the detection of genomic deletions in NF1 locus, 

both at constitutional and somatic levels, and for the detection of SCNAs in MPNSTs. 

 

2) To molecularly analyze NF1-associated MPNSTs at the genomic, transcriptomic and 

epigenomic level, and to use the information generated at the level of genomic region 

for the identification and further in vitro functional characterization of novel genes 

involved in MPNST pathogenesis 

 

3) To in vitro study the functional role of mitotic kinesins in MPNSTs and their use as 

potential therapeutic targets 
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1.   Human samples 

 
All samples used in this thesis are human samples. They include different primary 

tissues (especially tumours), primary cell cultures, human cell lines and nucleic acid 

samples from these tissues and cells. 

 

1.1.  Primary tumours 

 
Human tumours were used in this thesis for their further molecular characterization 

(see section 2), including dermal neurofibromas (dNFs), plexiform neurofibromas 

(pNFs) and malignant peripheral nerve sheath tumours (MPNSTs). Most of these 

samples were from neurofibromatosis type 1 (NF1) patients, which were diagnosed 

according to the NF1 standard diagnostic criteria (NIH, 1988). All patients gave written 

informed consent for the molecular studies performed. 

 

dNFs were completely removed after minor surgery, which was carried out by either a 

dermatologist or a surgeon, and transported in a recipient containing Dulbecco’s 

Modified Eagle’s Medium (DMEM) medium. Surrounding skin tissue was carefully 

removed from dNFs and in some cases was further used for either DNA extraction or 

fibroblast isolation. Tumoural tissue was then chopped into small pieces. Some of them 

were directly frozen and preserved at -80ºC for further DNA extraction. Some other 

pieces were cryopreserved in freezing medium [90% fetal bovine serum (FBS), 10% 

dimethyl sulfoxide (DMSO)] in liquid nitrogen until they were used for SC or fibroblast 

isolation. 

 

pNFs were removed after surgery performed by a surgeon, and transported in a 

recipient containing DMEM medium. Surrounding skin tissue was taken out and the 

tumoural tissue was divided in several areas, depending on the size of the tumour. 

Each of these pNF areas was then chopped into 1-2 mm3 pieces. All pieces from a 

same area were split for preservation at -80ºC for further nucleic acid extraction, 

cryopreserved in freezing medium in liquid nitrogen for Schwann cell (SC) or fibroblast 

isolation, or fixed with 4% formaldehyde and embedded in paraffin for further 

histological analysis. 
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Primary MPNSTs were obtained from our collaborators at Hospital Universitari de 

Bellvitge and Cincinnati Children's Hospital Medical Center. MPNSTs were sent frozen 

and once arrived in the lab they were preserved at -80ºC for further DNA extraction. In 

some cases, DNA from MPNSTs was directly obtained from our collaborators at 

University of Florida and Hospital Universitari de Bellvitge. 

 

Moreover, in some cases, blood samples from NF1 patients were also used for DNA 

extraction. 

 

1.2.  Primary cultures: SCs and fibroblasts 

 
SCs were isolated from dNFs and pNFs and cultured as previously described (Serra et 

al., 2000). In short, neurofibromas were mechanically dissociated and incubated with 

160 U/mL collagenase Type 1 (cat.no. LS004196, Worthington) and 0.8 U/mL dispase 

(cat.no. LS02104, Worthington) in DMEM for 16-18 hours. The obtained cell 

suspension was plated on 6-well plates, previously coated with 0.1 mg/mL poly-L-

lysine (cat.no. P1524, Sigma) and 4 µg/mL of laminin (cat.no. 23017-015, Life 

technologies), and cultured with Schwann cell medium (SCM) in a cell incubator at 

37ºC and 10% CO2. SCM is composed of High Glucose DMEM with sodium pyruvate 

(cat.no. L0106-500, Biowest) supplemented with 10% FBS (cat.no. S181B-500, 

Biowest), 2mM L-Glutamine (cat.no. 25030-024, Life technologies), 0.5mM IBMX 

(cat.no. I7018, Sigma), 2.5 µg/mL insulin (cat.no. I4011, Sigma) and 10 nM heregulin 

(cat.no. 396-HB, R&D Systems). For the specific culture of SCNF1–/–, SCM was 

replaced twice a week and cultured for 24 hours with SCM containing 0.5 µM forskolin 

(cat.no. F6886, Sigma). Confluent cultures were passaged using trypsin-EDTA (cat.no. 

15400-054, Life technologies). 

 

The purity of SC component within the culture was assessed by immunofluorescence 

of S100 protein, which is a cytoplasmic protein expressed in SCs (Brockes et al., 

1979). Briefly, cells grown on a 24-well plate were fixed with 4% p-formaldehyde, 

phosphate buffered saline (PBS)-washed, permeabilized with 0.1% Triton-PBS, 

blocked with 10% FBS-PBS and incubated with 1:1000 the polyclonal rabbit anti-cow 

S100 antibody (cat.no. Z031129, Dako) in 1% FBS-PBS for 1 hour. After this, they 
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were washed again with 1% FBS-PBS, incubated with 1:2000 anti-rabbit IgG-

AlexaFluor 568 antibody (cat.no. A11011, Life technologies) in 10% FBS-PBS for 30 

minutes, and finally 1% FBS-PBS-washed and mounted with Vectashield with DAPI 

(cat.no. H-1200, Vector Laboratories). The multi-well cell plate was then visualized in a 

fluorescence-inverted microscope (Leica DMI 6000B).  

 

In addition to SC culture, in some cases, primary cultures of fibroblasts derived from 

dNFs or from skin were also performed. After mechanical and enzymatic dissociation 

of the tissue, the obtained cell suspension was plated on 6-well plates and cultured 

under standard conditions (37ºC, 5% CO2) with High Glucose DMEM with sodium 

pyruvate (cat.no. L0106-500, Biowest) supplemented with 10% FBS (cat.no. S181B-

500, Biowest) and 2mM L-Glutamine (cat.no. 25030-024, Life technologies), referred 

as “supplemented DMEM” from now on. Moreover, the commercial human foreskin 

fibroblast CCD-1112Sk cell line (cat.no. CRL-2429™, ATCC®), used for the in vitro 

drug treatments, was also cultured under standard conditions with supplemented 

DMEM. 

 

1.3.  MPNST cell lines 

 
Several MPNST cell lines were used in this thesis for different purposes. These cell 

lines included S462 (Frahm et al., 2004), T265 (Badache and De Vries, 1998) and 

S462-TY (a derivative created by passage of S462 as xenografts; all provided by Dr 

Nancy Ratner, Cincinnati Children’s Hospital Medical Centre, Cincinnati, USA), ST88-

14 (Fletcher et al., 1991) and sNF96.2 (Perrin et al., 2007; provided by Dr Thomas De 

Raedt, Brigham and Women’s Hospital, Boston, USA), NMS-2 (Imaizumi et al., 1998; 

obtained from RIKEN cell bank), and 90-8 (Glover et al., 1991), and the sporadic line 

STS-26T (Dahlberg et al., 1993; provided by Dr Eric Legius, Catholic University 

Leuven, Leuven, Belgium). MPNST cells were maintained in supplemented DMEM. 

They were cultured under standard conditions and passaged using trypsin-EDTA 

(cat.no. 15400-054, Life technologies). 

 

Among these cell lines, a G-banding staining of S462, T265 and the sporadic STS-26T 

was performed (Figure 4). These cell lines showed to be quite heterogeneous 
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regarding the number of chromosomes per cell and their genome was highly 

hyperploid (being nearly triploid or tetraploid). 

 

 

 

 

 

 

 
 
Figure 4. Karyotype of the MPNST cell lines S462, T265 and STS26T. Several metaphases were 
analyzed and the mean number of chromosomes per cell for each cell line was calculated and was of 78 for 
S462, 56 for T265 and 83 for STS26T. 
 

Moreover, DNA fingerprinting of short tandem repeats (STRs) was conducted for 

MPNST cell lines using the AmpFlSTR Identifiler Plus Amplification kit (cat.no. 

4427368, Life technologies). Table A.1 in Annexe 1 contains information regarding the 

microsatellite profile of these lines, which includes the 8 STRs used by the ATCC®.  

 

1.4.  Nucleic acid extraction 

 
Total DNA was extracted using different methodologies depending on the sample. 

DNA from tissues (dNFs, pNFs, MPNSTs and skin) and MPNST cell lines was 

extracted with the Gentra Puregene Kit (cat.no. 158667, Qiagen). The QIAamp DNA 

Mini Kit (cat.no. 51304, Qiagen) was used to extract DNA from primary cell cultures 

(SCs and fibroblasts). For blood samples different methodologies were used: the 

Wizard Genomic DNA Purification Kit (cat.no. A1120, Promega), and the FlexiGene 

DNA Kit (cat.no. 51206, Qiagen). All extractions were performed according to the 

manufacturer’s instructions. A NanoDrop® ND-1000 spectrophotometer (Thermo 

Scientific) was used to quantify DNA and to measure purity and quality. DNA integrity 

was assessed by gel electrophoresis. All DNA samples included in this thesis 

presented high purity and integrity. For the array [single nucleotide polimorphism 

(SNP) or methylation] experiments a fluorescence-based quantification of DNA was 

performed either by using the Quant-iT™ PicoGreen® dsDNA Assay (cat. no. P7589, 

Life technologies) or a Qubit fluorometer (Life technologies). 
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RNA was extracted from MPNST cell lines using Tripure Isolation Reagent (cat.no. 

11667165001, Roche) and according to the manufacturer’s instructions. In a 

summarized protocol, 500 µL of Tripure reagent were added to a well of 12-well plate 

containing adherent cells and the cell lysate was transferred to a tube; 100 µL of 

chloroform were added, mixed thoroughly and centrifuged. After centrifugation three 

phases were generated and upper aqueous phase was transferred to a new tube; 250 

µL of isopropanol were then added, mixed and the tube was centrifuged to precipitate 

RNA. Precipitated RNA formed a pellet that was washed twice with 500 µL of 75% 

ethanol. Finally, RNA pellet was let to air dry, resuspended in RNAse-free water and 

incubated at 60ºC for 10 minutes. All RNA samples were stored at -80ºC. A 

NanoDrop® ND-1000 spectrophotometer (Thermo Scientific) was used to quantify 

RNA and to measure purity and quality. 

 

2.   Molecular characterization of tumours and cell lines 

 
A set of samples comprising NF1-associated tumours and cell lines were molecularly 

characterized at genomic and epigenomic levels in this thesis. This characterization 

included different techniques, such as qPCR, SNP array and methylation array (see 

Table 3 and Figure A.1 in Annexe 1). Moreover, expression data previously generated 

by the NF1 Microarray Consortium from an independent set of samples (Miller et al., 

2009) was also used for a transcriptomic characterization of tumours and cell lines, 

which included the generation of transcriptional imbalances (TIs). 

 

2.1.  qPCR 

 
In the qPCR assay for detecting deletions in the NF1 region (NF1-qPCR), a total of 59 

samples were included: 14 venous blood samples previously tested by fluorescence in 

situ hybridization (FISH) and microsatellite markers and found to carry a constitutional 

deletion of NF1 in each case (Lopez Correa et al., 1999; Steinmann et al., 2007); 16 

samples from dNFs; and 5 samples from selective SC cultures derived from dNFs, 

previously analyzed by multiplex ligation-dependent probe amplification (MLPA), 

paralog ratio analysis, and SNP array and found to bear a somatic NF1 deletion 

(SCNF1–/–) in each case (Garcia-Linares et al., 2011  and data not shown). In addition, a 
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Set Sample Type MPNST-

qPCR SNP array methylation 
array 

MPNST-1 NF1-associated X X  
MPNST-2 NF1-associated  X X 
MPNST_A NF1-associated X X X 
MPNST_B NF1-associated X X  
MPNST_C NF1-associated X X  
MPNST_D NF1-associated X X  
MPNST_G NF1-associated X X X 
MPNST_K NF1-associated X X  
MPNST_P NF1-associated   X 

M-23 sporadic X   
M-24 sporadic X   
M-25 sporadic X   
M-26 sporadic X   

MPNSTs 

M-27 sporadic X   
pNF-1 plexiform  X  
pNF-2 plexiform  X  
pNF-3 plexiform  X  
pNF-4 plexiform  X  
pNF-5 plexiform  X X 
pNF-6 plexiform  X X 
pNF-7 plexiform  X X 
pNF-8 plexiform  X  
M-17 plexiform X   
M-10 dermal X   
M-38 dermal X   
M-39 dermal X   
M-40 dermal X   
M-46 dermal X   
M-48 dermal X   

Neuro-
fibromas 

M-49 dermal X   
M-18 MPNST-surrounding tissue X   
M-28 MPNST-surrounding tissue X   
M-29 MPNST-surrounding tissue X   
M-30 MPNST-surrounding tissue X   
M-31 MPNST-surrounding tissue X   
M-32 MPNST-surrounding tissue X   
NF-50 dNF-surrounding skin X   
NF-52 dNF-surrounding skin X   
NF-54 dNF-surrounding skin X   

Control 
samples 

NF-55 dNF-derived fibroblasts X   
S462 NF1-associated X X X 
T265 NF1-associated X X X 

ST-8814 NF1-associated X X X 
90-8 NF1-associated  X X 

sNF96.2 NF1-associated  X  
S462-TY NF1-associated X X  
NMS-2 NF1-associated  X  

MPNST 
cell lines 

STS26T sporadic X   
pNF5_SC pNF-derived culture  X X 
pNF6_SC pNF-derived culture  X X 

Schwann 
cell 

cultures pNF7_SC pNF-derived culture  X X 

 
Table 3. Tissue and cell samples used for the molecular characterization. Samples used for the 
molecular characterization including the MPNST-qPCR assay, the SNP array and the methylation array. 
Samples are comprised of tumours (14 MPNSTs, 9 pNFs and 7 dNFs), control tissues (9 tumour-surrounding 
normal tissue), 8 MPNST cell lines and primary cell cultures (3 from SCs and 1 from fibroblasts). Most of the 
samples for the NF1-qPCR are not included in this table. The NF1-qPCR sample set comprised 19 blood 
samples, 26 dNFs, 7 SC cultures, 4 skin samples and 3 fibroblast cultures. Samples NF-50, NF-52, NF-54 
and NF-55 are shared by the NF1-qPCR and the MPNST-qPCR assays. 
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set of 24 control samples, each of which presenting 2 copies of the NF1 gene was also 

used. These controls included 10 dNF samples, 5 blood samples, 4 skin samples, 3 

fibroblast samples, and 2 SCNF1+/– samples. 

 

In the qPCR assay for detecting somatic copy number alterations (SCNAs) in MPNSTs 

(MPNST-qPCR), a total of 35 samples were included: 7 NF1-associated MPNSTs, 5 

sporadic MPNSTs, 5 MPNST cell lines (S462, T265, ST88-14, S462-TY and the 

sporadic STS-26T) and 8 neurofibromas (including 7 dNFs and 1 pNF). In addition, a 

set of 10 control samples comprising 6 MPNST-surrounding non-tumoural tissues, 3 

dNF-surrounding skins and 1 dNF-derived fibroblast culture, was also used (Table 3). 

 
DNA was extracted from all tumour and cell line samples as explained in section 1.4., 

except for 5 of the 7 NF1-associated MPNSTs, whose DNA was directly obtained from 

our collaborators. Primers and probes for the qPCR assay were developed with Roche 

Universal ProbeLibrary (UPL) technology. UPLs are hydrolysis probes of 8- to 9-

nucleotide locked nucleic acid that are labeled at the 5’ end with the fluorescent dye 6-

carboxyfluorescein and at the 3’ end with a quencher dye. The combination of the 

hydrolysis probe and the primer pair provided the specificity required for each 

particular genomic locus of interest. The design of each of the primers (desalted and 

purified; Sigma Life Science) was subjected to an in silico PCR and BLAST-like 

alignment tool (BLAT) search analysis to evaluate their specificity, which was later 

assessed experimentally by PCR and agarose gel electrophoresis before qPCR 

experiments were conducted. The sequences of the primers and probes used in both 

NF1-qPCR and MPNST-qPCR assays are listed in Table 4 and Table 5, respectively.  

 

qPCR experiments were performed in a Light-Cycler® 480 Real-Time PCR System 

with white Multiwell Plate 384 plates (Roche Diagnostics). Conditions for amplification 

were as follows: 95 °C for 10 min; 45 cycles of 95°C for 10 s, 60°C for 30 s, and 72°C 

for 1 s; and 40°C for 30 s. The linear dynamic range (LDR) and efficiency (E) of the 

primers were evaluated (see Tables 4 and 5). Each reaction in all experiments included 

5 ng DNA template, 4 µL of 2X LightCycler 480 Probes Master Mix (cat.no. 

04707494001, Roche Diagnostics), 0.1 µmol/L UPL probe, and 0.75 µmol/L of each 

primer, in a total volume of 8 µL [except for reactions for the L1 and the L1PA loci — 
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long interspersed nuclear elements (LINEs) — which included 0.2 µmol/L UPL probe 

and 1.2 µmol/L of each primer]. PCRs for each primer set and sample were performed 

in triplicate. Each set of PCR assays included both negative controls without template 

and a dilution series of a particular template for calculating the E value of the primer 

pair in each run. In addition, a calibrator sample of known copy number was included in 

triplicate in every assay.  

  
Table 4. Primers and probes used for the NF1-qPCR assay. Primer and UPL probe sequences, 
amplicon sizes, efficiency (E) values of PCR reactions, and 99% confidence interval (CI) of the relative copy 
number (RCN) values indicating a normal diploid status for each interrogated locus by the NF1-qPCR assay. 
 

We designed a Microsoft Excel spreadsheet to analyze qPCR data for copy number 

calculations. We used formulas from the qBase relative quantification framework 

(Hellemans et al., 2007), which are based on the Pfaffl method (Pfaffl, 2001). In brief, 

we averaged the 3 quantification cycle (Cq) numbers obtained from each triplicate with 

the second-derivative maximum method in the Light-Cycler® 480 software [as long as 

the difference in Cq between the replicate with the highest value and the replicate with 

lowest value was <0.3 for all genes and <0.2 for the L1PA locus (D'Haene et al., 

Locus 
Chromo-

somal 
location 

Name Sequence (5' to 3') UPL 
probe 

Amplicon 
size (bp) E 

RCN 99%CI  
of 2 copies 
of the locus 

MAP2K4-L cccatgaagtctccattctca MAP2K4 17p12 
MAP2K4-R ccgaagtaatccactgctgac 

#4 
cttcctgc 76 2.05 0.82 - 1.21 

SSH2-L tgctttgttttgcttccttg SSH2 17q11.2 
SSH2-R gaatgtggccagggtgat 

#4 
cttcctgc 60 2.01 0.75 - 1.32 

TBC1D29-L agccttaaaggagaagagacagc TBC1D29 17q11.2 
TBC1D29-R ggggacattttccctttctt 

#20 
ctggctgg 73 2.11 0.79 - 1.26 

CRLF3-L agctgctgaagccagagaaa CRLF3 17q11.2 
CRLF3-R ctagcagacctgggcatctaa 

#20 
ctggctgg 86 1.95 0.84 - 1.19 

RNF135-L ggttgaagagaaaaccctgtca RNF135 17q11.2 
RNF135-R aggaaagaaaggcaagaagagtt 

#20 
ctggctgg 81 2.06 0.81 - 1.24 

NF1-5'-L cagagtcccctggtgagagt NF1-5' 17q11.2 
NF1-5'-R cctgaagaggcagttgagttg 

#38 
ggaagcag 60 1.99 0.85 - 1.18 

NF1-C-L actctgtgtctgctttctgctaac NF1-C 17q11.2 
NF1-C-R aagagacagtgtgatactacacctgaa 

#4 
cttcctgc 70 1.97 0.82 - 1.22 

NF1-3'-L ggccagggcaaaacttaaa NF1-3' 17q11.2 
NF1-3'-R tgtatggttccctagctccaa 

#4 
cttcctgc 112 1.88 0.85 - 1.18 

UTP6-L cgccttgttgcttaaactga UTP6 17q11.2 
UTP6-R acctacaatcccagcccttt 

#4 
cttcctgc 84 1.97 0.80 - 1.25 

SUZ12-L caagctccgtgaaatgcag SUZ12 17q11.2 
SUZ12-R ttcttcagttatttcttcgtttgc 

#38 
ggaagcag 76 1.97 0.83 - 1.20 

RHOT-L gcactggtctgtgtttcttcaa RHOT1 17q11.2 
RHOT-R ccacttctgagccaagagga 

#4 
cttcctgc 68 1.98 0.85 - 1.18 

PSMD11-L tgttactgttttgcttgaaattcct PSMD11 17q11.2 
PSMD11-R gtacacttctaaacttctcaggtcaca 

#4 
cttcctgc 94 1.95 0.74 - 1.34 

ADARB1-L ccacacaaggacaggagagtc ADARB1 21q22.3 
ADARB1-R cagccttggaattgaattgg 

#4 
cttcctgc 70 2.01 n/a 

L1PA-L aaaaagtcaggaaacaacaggtg L1PA interspersed 
L1PA-R tcccaccaacagtgtaaaagtg 

#55 
ggagagga 71 2.00 n/a 
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2010)]. We then calculated the ΔCq value for the difference between the unknown 

sample and the calibrator sample (ΔCq = Cqunknown – Cqcalibrator). The relative quantity 

(RQ) was later calculated as: RQ = E–ΔCq. We calculated the normalized relative 

quantity (NRQ) as: NRQ = RQ/NF, where NF is the normalization factor. The NF in turn 

is the geometric mean of the RQ values for the 2 selected reference loci (the ADARB1 

gene and the L1PA locus in the case of the NF1-qPCR; the L1 and L1PA loci in the 

case of the MPNST-PCR) for the particular sample. The value for the stability 

parameter, M (Vandesompele et al., 2002), for this particular NF was previously 

calculated for the entire set of samples in NF1-qPCR and was <0.2 (M=0.168; 

(D'Haene et al., 2010). In the MPNST-qPCR a previous study including three single 

copy genes (GLRX3, ACSS1 and ADARB1) and the repetitive elements L1 and L1PA 

was conducted and the best combination (M=0.187) was found for a NF considering L1 

and L1PA (see Results, section 1.2.1). 

 
Table 5. Primers and probes used for the MPNST-qPCR assay. Primer and UPL probe sequences, 
amplicon sizes, efficiency (E) values of PCR reactions, and 99% confidence interval (CI) of the relative copy 
number (RCN) values indicating a normal diploid status for each interrogated locus by the MPNST-qPCR 
assay. 
 

Locus 
Chromo-

somal 
location 

Name Sequence (5' to 3') UPL 
probe 

Amplicon 
size (bp) E 

RCN 99%CI  
of 2 copies 
of the locus 

AURKA-L ggacggttcttctggagctt AURKA 20q13.2 
AURKA-R gcgagacttcgtctcaaaaca 

#55 
ggagagga 111 2.10 0.76 - 1.32 

DTL-L attgagaaagagactgagaagtagtcc DTL 1q32.3 
DTL-R aggatggtataaagtttcagactgc 

#4 
cttcctgc 67 2.00 0.81 - 1.24 

CDCA7L-L atgtgacgtggggtgattc CDCA7L 7p15.3 
CDCA7L-R acatggcatctttcagtctacg 

#4 
cttcctgc 73 2.03 0.74 - 1.36 

EXT1-L gtaccacctccaaatagcgagt EXT1 8q24.11 
EXT1-R ctgcagcttcagggatgc 

#4 
cttcctgc 63 2.00 0.73 - 1.37 

EYA2-L tgctgtgtggactctgagtga EYA2 20q13.12 
EYA2-R cacctgttgacccaaactca 

#4 
cttcctgc 64 1.83 0.72 - 1.39 

TNNI3K-L agtggccacagtgtagcaga TNNI3K 1p31.1 
TNNI3K-R ctgcagcagactccagtgat 

#4 
cttcctgc 63 1.82 0.74 - 1.35 

ADD3-L aaacaaaactaggcaaaactcca ADD3 10q25.1 
ADD3-R tgggtgcctactgtttacca 

#4 
cttcctgc 88 1.86 0.76 - 1.32 

STX3-L gtgcaaaaagccttctgtgat STX3 11q12.1 
STX3-R tgcattttaagtttccaagagaaga 

#4 
cttcctgc 78 1.78 0.75 - 1.34 

OPCML-L gcccaaacaatcctactcca OPCML 11q25 
OPCML-R gggaaaccacagcacaattc 

#4 
cttcctgc 62 1.99 0.77 - 1.29 

GLRX3-L  caagtcataaagctcgacatgg GLRX3 10q26.3 
GLRX3-R  accatcatgggtgtcctaaca 

#4 
cttcctgc 60 1.93 n/a 

ACSS1-L  ccctctccaccttcctcac ACSS1 20p11.21 
ACSS1-R  aggacatcctgcaccatttt 

#4 
cttcctgc 60 2.03 n/a 

ADARB1-L  ccacacaaggacaggagagtc ADARB1 21q22.3 
ADARB1-R  cagccttggaattgaattgg 

#4 
cttcctgc 70 1.75 n/a 

LINE1-L gcgctaaacatggaaaggaa L1 interspersed 
LINE1-R tggtctttacaatttggcatgt 

#28 
ccagccgc 66 2.09 n/a 

L1PA-L aaaaagtcaggaaacaacaggtg L1PA interspersed 
L1PA-R tcccaccaacagtgtaaaagtg 

#55 
ggagagga 71 2.05 n/a 
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Finally, we calculated the relative copy number (RCN) as: RCN = NRQ/RF, where RF 

is a rescaling factor. The RF is the geometric mean of the NRQ values of a set of 24 

control samples bearing 2 NF1 copies in the case of the NF1-qPCR, or a set of 10 

control samples with no SCNAs in the case of the MPNST-qPCR. RCN values close to 

1 indicate the presence of 2 gene copies, RCN values close to 0.5 indicate a deletion, 

and RCN close to 1.5, 2 and 2.5 indicate 3, 4 and 5 copies of the gene, respectively. A 

99% CI for the RCN values indicating 2 gene copies was calculated for each 

interrogated locus (see Tables 4 and 5).  

 

2.2.  MLPA and microsatellite multiplex PCR analysis 

 
In parallel to the NF1-qPCR, we also used the MLPA technique to assess the NF1 

copy number status of both samples with NF1 constitutional and somatic deletions. We 

performed MLPA reactions in duplicate with the SALSA MLPA Kit P122-C1 NF1 Area 

(cat.no. P081/P082, MRC-Holland) and 40 ng DNA, in accordance with the 

manufacturer’s instructions. Once ligated and amplified, PCR fragments were 

separated by capillary electrophoresis (ABI 3130xl Genetic Analyzer; Applied 

Biosystems). Peak intensities were analyzed with Peak Scanner Software (Applied 

Biosystems) and normalized for peak heights, as described elsewhere (Garcia-Linares 

et al., 2011). For genomic regions with 2 copies in a sample, these calculations were 

expected to yield an RCN value of approximately 1.0. A value <0.8 was considered to 

indicate a deletion.  

 
We also used microsatellite multiplex PCR analysis (MMPA) as previously developed 

in our laboratory (Garcia-Linares et al., 2012) to assess the NF1 copy number status of 

tumour samples with NF1 somatic deletions and to calculate the percentage of cells 

within the tumours with 2 NF1 copies. This technique allows the simultaneous 

amplification of 16 microsatellite markers. MMPA reactions were performed in 

duplicate with the Multiplex PCR Kit (cat.no. 206143, Qiagen) and 50 ng DNA. 

Information regarding the amplification protocol, data analysis, and calculations is 

described elsewhere (Garcia-Linares et al., 2012).  
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2.3.  SNP array 

 
SNP array analysis was performed on 8 NF1-associated MPNSTs, 8 pNFs, 7 NF1-

associated MPNST cell lines (S462, T265, ST-8814, 90-8, sNF96.2, S462-TY and 

NMS-2) and 3 pNF-derived SC cultures (Table 3) using Beadchip technology from 

Illumina, but with different chips depending on availability at the time of the analysis. In 

particular, all MPNSTs were analyzed using Illumina Human660WQuad chip except 

one that was analyzed with Illumina HumanOmni-Express v1, all pNFs and pNF-

derived SC cultures were analyzed with Illumina HumanOmni1S, and MPNST cell lines 

were analyzed with either Illumina Human660WQuad chip or Illumina HumanOmni1S, 

depending on the sample. All array experiments were performed in an Illumina 

HIScanSQ machine in the Genomics Service from the IMPPC. Raw data was 

processed with Illumina Genome Studio v2009 with the Genotyping module v1.1.9 to 

extract B-allele frequency (BAF) and log R ratio (LRR) values for each SNP. SNP array 

data were analyzed using the R package ASCAT (Van Loo et al., 2012) to obtain loss 

of heterozygosity (LOH) and allele-specific copy number profiles from the BAF and 

LRR values. All samples were analyzed independently and treated as unpaired 

samples, using the germline genotype prediction functionality from ASCAT. In short, 

after loading BAF and LRR data, the germline genotype parameters were estimated 

and the data were segmented using the ASPCF algorithm. Next, ASCAT computed the 

most likely combination of copy number states, total ploidy and percentage of aberrant 

cells. Circular genomic plots were created using Circos (Krzywinski et al., 2009). 

 

2.4.  Methylation array 

 
The 450k Infinium methylation array from Illumina was used to check the DNA 

methylation status of 4 NF1-associated MPNSTs, 3 pNFs, the NF1-associated MPNST 

cell lines S462, T265, ST-8814 and sNF96.2 and 3 pNF-derived SC cultures (Table 3). 

 

First of all, DNA was submitted to bisulfite conversion with the EZ DNA Methylation™ 

Kit (cat.no. D5001, Zymo Research). This technique is based on the conversion of 

unmethylated cytosines into uracil. Methylated cytosines remain unchanged during 

bisulfite treatment, hence the DNA methylation profile can be later determined by PCR 

amplification and Sanger sequencing. 
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Bisulfite conversion of DNA was confirmed prior array experiments by Sanger 

sequencing the methylated Ag2c5 and unmethylated Ar3c7 Alu repeats in each sample 

(data not shown). Ag2c5 and Ar3c7 are Alu repetitive elements found to be methylated 

and unmethylated, respectively, in colorectal cancer samples (Rodriguez et al., 2008) 

and also in keratinocytes, fibroblasts and stem cells (Martín, 2013).  

 

Bisulfited-converted DNA was then hybridized in an Infinium HumanMethylation450 

BeadChip using an Illumina HIScanSQ machine to determine its methylation profile in 

the Genomics Service from the IMPPC. Data analysis was performed in R using the 

Bioconductor package minfi (Aryee et al., 2014). In short, methylation array data were 

loaded into R and after a quality control step it was normalized using the subset-

quantile within array normalization (SWAN) approach (Maksimovic et al., 2012). After 

the normalization process, probes overlapping known SNPs were discarded and M and 

beta values were generated. Differential methylation was then determined for the 

individual probes and finally the differential methylation data were aggregated to 

determine the differential methylation status of gene promoters. 

 

2.5. Generation and analysis of transcriptional imbalances 

 
Gene expression data generated by the NF1 Microarray Consortium (Miller et al., 

2009) were downloaded from the Gene Expression Omnibus repository where is 

available under the accession number GSE14038. Expression data were generated 

with the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. The analysis of 

the expression data was performed using R and the Bioconductor package position 

related data analysis (PREDA; Ferrari et al., 2011). In short, the expression data were 

loaded and preprocessed using the functions provided by PREDA and the custom CDF 

file from Brainarray v15 (Dai et al., 2005), which contains updated and more accurate 

positional annotation of the array probes. Data were normalized using the robust multi-

array average (RMA; Irizarry et al., 2003), the raw differential gene expression 

statistics were computed and then smoothed using a local kernel smoothing method 

with adaptive local bandwidth. The extreme values identified in the smoothed statistic 

were evaluated using a permutation test with 100,000 permutations and those with a q-

value <0.05 were deemed significant. These extreme regions were named 

transcriptional imbalances (TIs). 
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To determine if the TIs were associated with other genomic features (SCNAs, 

differentially methylated genes) we used the Bioconductor package regioneR (Gel et 

al., 2015). regioneR uses a permutation test strategy to assess the association of 

genomic regions and other genomic features. In short, the regions to be studied are 

randomly shuffled along the genome a number of times, and with each randomized 

region set, the value of the evaluation function is computed, creating a distribution of 

the evaluation function as expected by chance. Then, the original region set is 

evaluated and its value is compared to the random distribution, returning a P-value and 

a z-score. To study the association of TIs and SCNAs we defined the evaluation 

function as the weighted mean number of tumours presenting a genomic alteration 

(gain or loss) in the evaluated region, and used a complete randomization with the 

predefined mask as the randomization function. In the case of the differentially 

methylated genes, the evaluation function was the number of overlaps with hyper- or 

hypomethylated genes and the randomization function shuffled was the methylation 

status of the genes. In all cases, the randomization was performed 10,000 times. 

 

3.   In vitro gene expression knockdown 

 
3.1.  siRNA transfection procedures 

 
Small interfering RNAs (siRNAs) were used for knocking down the expression of 

several genes in both S462 and T265 cell lines (Figure A.1 in Annexe 1). In each 

transfection experiment and for each condition, a siRNA pool targeting a particular 

gene or a non-targeting control (NTC) siRNA construct (siGENOME SMARTpool, 

Dharmacon, GE Life Sciences) was introduced into cells using lipofectamine RNAiMAX 

(cat.no. 13778-030, Life technologies). As a mid-throughput approach has been 

intended in this thesis studying the effect of the expression knockdown of different 

genes in several tumourigenic properties of two cell lines, we selected Dharmacon 

siGENOME SMARTpool technology because they are composed of a mixture of 4 

different siRNAs targeting a particular gene of interest in a single reagent, providing an 

advantage in sensitivity. Transfected cells with these reagents were used for RNA 

extraction and for several in vitro readouts, including cell viability and cell counting, cell 

proliferation, cell death and anchorage-independent growth. 
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Briefly and except for cell viability assay for the T265 cell line (see section 4.1.), 20,000 

(S462) or 60,000 (T265) cells were plated for each condition in a well of a 12-well plate 

and incubated overnight with 400 µL of supplemented DMEM. A mixture of 0.5 µL of 

20 µmol/L siRNA (20 nM final concentration) and 1 µL of lipofectamine diluted in 100 

µL of opti-MEM (cat.no. 31985-062, Life technologies) was added to each well. After 

24 hours of transfection, medium was replaced with 1 mL of supplemented DMEM. 

Only for the anchorage-independent growth assay, cells were harvested 24 hours post-

transfection and used for the assay (see Figure 5). For RNA extraction, and the cell 

proliferation, cell death and cell counting in vitro functional assays, cells were let to 

grow for extra 48 hours and were harvested, 72 hours post-transfection, with trypsin-

EDTA (cat.no. 15400-054, Life technologies; see Figure 5).  

 

3.2.  cDNA synthesis and RT-qPCR  

 
RT-qPCR technique was used to check the gene expression knockdown after siRNA 

transfection in both S462 and T265 cell lines. RNA was extracted from transfected 

cells in each condition as explained in section 1.4. Then, 1 µg of RNA was submitted to 

retrotranscription (RT) using Superscript III reverse transcriptase enzyme (cat.no. 

18080-044, Life technologies). Briefly, in a 0.2 mL tube, 1 µL of random hexamers 

(cat.no. N8080127, Life technologies), 1 µL of dNTPs mix (10mM each; cat.no. 733-

1364, vWR), 4 µL of 5X First-Strand buffer (cat.no. 18080-044, Life technologies), and 

2 µL of 0,1M DTT (cat.no. 18080-044, Life technologies) were mixed with 1 µg of RNA 

and RNAse-free water in a final volume of 20 µL. Then, 0.8 µL of the RT enzyme was 

added and tubes were set on a thermocycler (2720 Thermal Cycler, Applied 

Biosystems). Conditions for retrotranscription reaction were as follows: 25°C for 12 

min, 42°C for 50 min and 70ºC for 15 min. Finally, cDNA sample was 1:10 diluted with 

RNAse-free water and used as a template for the qPCR experiments. 

 

Primers and probes for the RT-qPCR assay were also developed with Roche Universal 

ProbeLibrary (UPL) technology. In this case, when possible, an intron spanning design 

was chosen, which considers both primers from the pair in different but contiguous 

exons, thus avoiding amplification of potential genomic DNA present in the sample. 

The design of each of the primers (desalted and purified; Life technologies) was 
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subjected to an in silico PCR and BLAT search analysis to evaluate their specificity, 

prior qPCR experiments. The sequences of the primers and probes used are listed in 

Table 6.  

 

Gene NCBI RefSeq Name Sequence (5' to 3') UPL 
probe 

Amplicon 
size (bp) E 

NUP85-F gcgtccgagcgacttcta NUP85 NM_024844.3 
NUP85-R attcacgcctggaatcaaag 

#25 89 2.02 

TK1-F gcaatgagctgcattaacctg TK1 NM_003258.4 
TK1-R cgagaatcacctggatctgc 

#36 79 2.01 

CBX2-F agccggctgagagttcct CBX2 NM_032647.3 
CBX2-R agagaggcgtgcaggaca 

#4 61 1.83 

CBX4-F accgctagtggtgcaggt CBX4 NM_003655.2 
CBX4-R ttgctgttgagctcgtactgat 

#25 144 1.86 

CBX8-F ccagcagagtggatgacaag CBX8 NM_020649.2 
CBX8-R gcctaagggcctctgtgag 

#12 104 1.84 

BIRC5-F gcccagtgtttcttctgctt BIRC5 NM_001168.2 
BIRC5-R gttcctctatggggtcgtca 

#17 67 2.09 

PLAG1-F agtaggcttttcgctctgctt PLAG1 NM_002655.2 
PLAG1-R aaagatttaggtaagcaatctgtttca 

#38 72 1.84 

CAD-F atcccagggcttcctgat CAD NM_004341.3 
CAD-R ggctaccttccgagaggact 

#73 111 1.96 

EPHA4-F aacttgggtggatagcaagc EPHA4 NM_004438.3 
EPHA4-R tttcatccatgatactcacttcct 

#12 63 1.91 

BUB1-F tggattaccacagcctaaaaataa BUB1 NM_004336.3 
BUB1-R ctcttcagcatgaggcacttc 

#36 109 1.90 

MYBL2-F ctgcaagcccccagtgta MYBL2 NM_002466.2 
MYBL2-R ggccagttggtcagaagact 

#67 102 2.00 

HOXA13-F gaatgggaaagagaaagagacaga HOXA13 NM_000522.4 
HOXA13-R actggcagtctttacctttcttaaa 

#55 116 1.88 

LHX8-F tcctgcaaaaggcaactttc LHX8 NM_001001933.1 
LHX8-R gagggcaccttccacactaa 

#55 144 2.10 

CDCA8-F cctgacacccaggtttgact CDCA8 NM_018101.2 
CDCA8-R gccattccctgagatgttgt 

#67 94 1.91 

BCAT1-F tgaagatggagaagaagaactgg BCAT1 NM_001178094.1 
BCAT1-R tcactcctggaagaatgatgc 

#25 62 1.93 

CCDC8-F agatcaactgggcctccttt CCDC8 NM_032040.3 
CCDC8-R cctgatcagcctcgatgtc 

#4 84 1.93 

GINS2-F aacttacgaagctcctgttaaatca GINS2 NM_016095.2 
GINS2-R gaccagggtccggatttc 

#8 71 1.98 

KIF15-F tcattctacccaaatgcagga KIF15 NM_020242.2 
KIF15-R ttcaaggacattcaactgtgaga 

#4 94 1.80 

KIF18B-F ggtggtgcaaggactttcttt KIF18B NM_001080443.1 
KIF18B-R ttacggttccccctggtc 

#67 78 1.94 

KIF23-F gaaccaaatgtatggaactaacaaga KIF23 NM_138555.2 
KIF23-R cacacgatcatccgcactt 

#60 108 1.80 

TBP-F aggaattgaggaagttgctgag TBP NM_003194 
TBP-R cgctggaactcgtctcacta 

#67 78 1.99 

HMBS-F tcctgaggcacctggaag HMBS NM_000190.3 
HMBS-R ttgtatgctatctgagccgtcta 

#25 119 1.99 

 
Table 6. Primers and probes used for the RT-qPCR experiments. Primer sequences, UPL probes, 
amplicon sizes and efficiency (E) values of PCR reactions by the RT-qPCR assay. 
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qPCR experiments were also performed in a Light-Cycler® 480 Real-Time PCR 

System with white Multiwell Plate 384 plates (Roche Diagnostics) with same conditions 

than in section 2.1. The LDR and E of the primers were also evaluated (see Table 6). 

Each reaction in all experiments included 2 µL of diluted cDNA template, 4 µL of 2X 

LightCycler 480 Probes Master Mix (cat.no. 04707494001, Roche Diagnostics), 0.1 

µmol/L UPL probe, and 0.5 or 0.75 µmol/L of each primer (depending on the gene), in 

a total volume of 8 µL. PCR reactions for each primer set and sample were also 

performed in triplicate and each set of PCR assays included both negative controls 

without template. In addition, a calibrator sample was also included in triplicate in every 

assay.  

 

A Microsoft Excel spreadsheet was used to analyze qPCR data for relative expression 

calculations. We also used formulas from the qBase relative quantification framework 

(Hellemans et al., 2007), which are based on the Pfaffl method (Pfaffl, 2001), as in the 

previous DNA-based qPCR assays (see section 2.1). We here calculated the 

normalized relative expression (NRE) as: NRE = RQ/NF, where RQ is the relative 

quantity and NF is the normalization factor (see section 2.1). In this case, the 

normalization factor was, for a particular sample, the geometric mean of the RQ values 

for the 2 selected reference genes for expression normalization. We selected HMBS 

and TBP genes as reference genes, as they have been described to be suitable 

reference genes for NF1-associated samples, such as SCs (Maertens et al., 2006a). 

The value for the stability parameter M (Vandesompele et al., 2002) for this particular 

NF was calculated for the entire set of MPNST cell samples and was <0.2 (D'Haene et 

al., 2010). 

 

4.   In vitro functional assays 

 
The effect of the gene expression knockdown on several tumourigenic cellular 

properties was studied with a battery of functional assays (viability, proliferation and 

cell cycle, apoptosis and cell death, and anchorage-independent growth) in S462 and 

T265 cell lines (see Figure 5 and Figure A.1 in Annexe 1). 
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4.1.  Cell viability analysis 

 
Cell viability was assessed for the transfected T265 cell line using the colourimetric 

XTT assay (cat.no. 11465015001, Roche). XTT [2,3-Bis-(2-Methoxy-4-Nitro-5-

Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide] is a tetrazolium salt that, in the presence 

of an electron-coupling reagent, produces a water-soluble formazan salt. Tetrazolium 

salts are cleaved to formazan by the succinate-tetrazolium reductase system in the 

respiratory chain of the mitochondria. Therefore, the amount of formazan dye 

generated directly correlates to the number of metabolically active cells in the culture. 

Formazan dye can be quantified using a multi-well spectrophotometer reader. 

 

 

 

 

 

 

 

 

 
Figure 5. Experimental design of siRNA experiments and functional assays. Mid-throughput approach 
studying the effect of the expression knockdown by RNAi of different genes in several tumourigenic 
properties of S462 and T265 cell lines. Transfected cells were used for RNA extraction and for several in 
vitro readouts, including cell viability, cell proliferation and cell cycle analysis, apoptosis and total cell death 
and anchorage-independent growth. EdU: 5-ethynyl-2’-deoxyuridine. PI: propidium iodide. 
 

Briefly and for each condition, 1,500 cells per well were plated in a 96-well plate and 

incubated overnight with 100 µL of supplemented DMEM. A mixture of siRNA pool (20 

nmol/L) and lipofectamine (0.25 µL) diluted in 25 µL of opti-MEM (cat.no. 31985-062, 

Life technologies) was added in tetraplicate and incubated for 24 hours in standard 

conditions. After that, medium was replaced with 100 µL of supplemented DMEM and 

cells were let to grow for extra 48 hours. Moreover, 100 µL of supplemented DMEM 

were also added in tetraplicate in empty wells with no cells, as the blank condition. 

Then, 50 µL of XTT labeling mixture (XTT labeling reagent and electron-coupling 

reagent 50:1)  were added to each well, and the plates were incubated in a cell culture 

incubator for 1-2 hours in standard conditions. After that, absorbances at 492 nm (A492) 



Materials and methods	  

	  70	  

and 690 nm (A690) were measured for every well with a 96-well plate 

spectrophotometer reader (Spectra Max 340PC). Then, the A492 – A690 value was 

calculated for every single well, including the blank measurement. Viability was then 

calculated, in arbitrary units, for a particular well as (A492 – A690)well – (A492 – A690)blank.  

 

As the XTT results obtained for the transfected S462 cell line were inconsistent, cell 

viability was alternatively performed for this cell line by automated cell counting. Cells 

from each condition were harvested 72 hours post-transfection (see Figure 5) and 

diluted with PBS. A mixture of 10 µL of cell suspension and 10 µL of trypan blue dye 

(cat.no. EVS-050, Nanoentek) was added to an EVE cell counting slide (cat.no. EVS-

050, Nanoentek) in duplicate. The slide was introduced into the CountessTM Automated 

Cell Counter (cat.no. C10227, Life technologies) and the number of cells was then 

calculated.  

 

4.2.  Cell proliferation and cell cycle analysis 

 
The Click-iT® EdU Alexa Fluor® 488 Flow Cytometry Assay Kit (cat.no. C10425, Life 

Technologies) was used in combination with propidium iodide (PI; cat.no. P4170, 

Sigma) staining for the calculation of proliferating cells and cell cycle phases using the 

flow cytometer in both S462 and T265 cell lines. EdU (5-ethynyl-2’-deoxyuridine) is a 

nucleoside analogue to thymidine that is incorporated into DNA during active DNA 

synthesis. Detection with this technology is based on a click reaction: a copper 

catalyzed covalent reaction between an azide and an alkyne. In this assay, the alkyne 

is found in the ethynyl moiety of EdU, while the azide is coupled to an Alexa Fluor® 

488 dye. 

 

As a summarized protocol, cells were incubated with 20 µmol/L EdU for 1 hour prior 

trypsinization. Then, harvested cells from each condition were washed with 1% BSA-

PBS, fixed with 4% p-formaldehyde, permeabilized with a saponin-based buffer, 

incubated for 30 min with the Click-iT EdU reaction cocktail (containing both Alexa 

Fluor® 488-azide and CuSO4 needed for the click reaction), and then washed again. A 

final incubation with 15 mg/mL PI in citrate buffer for 30 min was performed. Finally, 

10,000 cells per condition were analyzed with the BD LSRFortessa SORP cytometer 
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using the B530-A and B695-A lasers for the measurement of the Alexa Fluor® 488 dye 

(EdU positive cells) and PI (DNA content), respectively, in the Cytometry Service from 

the Institut Germans Trias i Pujol. 

 

4.3.  Cell death analysis 

 
Apoptosis was measured for both transfected T265 and S462 cell lines using the 

Annexin-V-Alexa Fluor® 568 antibody (cat.no. 03703126001, Roche; cat.no. A13202, 

Life Technologies) by flow cytometry. This was combined with bis-benzimide dye (also 

known as Hoechst 33342; cat.no. B2883, Sigma) staining for the detection of late 

apoptotic and necrotic cells, which represents a thorough characterization of the cell 

death process. Annexin-V is a cytoplasmic protein with a high affinity for 

phosphatidylserine. In the early stages of apoptosis, there is a flip-flop translocation of 

phosphatidylserine from the inner layer of the cell membrane to the outer layer, thereby 

exposing phosphatidylserine and annexin-V at the external surface of the cell. Hence, 

this protein is suited to detect apoptotic cells. Because necrotic cells also expose 

phosphatidylserine as a result of loss of the membrane integrity, apoptotic cells must 

be differentiated from these necrotic cells with a concomitant use of a DNA dye, such 

as bisbenzimide, that allows the discrimination of necrotic cells from the apoptotic 

Annexin-V positive cells. 

 
Cells from each condition were harvested and washed with PBS. Then they were 

incubated for 15 min with 100 µL of annexin-binding buffer (10mM HEPES, 140 mM 

NaCl, 2.5 mM CaCl2, pH 7.4) containing Annexin-V-Alexa Fluor® 568 antibody (1:50, 

Roche; 1:20, Life Technologies) and 5 mg/mL bisbenzimide. Finally, 30,000 cells for 

each condition were analyzed with the BD LSRFortessa SORP cytometer using the 

G610-A and V450-A lasers for the measurement of the Alexa Fluor® 568 dye 

(Annexin-V positive apoptotic cells) and bisbenzimide (late apoptotic/necrotic cells), 

respectively, in the Cytometry Service from the Institut Germans Trias i Pujol. 

  

4.4.  Anchorage-independent growth analysis 

 
Soft agar assay was performed on S462 cell line to assess their anchorage-

independent growing properties after gene expression knockdown. T265 cell line does 
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not generate colonies in vitro with this technique. First of all, a 2X supplemented 

DMEM solution was prepared by mixing in sterile conditions High Glucose with L-

Glutamine and sodium pyruvate DMEM powder (cat.no. 12800017, Life technologies) 

with 20% FBS (cat.no. S181B-500, Biowest), sodium bicarbonate (cat.no. 25080060, 

Life technologies) and sterile distilled water (cat.no. 1613657, Life technologies). Then, 

6-well plates were prepared with bottom 1.6% agar layer [3.2% SeaPlaque Agar 

(cat.no. 50101, Lonza) with 2X supplemented DMEM 1:1] and allowed to solidify. After 

24 hours of siRNA transfection (see section 3.1. and Figure 5), S462 cells from each 

condition were harvested and counted with the CountessTM Automated Cell Counter 

(cat.no. C10227, Life technologies). Then, a top agar layer was prepared by mixing the 

cell suspension with agarose and a total of 20,000 cells in a 0.8% agar layer were 

plated and allowed to solidify for each condition. Supplemented DMEM was added 

over the top agar layer and plates were incubated under standard conditions for two 

weeks, being medium replaced twice a week. Then, top medium was removed and 

colonies were fixed and stained with a 0.005% crystal violet in 10% formaldehyde 

solution for 1 hour and washed with PBS afterwards. Colonies were imaged on a 

microscope (Leica DMIL LED) and four photographs were taken for each condition 

(one per quadrant). Semi-automated colony counts were performed using an algorithm 

with ImageJ software (NIH). 

 

4.5.  Statistical analyses 

 
All experiments concerning siRNA transfection experiments followed by the different 

functional assays were repeated at least three times. A NTC siRNA was always 

included in each experiment and the fold change of the specific readout (viability, 

proliferation, apoptosis, total cell death, number of colonies and area of colonies) of 

each siRNA condition versus the NTC was calculated. In cell cycle analysis, the 

percentage of cells in each of the three phases was calculated for each siRNA 

condition and the NTC. Statistical analysis was performed using SPSS software (IBM). 

For each biological triplicate dataset, mean and standard deviation was calculated and 

a non-paired Student’s t-test assuming unequal variances was applied to find 

differences between a particular siRNA condition and the NTC. A P-value <0.05 was 

considered to be significant. 
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5.   In vitro chemical inhibition 

 
5.1.  Drug treatment and cell viability analysis 

 
A set of MPNST cell lines (S462, T265, ST88-14 and the sporadic STS26T), a primary 

SC culture, and the human foreskin fibroblast CCD-1112Sk cell line (cat.no. CRL-

2429™, ATCC®) were incubated in a dose-dependent manner with the kinesin 

inhibitors ispinesib (cat.no. S1452, Selleckchem), GSK-923295 (cat.no. HY-10299, 

MedChem Express), or paprotrain (cat.no. 4813, Tocris Biosciences). These 

compounds selectively inhibit the kinesin proteins KIF11 (Lad et al., 2008), KIF10 

(Wood et al., 2010) and KIF20A (Tcherniuk et al., 2010), respectively. Cell viability was 

then measured using XTT assay at three time points: 0 hours, 24 hours and 48 hours 

post-treatment. 

 

Briefly, 1,000 cells (S462, 26T); 1,500 cells (T265, ST88-14 and CCD-1112Sk); or 

2,500 cells (SCs) per well were plated in several 96-well plates and incubated 

overnight with 100 µL of supplemented DMEM. The day after, XTT assay was 

performed as in section 4.1. for all the conditions of 0 hours timepoint. For the rest of 

the conditions media was replaced with 100 µL of supplemented DMEM containing 

varying concentrations of ispinesib, GSK-923295 or paprotain (each concentration in 

tetraplicate). Then, cells were let to grow for 24 hours or 48 hours and XTT assay was 

perfomed in each of these timepoints as in section 4.1.  So, viability measures were 

taken in each of the three timepoints and the log2 of fold viability was then determined 

versus timepoint 0 for each chemical and cell line. 

 

5.2.  IC50 determination by cell counting 

 
The half maximal inhibitory concentration (IC50) of the compounds ispinesib (cat.no. 

S1452, Selleckchem), GSK-923295 (cat.no. HY-10299, MedChem Express) and 

paprotrain (cat.no. 4813, Tocris Biosciences) was calculated by creating a dose-

response curve with different concentrations of the drugs in the two MPNST cell lines 

S462 and T265 and the control CCD-1112Sk fibroblast cell line.  
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S462 (100,000 per well), T265 (150,000 per well) and fibroblasts (150,000 per well) 

were plated in a 6-well plate and incubated with 100 µL of supplemented DMEM. The 

following day media was replaced with 100 µL of supplemented DMEM containing 

varying concentrations of the different drugs (each concentration in triplicate). Cells 

were let to grow for 48 hours, trypsinized and harvested. Cells were then resuspended 

in PBS and counted with the CountessTM Automated Cell Counter (ref. C10227, Life 

technologies) as in section 4.1. Viability was calculated for each dose as the number of 

cells of this particular dose with respect to dose 0 (DMSO) after 48 hours of treatment. 

 

Viability values were plotted against dose values. A non-linear regression model curve 

fitting was applied using the GraphPad Prism 5 software for each compound and IC50 

values were determined. 

 

5.3.  IC50 shift assay 

	  
An IC50 shift assay was conducted to check if siRNA-depleted MPNST cells were more 

sensitive to chemical inhibition. In this assay a combination of siRNA transfection for 

the expression knockdown of KIF15 (Dharmacon) and the NTC siRNA (Dharmacon), 

and a chemical inhibition of KIF11 protein with ispinesib (cat.no. S1452, Selleckchem) 

was performed in S462 cell line. 

 

First of all, 250,000 S462 cells were plated in a 10 cm plate and incubated overnight 

with 5 mL of supplemented DMEM. A mixture of 6.25 µL of 20 µmol/L siRNA and 12.5 

µL of lipofectamine RNAiMAX (cat.no. 13778-030, Life technologies) diluted in 1.25 mL 

of opti-MEM (cat.no. 31985-062, Life technologies), 20 nM siRNA final concentration, 

was added to each plate. After 24 hours of transfection, cells were harvested and 

counted. Then, 100,000 cells per well were plated on a 6-well plate and incubated with 

2 mL of supplemented DMEM. The following day media was replaced with 2 mL of 

supplemented DMEM containing varying concentrations of ispinesib. Cells were let to 

grow for 48 hours, trypsinized and harvested. Cells were then resuspended in PBS and 

counted with the CountessTM Automated Cell Counter (ref. C10227, Life technologies) 

as in section 4.1. Viability was calculated for each dose as the number of cells of this 

particular dose with respect to dose 0 (DMSO) after 48 hours of treatment.  
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The IC50 shift assay (siRNA transfection plus ispinesib treatment) was repeated three 

times for each condition (NTC siRNA and siRNA targeting KIF15). Viability values from 

the three experiments were plotted against dose values. Again, a non-linear regression 

model curve fitting was applied using the GraphPad Prism 5 software for each 

compound and IC50 values were determined. A paired Student’s t-test assuming equal 

variances was applied to find differences in the IC50 values between the two conditions. 

A P-value <0.05 was considered to be significant. 

 

5.4.  Immunofluorescence of anti-α tubulin 

 
The effect of the kinesin inhibitors ispinesib and GSK-923295 in the microtubule 

cytoskeleton was determined by immunofluorescence of α-tubulin protein. In short, 

S462 and T265 cells were plated on an 8-well Labtek slide (cat.no. 94.6140.802, 

Sarstedt) and incubated with vehicle (DMSO), 2.5 nM ispinesib or 1 µM GSK-923295 

in supplemented DMEM for 24 hours. After this incubation, cells were fixed with 4% p-

formaldehyde, PBS-washed, permeabilized with 0.1% Triton-PBS, washed with 1% 

FBS-PBS and incubated with 1:100 of mouse anti-α tubulin-Alexa488 antibody (cat.no. 

322588, Life technologies) in 10% FBS-PBS for 45 min. After this, cells were mounted 

with Vectashield with DAPI (cat.no. H-1200, Vector Laboratories). The Labtek slide 

was then visualized in a fluorescence-inverted microscope (Leica DMI 6000B) and 

photographs were taken. 
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1.  Development of qPCR assays for the 

detection of copy number alterations in 

the context of NF1 
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Among the wide spectrum of constitutional mutations found in neurofibromatosis type 1 

(NF1) patients, around 5% correspond to microdeletions that span NF1 and 

neighbouring genes. These mutations are mostly inherited directly from the germline 

but sometimes they occur post-zygotically, resulting in mosaicism. In addition, it has 

been found that NF1 microdeletion patients present an increased lifetime risk for the 

development of malignant peripheral nerve sheath tumours (MPNSTs; De Raedt et al., 

2003). These tumours are characterized by presenting highly hyperploid genomes with 

recurrent somatic copy number alterations (SCNAs), including copy number gains and 

losses. 

 
The first part of this thesis was motivated by a requirement of an easy and fast tool for 

the specific detection of NF1 constitutional microdeletions, either in the context of 

mosaicism or not, which could be also extendable to somatic NF1 deletions in NF1-

associated tumours and other traits. Moreover, an adaptation of this tool for the 

detection of copy number alterations in highly aberrant genomes from malignant 

tumours, such as MPNSTs, was also intended. Given the high sensitivity and 

specificity that qPCR shows we chose this technique as our tool and we developed 

one probe-based qPCR assay for the detection of deletions in the NF1 locus (NF1-

qPCR) and another probe-based qPCR assay for the detection of SCNAs in the 

MPNST genome (MPNST-qPCR). 

 

1.1.  Assessment of NF1 constitutional and somatic deletions: 

NF1-qPCR 

 
A first qPCR assay was designed for the detection of the four types of NF1 

constitutional microdeletions and the somatic second-hit NF1 deletions present in NF1-

associated traits, such as dermal neurofibromas (dNFs). 

 

1.1.1. Development and validation of the qPCR assay 

 
The qPCR assay was set up with Universal Probe Library (UPL) probes and their 

corresponding specific primer pairs. We chose UPL probes for our study because of 

their advantages of higher specificity, higher PCR efficiency (E) values, and avoidance 
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of primer-dimer signal that hydrolysis probes show, in contrast to fluorescent dyes such 

as SYBR Green. We also chose UPL probes for their flexibility of use and their 

reduced cost compared with DNA-sequenced hydrolysis probes.  

 

For copy number assessment, we selected 11 genomic loci distributed along a 2.8-Mb 

region encompassing the NF1 gene (Figure 6). To distinguish Type-1, Type-2, Type-3, 

and atypical NF1 microdeletions specifically, we decided to interrogate 3 regions within 

the NF1 gene (NF1-5’, NF1-C, and NF1-3’), 5 loci that closely flank REP-A, REP-B, 

REP-C, SUZ12, and its pseudogene SUZ12P1 (TBC1D29, CRLF3, RNF135, UTP6, 

RHOT1) and one locus within SUZ12P1 (SUZ12P1). Two other loci located distal to 

the NF1 gene (SSH2 and PSMD11) were also included. In addition, the MAP2K4 gene, 

located in 17p, was selected as a control (i.e., a locus with 2 copies). Moreover, as it 

has been suggested (D'Haene et al., 2010), we selected two reference genes, 

ADARB1 (21q22.3) and the long interspersed element (LINE) repetitive sequence 

L1PA (which is interspersed through the genome), to further normalize copy number 

data.  

 
Figure 6. NF1 region assessed with qPCR, MLPA and MMPA techniques. Schematic representation of 
the NF1 region at 17q11.2. NF1 gene is represented by a green box, protein-coding genes are represented 
by blue boxes, and paralogous regions REPs are represented by pink boxes. Indicated are the positions of 
the 11 qPCR probes (red arrows), the 24 MLPA probes (“tailed” purple circles), and the 6 microsatellites 
assessed by microsatellite multiplex PCR analysis (MMPA; “tailed” green circles). 
 

Some experiments were performed to validate the qPCR assay. First, a set of 2-fold 

dilutions of pooled DNA samples (80 to 0.156 ng per reaction in triplicate) was used to 

determine the linear dynamic range (LDR) and the E value of the primers used 

(Hellemans et al., 2007). All designed primers showed a large LDR (at least 9 orders of 

magnitude) and high E values, which ranged from 1.88 to 2.11 for the analyzed loci 

(see Table 4). The qBase relative quantification framework was used for the 

calculations of the Relative Copy Number (RCN) values (Hellemans et al., 2007). We 

determined the range of the RCN values for a 2-copy status of the NF1 gene by 

analyzing 24 control samples. The mean±SD Normalized Relative Quantity (NRQ) for 
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the 12 loci and 24 samples interrogated was 0.99±0.08. The mean calculated 99% 

confidence interval (CI) of RCN for the 12 loci was 0.81–1.23. An RCN value below the 

lower limit of the CI for a locus was considered to indicate deletion of that particular 

locus.  

 

1.1.2. Detection of NF1 Type-1, Type-2 and atypical 

constitutional microdeletions 

 
After validating the qPCR assay with a panel of 24 control samples, we tested the 

performance of the qPCR assay by using a set of 14 DNA samples previously 

characterized and bearing different types of constitutional deletions of the NF1 gene: 5 

Type-1 deletions, 6 Type-2 deletions, and 3 atypical deletions. No Type-3 deletion was 

tested. All deletions were detected with the qPCR assay (Figure 7). The mean±SD 

RCN value within the deleted loci was 0.53±0.07. Patient NF-01 beared a Type-2 

microdeletion and the DNA sample from this patient showed a mean RCN value of 

0.68±0.05 within the deleted loci. This result reflected the presence of mosaicism for 

this microdeletion, which was later confirmed in our lab by single nucleotide 

polimorphism (SNP) array (data not shown). Thus, when we considered all loci known 

to be deleted in our sample set, the qPCR assay showed 100% sensitivity and 99.2% 

specificity (see Figure 7). The SUZ12 locus, which is essential for distinguishing a 

Type-1 deletion from a Type-2 deletion, showed 100% sensitivity and 96.9% 

specificity. All qPCR results were confirmed in a parallel analysis of these samples with 

the multiplex ligation-dependent probe amplification (MLPA) technique, which is a 

standard technique used for the assessment of DNA copy number in most genetic 

diagnostics laboratories (see Figure A.2 in Annexe 1).  

 

1.1.3. Detection of NF1 somatic deletions 

 
We also tested the performance of the qPCR assay for detecting somatic copy number 

losses by using samples from tumours and cells bearing different known somatic NF1 

deletions. As mentioned above, some constitutional deletions are found in mosaicism, 

and some tissues present a mixture of NF1+/– cells (i.e. those bearing an NF1 

microdeletion) and NF1+/+ cells (i.e. cells with no deletion). Analogously, dNFs and 
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other NF1-associated traits are composed of different types of cells, containing a 

mixture of NF1–/– cells (i.e. those bearing a somatic second-hit NF1 deletion) and 

NF1+/– cells (i.e. cells with no deletion; Serra et al., 2000). Because in both cases the 

cellular component bearing an NF1 deletion is not total, we first checked the reliability 

of the qPCR assay for detecting deletions in these contexts that comprise cells with 

different genotypes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Characterization of NF1 constitutional deletions by the NF1-qPCR assay. A, B. Relative 
copy number (RCN) values for the 11 loci located in the NF1 region (grey columns) and the MAP2K4 control 
locus (black bar) for a sample with a Type-1 microdeletion (A) and a sample with an atypical microdeletion 
(B). Dashed lines indicate the mean RCN cutoff for deletion detection. C. RCN values for the 11 loci located 
in the NF1 region (from SSH2 to PSMD11) and the control locus MAP2K4, in 14 blood samples previously 
diagnosed with a NF1 constitutional deletion. Among them, 5 were classified as Type-1, 6 as Type-2 and 3 
as atypical. RCN values in bold indicate a deletion. Light red-coloured rectangles show the extent of the 
deletion, previously identified by microsatellite analysis and FISH, and later confirmed by MLPA. A RCN 
similar to 0.5 indicates a deletion; a RCN around 1 indicates 2 copies of the locus. 
 

To do so, we assessed the performance of the qPCR assay in admixtures of NF1-

deleted and NF1-nondeleted DNA samples, and we set a cutoff value for the maximum 

percentage of NF1-nondeleted DNA present in a tumour (or tissue) that the qPCR 

assay could tolerate and still detect the presence of an NF1 deletion. To choose this 

cutoff, we checked the performance of the qPCR assay with several admixtures of 2 

DNA samples, one with 2 copies of NF1 and the other with a single copy. We prepared 

11 serial dilutions of NF-59 (NF1 constitutional deletion) and NF-60 (sample with 2 
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copies of NF1) with different DNA percentages of the 2 samples in quintuplicate (i.e., 

0% to 100% of the sample with 2 copies of NF1). For each admixture, the mean±SD of 

the calculated RCN for the six loci NF1-5’, NF1-C, NF1-3’, CRLF3, RNF135, and UTP6 

were plotted against the percentage of DNA with 2 NF1 copies present in the DNA 

admixture (Figure A.3.A in Annexe 1). To calculate the cutoff value for the percentage 

of cells with 2 copies of NF1 that the qPCR assay could tolerate and still detect the 

presence of an NF1 deletion, we used the mean of the lower 99% confidence limit for 

all loci (0.81; Figure A.3.A in Annexe 1). Hence, the qPCR assay detected NF1 

deletions in samples containing less than 56% of NF1-nondeleted DNA.  

 

We also set a cutoff value for the MLPA technique by using the same serial DNA 

admixtures used for the qPCR. These samples were analyzed in duplicate, and for 

each admixture we plotted the mean±SD of the calculated copy number of 11 loci 

(from the CRLF3 3780 probe to the SUZ12 3786 probe) against the percentage of 

DNA with 2 copies of NF1 present in the DNA admixture (Figure A.3.B in Annexe 1). 

We used a RCN value of 0.8 to obtain the cutoff value for the highest percentage of 

NF1-nondeleted DNA in samples at which the MLPA assay was able to detect the 

presence of an NF1 deletion. This percentage was approximately 51%, similar to that 

of the qPCR assay.  

 

To evaluate the ability of the qPCR assay to detect somatic deletions in dNFs and 

Schwann cells bearing an NF1 somatic deletion (SCNF1–/– cells), we analyzed 16 DNA 

samples from dNFs and 5 SCNF1–/– samples known to bear an NF1 somatic deletion. 

First, we used the microsatellite multiplex PCR analysis (MMPA) technique, previously 

developed in our laboratory (Garcia-Linares et al., 2012), to calculate the percentage of 

DNA with 2 copies of NF1 within tumour samples (Table A.2 in Annexe 1), as 

described in Garcia-Linares et al., 2012. The results with this technique also confirmed 

the presence of deletions in the NF1 region in these samples (Garcia-Linares et al., 

2012; see Table A.2 in Annexe 1). The qPCR assay detected the presence of deletions 

in the NF1 region in all dNF and SCNF1–/– samples tested that contained <56% of the 

NF1-nondeleted component (Figure 8). When all loci known to be deleted in this 

sample subset were considered, the qPCR assay showed 90.5% sensitivity and 98.9% 

specificity. The technique was still able to detect at least one deleted locus in the 4 
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tumour samples with >56% of NF1-nondeleted DNA, but the diagnostic sensitivity and 

specificity values were lower (Figure 8). The mean±SD RCN value within the deleted 

loci in SCNF1–/– samples was 0.62±0.11. This result pointed to the probable presence of 

NF1-nondeleted (SCNF1+/–) cells within the SC cultures. All qPCR results for the 

detection of NF1 somatic deletions in dNFs were also confirmed with the results 

obtained with the parallel MLPA analysis (see Figure A.4 in Annexe 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Characterization of NF1 somatic deletions by the NF1-qPCR assay. A, B. RCN values are 
shown for the 12 interrogated loci in one sample with a somatic deletion and containing 37% of cells with 2 
copies of NF1 (A) and another sample with a somatic deletion and containing 49% of cells with 2 copies of 
NF1 (B). Dashed line indicates the mean RCN cutoff for deletion detection. C. RCN values of the 11 loci 
located in NF1 region and the control region located in 17p, in 16 dNFs samples and 5 SC samples 
previously diagnosed with a NF1 somatic deletion. RCN values below the low value of the 99% CI of every 
interrogated region (deleted) are in bold. Light red-coloured rectangles show the extent of the deletion, 
previously identified by MLPA, Paralog Ratio Analysis (Garcia-Linares et al., 2011) and SNP array, and later 
confirmed by MMPA (Garcia-Linares et al., 2012) and MLPA. Grey rectangles show deleted loci not detected 
by the qPCR. A RCN similar to 0.5 indicates a deletion; a RCN around 1 indicates two copies of the locus. 
 

So, this first probe-based developed qPCR assay, NF1-qPCR, has demonstrated to 

accurately detect different types of constitutional microdeletions in the NF1 locus – 

including those occurring in mosaicism – and also NF1 somatic second-hit deletions 

found in NF1 traits when the NF1-nondeleted component of the DNA sample analyzed 

is less than 56%.  
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1.2. Assessment of SCNAs in MPNSTs: MPNST-qPCR 

 
As MPNSTs present hyperploid genomes with some recurrent SCNAs beyond 

deletions in the NF1 gene, a second qPCR assay, similar to the one interrogating NF1 

region, was designed for the detection of copy number gains and losses in the MPNST 

genome. 

 

1.2.1. LINE repetitive sequences improve the normalization 

of copy number data in MPNSTs 

 
This assay was also set up with UPL probes and their corresponding specific primer 

pairs (Table 5). The qBase relative quantification framework was also used for the 

calculations of the RCN values (Hellemans et al., 2007).  

 

As MPNSTs are tumours with highly altered genomes, we first studied different 

reference loci to identify the most suitable to be used for the normalization of target 

gene copy number data. Among them, we selected three single copy genes, GLRX3 

(located at 10q26.3), ACSS1 (located at 20p11.21) and ADARB1 (located at 21q22.3), 

as they were encompassed in genomic regions that seemed not to be frequently 

present in SCNAs from MPNSTs, according to the literature (see Introduction, section 

6). Moreover, two LINE repetitive genomic sequences, the LINE1 consensus 

sequence, L1, and the L1PA family consensus sequence, were also chosen. These 

sequences are present in high number in the genome and it has been suggested that 

their copy number per haploid genome is similar among all human cells, either normal 

or tumoural, so they have been used in the qPCR technique for normalization 

purposes (Wang et al., 2002). We used a total of 35 samples in this MPNST-qPCR. 

The parameter M value was calculated considering all possible combinations among 

the five potential reference genes for all samples (Vandesompele et al., 2002). An 

average of the two repetitive elements, L1 and L1PA, was found as the best 

combination (M=0.187) and was then chosen as the Normalization Factor (NF).  

 

MPNST genomes, in addition to present several structural alterations, are also 

generally hyperploid. This general increased ploidy of MPNSTs should be considered 
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when normalizing copy number data. Although LINE repetitive sequences were found 

better than single copy genes for the normalization of copy number data in these 

hyperploid genomes, qPCR [and other methodologies such as SNP array or 

comparative genomic hybridisation (CGH)] calculate the copy number of a particular 

locus with respect to the general ploidy of the studied sample, being, therefore a 

relative and not an absolute quantification. This means that, for a particular amount of 

DNA from a hyperploid genome, some genomic gains could be underrepresented and 

some genomic losses could be overrepresented by these DNA-based techniques.  

 

1.2.2. Detection of copy number gains in AURKA locus in 

MPNSTs as a proof of concept 

 
After choosing the NF, we selected a specific locus for assessing its copy number 

status. An integrative cross-species (mice and human) transcriptome analysis 

identified AURKA as a highly overexpressed gene in primary MPNSTs and MPNST 

cell lines relative to neurofibromas and normal nerves (Patel et al., 2012). In this study, 

both in vitro and in vivo experiments evidenced that blocking AURKA may be a viable 

treatment for MPNSTs. In order to assess the mechanism underlying AURKA 

overexpression in MPNSTs, we determined the copy number status of the AURKA 

locus using this qPCR assay in our set of samples. 

 

We first determined the range of RCN values for a 2-copy status of the AURKA gene in 

10 control samples. The mean calculated 99% CI of the RCN indicating a diploid status 

for the AURKA locus was 0.76–1.32. A RCN value below the lower limit of the CI (0.76) 

was considered to indicate a deletion; a RCN value above the upper limit of the CI 

(1.32) was considered to indicate a genomic gain. Considering this, AURKA copy 

number status was assessed in neurofibromas, primary MPNSTs and MPNST cell 

lines samples. Among the primary MPNSTs, 7 of 12 (58%) showed three or more 

copies of AURKA locus (Figure 9). Most of the NF1-associated MPNSTs, 6 of 7 (86%) 

had AURKA locus amplified. Moreover, all 5 MPNST cell lines showed AURKA copy 

number gains (Figure 9). Only one of the neurofibroma samples showed a copy 

number gain, probably denoting a false positive (Figure 9). All 10 control samples 

showed a diploid status (Figure 9).  
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Moreover, to highlight the importance of selecting the most suitable NF for the 

normalization of copy number data in aberrant genomes (as the NF composed of the 

average of L1 and L1PA in our set of samples), we also calculated the RCN of AURKA 

locus in these samples using single copy genes. When L1 or L1PA were used as 

single normalizer genes, the obtained RCN results were similar to those obtained when 

using the NF. However, these RCN values considerably differed when GLRX3, ACSS1 

or ADARB1 were used individually as normalizers (Table A.3 in Annexe 1). 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Copy number assessment of AURKA locus in MPNSTs by the MPNST-qPCR. Column 
scatter plot showing RCN values of AURKA locus in 10 control samples, 8 neurofibromas, 12 MPNSTs, and 
5 MPNST cell lines. Both dashed lines show the high and the low values of the 99% CI, respectively, of RCN 
indicating a diploid status. Those RCN outside this 99% CI are considered to indicate a copy number 
change: either a genomic gain or a loss. Each line within the scatter plot indicates the median RCN value 
within the group. 
 

So, this second probe-based qPCR, MPNST-qPCR has shown that using repetitive 

sequences improves the normalization of copy number data in altered genomes, as 

LINEs in MPNSTs. In addition, MPNST-qPCR has been able to detect somatic copy 

number gains of AURKA locus in MPNSTs.  



	  

	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.  Molecular characterization of MPNSTs 

and functional identification of novel 

genes involved in their pathogenesis 

 

 

 

 

 



	  

	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results 2 

 93	  

MPNSTs are rare tumours that account for 3-10% of all soft-tissue sarcomas (Katz et 

al., 2009). Probably due to their very low prevalence in the general population they still 

have not been included in scientific consortia for their genomic study unlike other 

tumour types. However, MPNSTs are very aggressive tumours with a poor prognosis 

(Brems et al., 2009) and represent the leading cause of NF1-related mortality (Evans 

et al., 2002).  

 

Several studies have shown that MPNSTs present hyperploid genomes and also a 

recurrence of some somatic copy number gains and losses (see Introduction, section 

6). The second part of this thesis was aimed to check how general this hyperploid 

landscape and the recurrent SCNAs were for the genome of NF1-associated MPNSTs. 

An analysis of MPNSTs at the genomic level was intented, with a particular focus on 

the genomic region, for a better understanding of MPNST pathogenesis. In addition, 

we also wanted to compare the genomes from MPNSTs and from benign plexiform 

neurofibromas (pNFs). 

 

2.1. MPNSTs unlike pNFs are hyperploid tumours with recurrent 

 SCNAs 

 
A first molecular characterization of the genome of NF1-associated tumours and 

derived samples was conducted. SNP array analysis (for details see Materials and 

Methods, section 2.3) was performed to generate a global view of SCNAs in a set of 

samples including 8 pNFs, 8 NF1-associated MPNSTs, 7 MPNST-derived cell lines 

and 3 pNF-derived SC cultures (Table 3). SNP array data were first analyzed with 

different algorithms, including genoCN (Sun et al., 2009), GPHMM (Li et al., 2011) and 

ASCAT (Van Loo et al., 2012). We chose ASCAT for copy number data analysis 

because it considered both the ploidy and the fraction of non-aberrant cells present in 

the sample. By applying ASCAT, it was confirmed that pNFs do not present gross 

genomic alterations beyond deletions found in the NF1 region in 2 of the 8 pNFs 

samples (Figure 10.A). A deletion in the CDKN2A locus was also detected in one pNF 

sample (Figure 10.A). All pNFs samples were also histologically studied in parallel and 

only the pNF sample bearing the CDKN2A deletion showed hypercellular regions and 

cellular atypia (data not shown). This pNF was histopathologically diagnosed as an 
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atypical neurofibroma. This finding strengthened that CDKN2A loss is an early event 

associated to atypical neurofibroma formation and considered a pre-malignant state, 

as it has been described (Beert et al., 2011).  

 

MPNSTs showed, in contrast to pNFs, highly aberrant genomes with a general 

hyperploid landscape and some recurrent SCNAs (Figure 10.B). Mean ploidy value 

was calculated for each MPNST sample using ASCAT. The average (mean±SD) ploidy 

was 2.62±0.68 for the 8 primary MPNSTs, indicating that MPNSTs are globally nearly 

triploid, although this estimated ploidy could be underestimated due to tissue sampling. 

The most frequent genomic gains in our set of MPNSTs, present in at least 6 of 8 

tumours  (75%), were found in chromosomes  2, 7,  8, 15q and 17q22-25 (Figure 10.B).  
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Figure 10. Circos representations showing SCNAs found in pNFs and MPNSTs. A. From outside to 
inside, idiograms of the 22 human autosomes with G-banding pattern are depicted. The 8 consecutive circles 
summarize the SCNAs obtained from SNP array data in the 8 pNFs analyzed. Only a few genomic losses, 
depicted in green and rounded by green circles, were found: two pNF samples showed deletions in the NF1 
locus at 17q11.2, and one pNF sample, in the CDKN2A locus at 9p21.3. Moreover, the loss of 
heterozygozity (LOH) of every sample is also depicted in blue. B. Again, from outside to inside, idiograms of 
the 22 human autosomes with G-banding pattern are depicted. The 8 consecutive circles summarize the 
SCNAs obtained from SNP array data in the 8 NF1-associated MPNSTs analyzed. Genomic gains are 
shown in red, and losses, in green. Colour intensity correlates with an increased copy number alteration. A 
global hyperploid genome was found for MPNSTs with some recurrent SCNAs. LOH of every MPNST 
samples is also depicted in blue. In the inner circles, the recurrence of the SCNAs (in red and green) and 
LOH (in blue) of all tumours is shown. 
 

Some of the oncogenes associated to MPNSTs are located in these genomically 

gained regions, as EGFR at 7p11.2. The most frequent genomic losses, present in at 

least 3 of 8 tumours (37.5%), were found in 9p, 11q, 17p and 17q11.2-12 (Figure 10.B). 
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The main tumour suppressor genes (TSGs) associated to MPNSTs are located in 

these genomically lost regions, as is the case for NF1 and SUZ12 at 17q11.2, 

CDKN2A at 9p21.3 and TP53 at 17p13.1. 

 

MPNST cell lines also showed aberrant and highly hyperploid genomes. Mean ploidy 

value was also calculated for MPNST cell lines using ASCAT. The average (mean±SD) 

ploidy for the seven MPNST cell lines was 3.15±0.74, showing that MPNST cell lines 

are triploid or even nearly tetraploid, which have been confirmed by cytogenetics for 

S462, T265 and STS26T cell lines (see Figure 4). The most frequent gains in our set of 

MPNST cell lines, present in 6 of 7 lines (86%), were found in chromosomes 1q21, 

2q32-37, 3q26.3, 4p12-13, 5q32-25, 7, 8q, 15q11-12, 17q, 19q and 20q (Figure A.5 in 

Annexe 1). The most frequent losses, present in at least 3 of 7 tumours (43%), were 

found in 8p23.3, 9p21.3, 12p13 and 12q21 (Figure A.5 in Annexe 1). Some of these 

genomically altered regions, such as 2q, 7, 8q, 9p, 15q and 17q were concurrently 

detected in primary MPNSTs.  

 

Regarding SC samples, they did not show genomic alterations further than deletions 

found in the NF1 region, as our group demonstrated for dNF-derived SC cultures 

(Garcia-Linares et al., 2011). In the set of 3 pNF-derived SC cultures, 2 of them 

presented loss of the NF1 region, confirming the same genomic deletions found in the 

pNFs from which these SC cultures were derived.  

 

Taken together these results show that the malignant progression of pNF to MPNST is 

generally associated to an increase in ploidy and the occurrence of gross genomic 

alterations.   

 

2.2. Differentially expressed genes in MPNSTs vs. neurofibromas 

cluster in specific genomic regions: transcriptional imbalances, TIs 

 
To study what was the impact on the transcriptome of these regional SCNAs found in 

the MPNST genome, microarray expression data from an independent set of samples, 

including 6 NF1-associated MPNSTs, 13 pNFs and 13 dNFs, was used. These data 

were previously generated by the NF1 Microarray Consortium (Miller et al., 2009), a 
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collaborative project of several research groups in NF1, where we also participated. 

We related the gene expression information with the location of the genes within the 

genome. In this way, mapping on the genome the differential gene expression between 

malignant and benign tumours, we identified the formation of transcriptional 

imbalances (TIs), regions of the genome where the mean differential expression was 

significatively higher (TIs of overexpression) or lower (TIs of underexpression) than 

expected by chance, presenting a significant abundance of over- or underexpressed 

genes. To do that, we used position related data analysis (PREDA; Ferrari et al., 

2011), which uses an analysis based on a non-linear smoothing of the expression 

levels along chromosomal positions, followed by a permutation test to assess the 

significance of observed peaks in smoothed data. PREDA is a statistical test and as 

such the exact position and extent of a particular TI depends on the specific level of 

significance selected (Figure A.6 in Annexe 1). When we set this level at P<0.05, we 

identified 36 TIs of overexpression and 28 TIs of underexpression in the MPNST 

genome (Figure 11). 

 

Expression data from primary cell cultures and cell lines were also obtained from the 

NF1 Microarray Consortium (Miller et al., 2009), including 8 NF1-associated MPNST 

cell lines and 17 SC cultures derived from pNFs (N=6) and dNFs (N=11). When the 

differential expression mapped on the genome was between NF1-associated MPNST 

cell lines and SC cultures, TIs were also formed. In MPNST cell lines, when 

significance was also set at P<0.05, there were 35 TIs of overexpression and 31 TIs of 

underexpression (Figures A.5 and A.7 in Annexe 1). There was a significant overlap 

between the TIs identified in primary MPNSTs and those identified in cell lines 

(P<0.001 for TIs of overexpression and P<0.003 for TIs of underexpression). In 

particular, 25.4% of TIs of overexpression in primary MPNSTs were overlapping with 

TIs of overexpression in MPNST cell lines. This overlap was of 20.6% for TIs of 

underexpression (Figure A.7 in Annexe 1). 

 

2.2.1. TIs are significatively associated with SCNAs 

 
To assess whether TIs found in MPNSTs were associated to SCNAs we first used the 

MPNST-qPCR assay to check the copy number status of a selection of genomic loci 
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present in TIs. In particular, we selected 4 genes present in TIs of overexpression and 

4 other genes present in TIs of underexpression (Figure 12). In this study, we also 

used for the normalization of copy number data the NF considering the two repetitive 

elements, L1 and L1PA, as in the case of AURKA copy number assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Circos representation showing TIs and SCNAs found in MPNSTs. From outside to inside, 
idiograms of the 22 human autosomes with G-banding pattern are depicted. Over these idiograms red and 
green boxes show TIs of overexpression and underexpression, respectively, obtained from microarray 
expression data. Next, the 8 consecutive circles summarize the SCNAs and LOH obtained from SNP array 
data in the NF1-associated MPNSTs analyzed, as in Figure 10.B. In the inner circles, the recurrence of the 
SCNAs (in red and green) and LOH (in blue) of all tumours is shown. 
 

We also first determined the LDR and the E value of the primer pairs (Hellemans et al., 

2007) and the range of RCN values for a 2-copy status of each of the 8 genes using 

the 10 control samples (see Table 5). The mean calculated 99% CI of RCN for these 8 
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loci was 0.75–1.33. As in the case of AURKA, a RCN value below the lower limit of the 

CI for a locus was considered to indicate deletion of that particular locus; and a RCN 

value above the upper limit of the CI for a locus was considered to indicate a gain of 

that particular locus.   

 

After copy number data analysis, among the 12 primary MPNSTs and considering the 

4 interrogated genes present in TIs of overexpresion (48 loci in total), 13 of 48 (27%) 

were genomically amplified (Figure 12). In the case of the 5 MPNST cell lines (20 loci 

in total), 7 of 20 (35%) loci were genomically gained (Figure 12). Among the 12 primary 

MPNSTs and considering the 4 interrogated genes present in TIs of underexpression 

(48 loci in total), 28 of 48 (58%) were genomically deleted (Figure 12). In the case of 

the 5 MPNST cell lines (20 loci in total), 5 of 20 (25%) loci were genomically lost 

(Figure 12). Almost all (98%) of the 8 interrogated genes in the 8 neurofibroma 

samples (64 loci in total) did not show any copy number alteration and only 1 of 64 loci 

showed a genomic gain (Figure 12). All loci in the 10 control samples (80 loci in total) 

showed a diploid status.  

 

Fisher’s exact test was applied to assess the association between the TIs of 

overexpression and the genomic gains, which was significant for both MPNSTs 

(P<0.0001) and MPNST cell lines (P=0.008). The association between the TIs of 

underexpression and the genomic losses was also significant for both MPNSTs 

(P<0.0001) and MPNST cell lines (P=0.047). 

 

In order to evaluate those tumours arising in NF1 patients, we specifically assessed 

the association between TIs and the genomic alterations detected with the MPNST-

qPCR in the subset of NF1-associated MPNSTs. Among the 7 NF1-associated 

MPNSTs and considering the 4 interrogated genes present in TIs of overexpression 

(28 loci in total), 9 of 28 (32%) were genomically gained (Figure 12). Considering the 4 

interrogated genes present in TIs of underexpression (28 loci in total), 17 of 28 (61%) 

were genomically lost (Figure 12). In the NF1-associated MPNST sample subset, the 

association between TIs of overexpression and genomic gains, and the association 

between TIs of underexpression with genomic losses were both significant (Fisher’s 

exact tests; P=0.0018 and P<0.0001, respectively).  



Results 2	  

	  100	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Association of TIs with SCNAs in MPNSTs using MPNST-qPCR results. Copy number 
status of the 4 loci located in TIs of overexpression (DTL, CDCA7L, EXT1 and EYA2) and the 4 loci located 
in TIs of underexpression (TNNI3K, ADD3, STX3 and OPCML) in 5 MPNST cell lines, 12 MPNSTs (7 NF1-
associated and 5 sporadic), 8 neurofibromas and 10 control samples. Red boxes indicate genomic gains (i.e. 
those RCN values above the high value of the 99% CI of every interrogated locus) and green boxes indicate 
genomic losses (i.e. those RCN values below the low value of the 99% CI of every interrogated locus). Black 
boxes indicate two copies of the locus. 
 

Furthermore, as the copy number of these samples was also calculated using SNP 

array data by applying ASCAT, we wanted to compare the copy number values 

obtained with the two methodologies, MPNST-qPCR assay and SNP array-ASCAT, for 

the 8 interrogated loci. All of the genomic gains detected by the qPCR assay were also 

detected as so by the SNP array (Table 7). However, most of the genomic losses 

detected by the qPCR assay were found to present 2 copies of the locus in the case of 

the SNP array (Table 7).  
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This discrepancy could be explained by the different way qPCR and ASCAT deal with 

copy number data in hyperploid genomes. While MPNST-qPCR normalizes copy 

number with respect to the ploidy of the sample, ASCAT algorithm estimates ploidy 

and considers the fraction of non-aberrant cells during normalization. Hence, although 

not completely accurate, ASCAT is more reliable in assessing copy number of tumours 

with hyperploid genomes. As suggested in section 1.2.1., these results indicate that the 

MPNST-qPCR assay generates some false positives of deletion events, being the 

number of deleted loci over-represented, and some false negatives of genomic gains, 

being the number of gained loci under-represented. 

 
Sample DTL CDCA7L EXT1 EYA TNNI3K ADD3 STX3 OPCML PLOIDY 

MPNST-1 2 3 3 2 2 2 2 2 2.4 
MPNST_A 4 4 4 4 2 4 4 4 3.9 
MPNST_B 3 4 4 3 2 2 2 2 3.0 
MPNST_C 2 2 3 2 1 2 1 1 2.0 
MPNST_D 2 2 2 2 2 2 2 2 2.1 
MPNST_G 4 4 5 3.5 2 2 2 2 3.3 
MPNST_K 2 3 3 2 2 1 2 2 2.2 

S462 6 5 6 6 6 5 5 5 4.6 
T265 4 4 4 4 2 2 3 2 3.1 

ST-8814 4 4 5 5 4 4 4 3 4.4 
S462-TY 3 3 4 4 2 2 3 3 3.2 

 
Table 7. Comparison of copy number results from MPNST-qPCR and from SNP array. Comparison 
of the copy number status of 8 genomic loci present in TIs obtained by the MPNST-qPCR assay and 
obtained by SNP array. Red and green boxes indicate those loci detected as gained and lost, respectively, 
by the MPNST-qPCR assay. Numbers indicate the copy number status obtained by the analysis of SNP 
array data with ASCAT (genomic gains are shown in bold red; losses are shown in bold green). Moreover, 
the mean ploidy of every sample calculated by ASCAT is also indicated in blue. 
 

After the analysis of the results from the MPNST-qPCR assay, we wondered if the 

association found with the qPCR between the 8 TIs and the 8 SCNAs was a 

generalized phenomenon for the MPNST genome. Then, the whole set of TIs was 

considered and their association with SCNAs was studied. To statistically assess the 

global association between TIs and SCNAs we used regioneR, an R package for the 

comparison of genomic regions that was being developed in parallel by our research 

group in collaboration with other groups from our institute (Gel et al., 2015). regioneR 

provided a permutation test-based framework to statistically assess the association 

between a set of regions and any other genomic features or annotations. In our case 

we tested whether TIs were associated to an increased number of SCNAs. The results 

of performing a permutation test with regioneR were two values: the P-value, which 
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indicated if the association was significant, and the z-score, which showed the strength 

of this association.  

 

According to regioneR results, TIs of overexpression found in MPNSTs were 

significatively and strongly associated with genomic gains (P=0.0001; z-score: 4.568) 

(Figure 13.A). TIs of underexpression found in MPNSTs were also significatively 

associated with genomic losses (P=0.0181; z-score: 2.399) (Figure 13.B), but with a 

less extent compared to the association of TIs of overexpression with genomic gains. 

We hypothesized that probably this weaker association found for TIs of 

underexpression with genomic losses was because this association was in fact 

restricted to a subgroup of TIs and/or that TIs of underexpression were actually also 

associated with regions without copy number alterations (i.e. with a diploid status). To 

check this last hypothesis, regioneR was also used to assess the association of TIs of 

underexpression found in MPNSTs with non-gained regions (either with a diploid status 

or deleted). In this case, this association was found to be highly significant (P=0.0007; 

z-score: 2.938) (Figure 13.C). 

 

In the case of MPNST cell lines, the association was also significant for their TIs of 

overexpression with genomic gains (P=0.0001; z-score: 4.929; Figure A.8.A in Annexe 

1) and also for the TIs of underexpression with non-gained regions (P=0.0014; z-score: 

2.797; Figure A.8.B in Annexe 1). TIs of underexpression were not found to be 

associated with genomic losses in MPNST cell lines (P=0.1682). 

 

Taken together, both MPNST-qPCR and regioneR results showed that gene 

expression from MPNSTs is influenced by the genomic copy number in a regional 

manner. TIs of overexpression found in MPNSTs were significatively and strongly 

associated with genomic gains, which suggests an impact of these regional alterations 

on the overexpressed levels of their encompassed genes. TIs of underexpression were 

also significatively and strongly associated with non-gained genomic regions, 

suggesting that some regions are not genomically gained even in the hyperploid 

context of these tumours, and that may also have an influence on the expression levels 

of the genes included in these regions. 
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Figure 13. Global association of TIs with SCNAs in MPNSTs by regioneR. regioneR plots showing the 
results of permutation tests. The x-axis corresponds to the result of the evaluation function; in this case, the 
number of overlaps between the two sets of regions (TIs and SCNAs). The green line represents the 
evaluation of the original set of regions, in this case the TIs, and the grey bars and the black line represent 
the distribution and mean of the randomized evaluation, with the significance limit of 0.05 depicted in red. A. 
TIs of overexpression were significatively associated with genomic gains. B. TIs of underexpression were 
significatively associated with genomic losses. C. TIs of underexpression were significatively associated with 
non-gained genomic regions (either with a diploid status or deleted). D. TIs of overexpression were not 
significatively associated with genomic losses. P-values and z-scores of every association are shown. 
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2.2.2. TIs of underexpression are significatively enriched in 

hypermethylated genes 

 
Some regional epigenomic mechanisms, such as long-range epigenetic silencing 

(LRES), have been described so far in several cancers. These are characterized by 

changes in the expression of genes placed contiguous in specific gross genomic 

locations by modifications in DNA methylation and chromatin remodelling. As TIs of 

underexpression were strongly associated with non-gained genomic regions, we 

wondered whether any silencing regional epigenomic mechanisms, either similar to 

LRES or not, were also possibly contributing to the generation of TIs of 

underexpression.  

 

To obtain some evidences, we first performed a methylation array (for details see 

Materials and Methods, section 2.4) in 4 NF1-associated MPNSTs and 3 pNFs and 

analyzed the gene methylation status. The differential methylation status of genes in 

MPNSTs vs. pNFs was calculated (Figure 14). We defined a promoter as significantly 

hyper- or hypomethylated if it contained at least two probes with a differential 

methylation level and at least 80% of the differentially methylated probes within this 

promoter were in the same direction (either hyper- or hypomethylated). If a gene had at 

least one differentially methylated promoter and all its differentially methylated 

promoters – in the case of having multiple promoters – were concordant (all hyper- or 

all hypomethylated) the gene was classified as hyper- or hypomethylated. 

 

After calculating the gene differential methylation status, we applied regioneR to check 

if there was an enrichment of these genes in TIs. TIs of underexpression were 

significatively enriched in hypermethylated genes in MPNSTs (P=0.0001; z-score: 

7.478; Figure 15.A). Then, we wondered if this association was even stronger for those 

TIs of underexpression that were not coincident with genomic losses. Hence, TIs of 

underexpression were divided into two groups: TIs associated with genomic losses 

(defined as those overlapping with more genomic losses than gains: see for instance 

TIs in 9p and 17p in Figure 11) and TIs not associated with genomic losses (all TIs of 

underexpression not in the previous group: see for instance the larger TI in 1p and the 

two TIs in 19q in Figure 11).  
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Figure 14. Karyoplot showing TIs and distribution of differentially methylated genes in MPNSTs. A 
karyogram showing the idiograms of the 22 human autosomes with G-banding pattern is depicted. Red and 
green boxes represent, respectively, the TIs of overexpression and the TIs of underexpression identified in 
MPNSTs. A sliding window approach with a fixed window width was used to create a smoothed version of 
the methylation data. The orange line represents the number of hypermethylated genes divided by the total 
number of genes in a 3Mb window, being this window moved with a 1Mb step. The purple line represents the 
number of hypomethylated genes. The space between the two lines and colour-filled shows the proportion of 
differentially methylated genes in MPNSTs compared to pNFs: an orange area indicates a higher proportion 
of hypermethylated genes; a purple area indicates a higher proportion of hypomethylated genes. Finally, the 
grey bars below the karyogram represent the gene density using the same sliding window approach. 
 

Both groups of TIs of underexpression were found significatively enriched in 

hypermethylated genes in MPNSTs (P<0.0001). However, this association was found 

to be stronger for those TIs not overlapping with genomic losses (z-score=6.337; 

Figure 15.B) than for TIs overlapping with deletions (z-score=3.571; Figure 15.C). 
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Figure 15. Global association of TIs with hypermethylated genes in MPNSTs by regioneR. regioneR 
plots showing the results of permutation tests. The x-axis corresponds to the result of the evaluation function; 
in this case, the number of overlaps between the two sets of genomic features (TIs and hypermetylated 
genes). The green line represents the evaluation of the original set of regions, in this case the 
hypermethylated genes, and the grey bars and the black line represent the distribution and mean of the 
randomized evaluation, with the significance limit of 0.05 depicted in red. In this case the randomization 
strategy was a random label shuffling. A. TIs of underexpression were significatively enriched in 
hypermethylated genes. B. TIs of underexpression not associated with genomic losses were significatively 
enriched with hypermethylated genes. C. TIs of underexpression associated with genomic losses were also 
enriched with hypermethylated genes, but in a weaker form than in B. D. TIs of overexpression were 
significatively depleted in hypermethylated genes. 
 
Moreover, TIs of overexpression were significatively depleted in hypermetylated genes 

in MPNSTs (P=0.0005; z-score= –3.257; Figure 15.D). These TIs of overexpression 

were enriched, on the contrary, in hypomethylated genes (P=0.0195; z-score: 2.073; 

data not shown). 
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The differential methylation status of genes in 4 MPNST cell lines vs. 3 SC cultures 

was also calculated and we used the same criteria for defining a differential methylated 

gene than in tumours. No significant enrichment of hypermethylated genes in TIs was 

found with regioneR in MPNST cell lines (P=0.4087; Figure A.8.C in Annexe 1). Only 

TIs of overexpression were significatively enriched in hypomethylated genes 

(P=0.0024; z-score= 2.947; Figure A.8.D in Annexe 1). 

 

In sum, when considering the results regarding the gene methylation status in 

MPNSTs, regioneR showed that TIs of underexpression found in MPNSTs are 

enriched in hypermethylated genes. This suggests that the global underexpression of 

the genes included in these TIs in MPNSTs may be influenced by, in addition to non-

gained genomic regions, their hypermethylated status.  

 

2.3. Understanding TIs: functional dissection of a specific TI 

 
Our molecular characterization corroborated that MPNSTs contained highly altered 

and hyperploid genomes with recurrent SCNAs, a distinctive hallmark that 

differentiated MPNSTs from pNFs. At the same time, the differential expression 

analysis between MPNSTs and benign neurofibromas revealed the formation of TIs, 

regions of the genome presenting a significant abundance of over- or underexpressed 

genes. These TIs were strongly associated with SCNAs, especially in the case of TIs 

of overexpression with copy number gains. TIs of underexpression, moreover, were 

significatively enriched in hypermethylated genes. All this molecular characterization of 

MPNSTs at genomic, epigenomic and transcriptomic levels was intended for a better 

understanding of MPNST pathogenesis. So, we first wondered what kind of information 

TIs were capturing and, secondly, if TIs could help in identifying genes and molecular 

mechanisms involved in MPNST pathogenesis.  

 

The recurrent SCNAs found in MPNSTs are genomic regions with a transcriptional 

impact in a regional manner. Hence, TIs are generated. We hypothesized that the 

generation of a TI is a result of a selection of a genomic (or an epigenomic) alteration 

because both the SCNA and the resulting TI contain at least one gene with a functional 
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role in tumour pathogenesis, and therefore conferring and advantage for the tumour. 

So, we first wondered what was the contribution to tumourigenesis of the genes 

located in a specific TI.  

 

To start understanding TIs and the contribution to MPNST pathogenesis of the genes 

they contain, we selected as a first step a TI encompassing a gene already functionally 

implicated in MPNST tumourigenesis (what we call a putative driver of MPNST 

pathogenesis) and analyzed the function of other genes present in the same TI that 

were similarly expressed. We selected BIRC5, which is an overexpressed gene 

present in a TI of overexpresion in MPNSTs (Figure 16). BIRC5, also known as 

survivin, is an antiapoptotic and mitotic promoter gene that has been already 

associated to MPNST pathogenesis (Ghadimi et al., 2012b). In addition to BIRC5, five 

other overexpressed genes in MPNSTs vs. neurofibromas and present in this TI were 

selected for their functional study. These genes included NUP85, TK1, CBX2, CBX4 

and CBX8 (Figure 16 and Table 8). The three CBX genes are located in cluster in the 

genome and are components of the Polycomb Repressor Complex 1 (PRC1).  

 

In our experimental model we studied how the loss of function of the selected 

overexpressed genes affected the in vitro tumourigenic properties of the two MPNST 

cell lines S462 and T265. In order to do so, a siRNA approach was designed for the 

expression knockdown of these genes and we set up a series of in vitro functional 

genetic approaches assessing different physiological readouts, such as cell viability, 

cell proliferation and cell cycle analysis, cell death and anchorage-independent growth 

(for details see Materials and Methods, sections 3 and 4).  

 

We used S462 and T265 cell lines as two representative models for MPNST 

pathogenesis. Although both cell lines are malignant, some of their tumourigenic 

properties differ both in vitro and in vivo, presenting in general S462 a more aggressive 

phenotype than T265 cell line. The S462 cell line is nearly tetraploid (Figure 4), it grows 

fast in vitro with a doubling time of approximately 24 hours (data not shown), and it can 

also generate colonies in a soft-agar assay (see below). In vivo, S462 is able to engraft 

either subcutaneously (Demestre et al., 2013) and orthotopically (Castellsague et al., 

2015) in mice, generating a MPNST histologically indistinguishable from a human 
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primary MPNST. The T265 cell line is nearly triploid (Figure 4), it grows slower than 

S462 with a doubling time of approximately 36 hours (data not shown) and it is not able 

to generate colonies in vitro (data not shown). Moreover, T265 cell line cannot 

generate MPNSTs in vivo in mice xenograft models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 16. TI of overexpression selected for its functional dissection. Bottom part: idiogram of 
chromosome 17 containing 3 TIs of underexpression (green boxes) and 3 TIs of overexpression (red boxes). 
The more distal TI of overexpression was selected for its functional dissection.  Upper part: diagram showing 
the TI selected for its functional dissection at 17q25.3 and the encompassed genes. Gene names are placed 
according to their level of significant differential expression in MPNSTs vs. neurofibromas. Selected genes 
for the expression knockdown and functional assays are depicted in red and rounded by red circles. 
 

As a first step and once siRNA transfection experiments were set up, the expression 

knockdown of all six genes was checked by RT-qPCR after siRNA transfection in both 

S462 and T265 (Figure 17.A). The reduction of the expression by the siRNA pools was 

relevant for nearly all genes in both S462 and T265 cell lines, except for CBX2. We 

established criteria for the expression knockdown to select those genes to be included 

in the further functional genetic approaches: when the expression depletion of a siRNA 

pool targeting a particular gene in at least one of the two cell lines was not significant 

and the mean expression knockdown of this gene considering both S462 and T265 

was below 50% of reduction, this particular gene was excluded from the study. That 
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was the case for CBX2, which was therefore eliminated from further analysis (Figure 

17.A). The mean±SD expression reduction for all remaining genes, NUP85, TK1, 

CBX4, CBX8 and BIRC5, considering the two cell lines was of 78±14% (Figure 17.A). 

 

Gene 
Chromo- 

somal 
location 

P-value 
differential 
expression  
In tumours 

Log2 fold 
change 

expression 
in tumours 

Association 
to TI 

P-value 
differential 
expression 

in cells 

Log2 fold 
change 

expression 
in cells 

% MPNSTs 
with gains / 

losses 

NUP85 17q25.3 6.7 x 10-4 0.95 In TI of over-
expression 0.006 1.09 75 / 0 

TK1 17q25.3 1.1 x 10-6 1.52 In TI of over-
expression 0.007 1.54 75 / 0 

CBX2 17q25.3 2.4 x 10-5 0.30 In TI of over-
expression 0.050 0.16 75 / 0 

CBX4 17q25.3 0.046 0.52 In TI of over-
expression 7.83 x 10-5 0.40 75 / 0 

CBX8 17q25.3 2.0 x 10-8 0.93 In TI of over-
expression 0.005 0.02 75 / 0 

BIRC5 17q25.3 3.0 x 10-8 4.61 In TI of over-
expression 0.072 1.93 75 / 0 

 
Table 8. Genes selected for the functional dissection of a specific TI. Information on their 
chromosomal location, the significance (P-value) and the fold change in the differential expression in 
tumours (MPNSTs vs. neurofibromas) and in cells (MPNST cell lines vs. SCs), and the proportion of 
MPNSTs from our set showing a SCNA in their genomic location. 

 
After analysis of all readouts from the functional genetic assays in the two cell lines 

analyzed, BIRC5 expression knockdown consistently and significatively affected the in 

vitro studied tumourigenic features of both S642 and T265. When BIRC5 expression 

was depleted in S462, there were strong and significant effects in all readouts: viability 

(96% reduction; Figure 17.B), proliferation (49% reduction; Figure 18.A), cell cycle 

arrest in G2-M phase (3.8-fold increase in the percentage of G2-M cells; Figure 18.B), 

apoptosis (5.8-fold increase; Figure 19.A), total cell death (5.2-fold increase; Figure 

19.B), and anchorage-independent growth (96% and 99% reduction in colony number 

and area, respectively, Figure 20).  

 

In the case of T265 cell line, there were also significant differences in all readouts 

analyzed: viability (36% reduction; Figure 17.B), proliferation (61% reduction; Figure 

18.A), cell cycle arrest in G2-M phase (5.3-fold increase in the percentage of G2-M 

cells; Figure 18.B), apoptosis (1.9-fold increase; Figure 19.A), and total cell death (1.6-

fold increase; Figure 19.B). These results confirmed the antiapoptotic effect of BIRC5 

and their requirement for the cell survival and cell cycle progression in MPNST cell 

lines, which have been already described (Ghadimi et al., 2012b). 
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Figure 17. Expression knockdown and cell viability in S462 and T265 cell lines after depletion of 
overexpressed genes present in a specific TI. A. Fold change of expression knockdown in S462 (light 
blue) and T265 (dark blue) 72 hours post-transfection of siRNA pools targeting NUP85, TK1, CBX2, CBX4, 
CBX8 or BIRC5 genes vs. a non-targeting control siRNA (NTC). B. Fold change of cell viability in S462 (light 
orange) and T265 (orange) 72 hours post-transfection of siRNA pools targeting NUP85, TK1, CBX4, CBX8 
or BIRC5 genes vs. a non-targeting control siRNA (NTC). Analysis of cell viability by cell counting in S462 
and by XTT colourimetric assay in T265. All experiments in A and B were repeated three times. A T-test 
considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
 
 

Another gene from this TI, NUP85, produced a mild effect in these tumourigenic 

properties when their expression was depleted, but this effect was lower than in the 

case of BIRC5 depletion and mostly affected S462 rather than T265 cell line (Figures 

17.B, 18, 19 and 20). 
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Figure 18. Cell proliferation and cell cycle analysis in S462 and T265 cell lines after expression 
knockdown of overexpressed genes present in a specific TI. A. Fold change of the percentage of 
proliferating S462 (light green) and T265 (dark green) 72 hours post-transfection of siRNA pools targeting 
NUP85, CBX4, CBX8 or BIRC5 genes vs. a non-targeting control siRNA (NTC). Analysis of EdU 
incorporation in 10,000 cells by flow cytometry. This assay was not valid for TK1 knockdown. B, C. 
Percentages of cells in cell cycle phases G1 (bottom of column), S (middle of column) and G2 (top of 
column) in S462 (B) and T265 (C) 72 hours post-transfection of siRNA pools targeting NUP85, TK1, CBX4, 
CBX8 or BIRC5 genes vs. a non-targeting control siRNA (NTC). Analysis of propidium iodide staining in 
10,000 cells by flow cytometry. All experiments in A, B and C were repeated three times. A T-test 
considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure 19. Apoptosis and total cell death in S462 and T265 cell lines after expression knockdown 
of overexpressed genes present in a specific TI. A. Fold change of the percentage of early apoptotic 
S462 cells (light violet) and T265 cells (dark violet) 72 hours post-transfection of siRNA pools targeting 
NUP85, TK1, CBX4, CBX8 or BIRC5 genes vs. a non-targeting control siRNA (NTC). Analysis of Annexin V 
staining in 30,000 cells by flow cytometry. B. Fold change of the percentage of dead S462 cells (light blue) 
and T265 cells (dark blue) –considering as dead cells those in late apoptotic or necrosis– 72 hours post-
transfection of siRNA pools targeting NUP85, TK1, CBX4, CBX8 or BIRC5 genes vs. a non-targeting control 
siRNA (NTC). Analysis of Annexin V and bisbenzimide co-staining in 30,000 cells by flow cytometry. All 
experiments in A and B were repeated three times. A T-test considering unequal variances was applied. *, P 
< 0.05; **, P < 0.01; ***, P < 0.001. 
 

The knockdown of TK1, CBX4 and CBX8 did not affect the tumourigenic properties of 

S462 and T265. On the contrary, CBX8 knockdown produced an increase in both 

colony number and area of colonies in the soft agar assay in S462 (1.8-fold and 3.4-

fold increase in colony number and area, respectively, Figure 20). Although more 

experimental data should be performed to conclude so, this result suggests that CBX8, 

rather than being oncogenic, could be acting as a TSG in S462. 
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Figure 20. Anchorage-independent growth analysis in S462 cell line after expression knockdown 
of overexpressed genes present in a specific TI. A. Fold change of the number of colonies of S462 cells 
in soft agar 15 days post-transfection of siRNA pools targeting NUP85, TK1, CBX4, CBX8 or BIRC5 genes 
vs. a non-targeting control siRNA (NTC). B. Fold change of the area of colonies of S462 cells in soft agar 15 
days post-transfection of siRNA pools targeting NUP85, TK1, CBX4, CBX8 or BIRC5 genes vs. a non-
targeting control siRNA (NTC). Measurement of both number and area of colonies was performed with 
ImageJ software. All experiments in A and B were repeated three times (in CBX8, six times). A T-test 
considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
 

Taken together, these results indicate that most of the studied genes in this TI, except 

for BIRC5, would not be required for the cell survival and cell cycle progression of the 

studied MPNST cell lines. Although our experimental model is limited (only two 

MPNST cell lines assessed and no in vivo validation performed), these results suggest 

that the overexpression of these genes in MPNSTs could be considered as passenger. 

We hypothesize that TIs would mostly capture genes differentially expressed between 

malignant and benign tumours that would not have a role in the pathogenesis of 

MPNSTs. 
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However, at the same time, these results also indicate that the formation of a TI would 

respond to the presence of one or a few genes important for MPNST pathogenesis, as 

is the case of BIRC5 for this particular TI, in an analogous manner to what has been 

described for a SCNA (Beroukhim et al., 2010). TIs would be generated as a 

consequence of a selection of genomic regions containing few genes important for 

MPNST pathogenesis. As being gene expression closer to gene function than copy 

number, the information provided by TIs would be certainly relevant and could be used 

for both analyzing differentially expressed genes in malignant vs. benign tumours and 

for identifying candidate genes for MPNST pathogenesis.  

 

2.4. Functional characterization of candidate genes for MPNST 

pathogenesis using information from TIs  

 
Despite of the evidences that pointed to TIs to mainly capture passenger gene 

expression, we wondered whether information provided by TIs could be used for the 

identification of genes and mechanisms involved in MPNST pathogenesis. We focused 

our attention in two types of information from TIs. First, TIs were providing an impact of 

copy number on gene expression but, at the same time, TIs represented smaller 

genomic regions than the overlapped SCNAs where they were contained, thus 

reducing the number of genes. In addition, we also observed that many known cancer 

genes were present in TIs. We wondered whether some of these cancer genes could 

be responsible for the generation of TIs and were also drivers of MPNST 

pathogenesis, as a result of the selection of a particular SCNA. Second, we observed 

genes in TIs with an opposite differential expression than their neighbouring genes. 

This fact indicated that the differential expression of these genes, rather than being 

influenced by the mechanism that generated the TI, was mainly regulated regardless of 

the genomic (or the epigenomic) regional event. We hypothesized that these genes 

could reflect a physiological adaptation of the tumoural cell to a new altered state. This 

type of genes could be distributed all over the genome, being present or not in TIs. 

However, we were detecting these genes within TIs because their differential 

expression was opposed to the overall differential expression of the TI. We speculated 

that these genes could be representatives of pathways and molecular mechanisms 

where they participate. In this regard, we wondered whether this unique information, 
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only detected using information provided by TIs, could be useful for identifying genes 

and molecular mechanisms involved in MPNST pathogenesis. 

 

2.4.1. Functional characterization of overexpressed cancer 

genes present in TIs of overexpression 

 
To investigate our first hypothesis, we selected TIs of overexpression that were 

globally associated to copy number gains, in order to find candidate genes drivers of 

MPNST pathogenesis. We hypothesized that these TIs could be created as a result of 

the copy number gain. We considered only differentially overexpressed genes in 

MPNSTs versus benign tumours (dNFs and pNFs) that were included in TIs from 

MPNSTs, and with a described role in tumourigenesis (Figure 21).  

 

We listed all the genes present in TIs of overexpression and we ranked them according 

to their expression levels considering both primary MPNSTs and MPNST cell lines, 

and their recurrence in genomic gains. We also considered, most importantly, a prior 

biological knowledge of their implication in cancer by using different cancer databases, 

as the Cancer Gene Census, and lists of putative cancer drivers of other tumour types 

(Tamborero et al., 2013). According to that, we selected six genes as candidate drivers 

of MPNST pathogenesis and also candidates for the generation of their respective TI: 

PLAG1, CAD, EPHA4, BUB1, MYBL2 and HOXA13 (Table 9). 

 

Gene 
Chromo- 

somal 
location 

P-value 
differential 
expression  
in tumours 

Log2 fold 
change 

expression 
in tumours 

Association 
to TI 

P-value 
differential 
expression 

in cells 

Log2 fold 
change 

expression 
in cells 

% MPNSTs 
with gains / 

losses 

PLAG1 8q12.1 3.3 x 10-4 3.34 In TI of over-
expression 0.071 1.04 87.5 / 0 

CAD 2p23.3 0.018 0.78 In TI of over-
expression 0.002 1.54 50 / 0 

EPHA4 2q36.1 0.002 2.15 In TI of over-
expression 1.2 x 10-5 2.42 62.5 / 0 

BUB1 2q13 1.6 x 10-10 3.34 In TI of over-
expression 0.037 2.10 62.5 / 0 

MYBL2 20q13.12 4.9 x 10-4 0.80 In TI of over-
expression 8.9 x 10-5 1.82 37.5 / 0 

HOXA13 7p15.2 2.7 x 10-10 4.41 In TI of over-
expression 4.4 x 10-5 3.80 62.5 / 0 

 
Table 9. Cancer genes selected as candidate drivers of MPNST pathogenesis. Information on their 
chromosomal location, the significance (P-value) and the fold change in the differential expression in 
tumours (MPNSTs vs. neurofibromas) and in cells (MPNST cell lines vs. SCs), and the proportion of 
MPNSTs from our set showing a SCNA in their genomic location. 
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Figure 21. Diagram of the approach considering TIs of overexpression for identifying driver genes 
of MPNST pathogenesis. From top to bottom: a whole chromosome is depicted; red shaded areas show 
TIs of overexpression; blue line shows the smoothed mean differential gene expression; black dots indicate 
differential expression values from individual genes; red and green dots show differential expression from 
genes known to have a gain of function or a loss of function in cancer, respectively (circled dots represent 
those selected for experimental validation); somatic copy number alterations (SCNAs) are also shown as red 
bars indicating genomic gains and green bars indicating genomic losses.  
 

PLAG1 is a zinc finger transcription factor that positively regulates IGF2 growth factor 

(Voz et al., 2000). Some studies have shown a role of PLAG1 in several tumours, 

being the pleomorphic adenomas of the salivary glands the most common (Kas et al., 

1997).  

 

CAD encodes the enzyme carbamoyl-phosphate synthetase 2, a protein associated 

with the pathway of de novo pyrimidine biosynthesis (Iwahana et al., 1996), which is 

regulated by the MAPK cascade (Graves et al., 2000), linking the processes of cell 

cycle and metabolism. CAD has been associated, among others, with breast (Zhang et 

al., 2013) and prostate cancer (Morin et al., 2012).  

 

EPHA4 is a receptor tyrosine kinase that belongs to the ephrin receptor subfamily. It 

plays an important role in the development of the nervous system controlling different 
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steps of axonal guidance (Drescher et al., 1997) and in angiogenesis (Wang et al., 

1998). EPHA4 has been related to several tumour types, especially to pancreatic 

cancer (Iiizumi et al., 2006).  

 

BUB1 encodes a serine/threonine kinase essential for the spindle-assembly checkpoint 

signalling and for a correct chromosome alignment. It has a key role in the recruitment 

of other proteins at the kinetochore, such as the kinesin CENPE and BUB1B (Johnson 

et al., 2004), among others. BUB1B has found overexpressed in MPNSTs (Stricker et 

al., 2013) and BUB1 is mutated in several cancers (reviewed in Kops et al., 2005).  

 

MYBL2 is a member of the MYB family of transcription factors involved in the 

regulation of the expression of numerous genes during cell cycle progression, including 

TOP2A and MYC, promoting the entry into the S and M phases of the cell 

cycle (Joaquin and Watson, 2003). MYBL2 is overexpressed in neuroblastoma and 

other tumours (reviewed in Martinez and Dimaio, 2011).  

 

HOXA13 is a homeobox transcription factor that has been associated with acute 

myeloid leukemia (Fujino et al., 2002), esophageal squamous cell carcinoma (Gu et 

al., 2009) and hepatocellular carcinoma (Cillo et al., 2011). It has been recently also 

found deregulated in pancreatic cancer (Li et al., 2015) and glioma (Duan et al., 2015). 

 

As before, their expression knockdown after siRNA transfection was first checked by 

RT-qPCR in both S462 and T265 and was found relevant and significant for all genes, 

except for PLAG1 (Figure 22.A). We used the same criteria than in section 2.3 and 

PLAG1 gene was then excluded from the functional genetic assays. The mean±SD 

expression reduction for all remaining genes, CAD, EPHA4, BUB1, MYBL2 and 

HOXA13, considering the two cell lines was of 73±20% (Figure 22.A). 

 

The results from the functional genetic approaches pointed to MYBL2 and CAD to 

have a potential role in the in vitro tumourigenic features studied. When MYBL2 

expression was knocked down in S462, there were significant effects in many 

readouts: viability (75% reduction; Figure 22.B), proliferation (71% reduction; Figure 

23.A), cell cycle arrest in G0/G1 phase (1.6-fold increase in the percentage of G0/G1 
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cells; Figure 23.B), apoptosis (2.4-fold increase; Figure 24.A), and total cell death (2.4-

fold increase; Figure 24.B). In T265 cell line, some effects were also found when 

MYBL2 was depleted: 34% reduction in viability (Figure 22.B), and 26% reduction in 

proliferation (Figure 23.A). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22. Expression knockdown and cell viability in S462 and T265 cell lines after depletion of 
cancer genes selected as candidate drivers of MPNST pathogenesis. A. Fold change of expression 
knockdown in S462 (light blue) and T265 (dark blue) 72 hours post-transfection of siRNA pools targeting 
PLAG1, CAD, EPHA4, BUB1, MYBL2, or HOXA13 genes vs. a non-targeting control siRNA (NTC). B. Fold 
change of cell viability in S462 (light orange) and T265 (orange) 72 hours post-transfection of siRNA pools 
targeting CAD, EPHA4, BUB1, MYBL2, or HOXA13 genes vs. a non-targeting control siRNA (NTC). Analysis 
of cell viability by cell counting in S462 and by XTT colourimetric assay in T265. All experiments in A and B 
were repeated three times. A T-test considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, 
P < 0.001. 
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Figure 23. Cell proliferation and cell cycle analysis in S462 and T265 cell lines after expression 
knockdown of cancer genes selected as candidate drivers of MPNST pathogenesis. A. Fold change 
of the percentage of proliferating S462 (light green) and T265 (dark green) 72 hours post-transfection of 
siRNA pools targeting CAD, EPHA4, BUB1, MYBL2, or HOXA13 genes vs. a non-targeting control siRNA 
(NTC). Analysis of EdU incorporation in 10,000 cells by flow cytometry. B, C. Percentages of cells in cell 
cycle phases G1 (bottom of column), S (middle of column) and G2 (top of column) in S462 (B) and T265 (C) 
72 hours post-transfection of siRNA pools targeting CAD, EPHA4, BUB1, MYBL2, or HOXA13 genes vs. a 
non-targeting control siRNA (NTC). Analysis of propidium iodide staining in 10,000 cells by flow cytometry. 
All experiments in A and B were repeated three times. A T-test considering unequal variances was applied. 
*, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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In the case of CAD, when depleted in S462, there were significant effects in viability 

(38% reduction; Figure 22.B), apoptosis (1.5-fold increase; Figure 24.A), and 

anchorage-independent growth (49% reduction in colony number; Figure 25). No 

remarkable effects were found in T265 cell line when CAD expression was knocked 

down. 

 
 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 24. Apoptosis and total cell death in S462 and T265 cell lines after expression knockdown 
of cancer genes selected as candidate drivers of MPNST pathogenesis. A. Fold change of the 
percentage of early apoptotic S462 cells (light violet) and T265 cells (dark violet) 72 hours post-transfection 
of siRNA pools targeting CAD, EPHA4, BUB1, MYBL2, or HOXA13 genes vs. a non-targeting control siRNA 
(NTC). Analysis of Annexin V staining in 30,000 cells by flow cytometry. B. Fold change of the percentage of 
dead S462 cells (light blue) and T265 cells (dark blue) –considering as dead cells those in late apoptosis or 
necrosis– 72 hours post-transfection of siRNA pools targeting CAD, EPHA4, BUB1, MYBL2, or HOXA13 
genes vs. a non-targeting control siRNA (NTC). Analysis of Annexin V and bisbenzimide co-staining in 
30,000 cells by flow cytometry. All experiments in A and B were repeated three times. A T-test considering 
unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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These results indicated that the oncogenic transcription factor MYBL2 and, in a less 

extent, the enzyme CAD might have a role in the cell survival of the studied MPNST 

cell lines, especially for S462. However, these results were not as robust as the effect 

of BIRC5 depletion in these cell lines, pointing that both MYBL2 and CAD would 

contribute to MPNST pathogenesis but not having an essential role. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Anchorage-independent growth analysis in S462 cell line after expression knockdown 
of cancer genes selected as candidate drivers of MPNST pathogenesis. A. Fold change of the number 
of colonies of S462 cells in soft agar 15 days post-transfection of siRNA pools targeting CAD, EPHA4, BUB1, 
MYBL2, or HOXA13 genes vs. a non-targeting control siRNA (NTC). B. Fold change of the area of colonies 
of S462 cells in soft agar 15 days post-transfection of siRNA pools targeting CAD, EPHA4, BUB1, MYBL2, or 
HOXA13 genes vs. a non-targeting control siRNA (NTC). Measurement of both number and area of colonies 
was performed with ImageJ software. All experiments in A and B were repeated three times (in CBX8, six 
times). A T-test considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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The expression knockdown of the other studied genes, EPHA4, BUB1 and HOXA13 

did not affect the tumourigenic properties of S462 and T265, although it should be 

considered that the knockdown of EPHA4 in both cell lines and HOXA13 in S462 were 

not that relevant. 

 

However, taken together, these results indicate that most of the selected and studied 

cancer-associated genes, would not be required for the cell survival and cell cycle 

progression of S462 and T265, although the limitations of our experimental model (only 

two cell lines and no in vivo experiments performed) should be considered. 

 

The two most important factors for the selection of putative driver genes responsible 

for the formation of TIs of overexpression were a previous knowledge on their 

functional implication in tumourigenesis (or their consideration as cancer drivers) and 

the expression in our in vitro experimental model (overexpressed in MPNST cell lines). 

Despite all these limitations and the necessity of a further screening, a previous 

knowledge on cancer drivers did not provided useful information for identifying drivers 

of MPNST pathogenesis in TIs of overexpression. 

 

2.4.2. Functional characterization of overexpressed genes 

present in or flanking TIs of underexpression 

 
In a second step, we studied genes from TIs with an opposite differential expression 

than their neighbouring genes. In other words, we looked for differentially 

overexpressed genes in MPNSTs that were present in or flanking TIs of 

underexpression (Figure 26). We hypothesized that these genes may be mainly 

regulated by the physiological state of the cancerous cell regardless of the genomic (or 

epigenomic) regional effect. Thus, we speculated that some of these genes might be 

involved in molecular pathways that are required for maintaining MPNST tumoural 

properties.  

 

Then, a list of all the overexpressed genes present in or flanking TIs of 

underexpression was generated, considering their expression levels in both primary 

MPNSTs and MPNST cell lines and a described functional role in tumourigenesis 
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according to the literature. According to that, we selected LHX8, CDCA8, BCAT1, 

CCDC8 and GINS2 as candidate genes (Table 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26. Diagram of the approach considering the unique information provided by TIs for 
identifying genes involved in MPNST pathogenesis. From top to bottom: a whole chromosome is 
depicted; the red shaded area show a TI of overexpression; and the green shaded area show a TI of 
underexpression; blue line shows the smoothed mean differential gene expression; black dots indicate 
differential expression values from individual genes; circled dots are those selected for experimental 
validation because of their differential expression is opposed to the differential expression of the 
neighbouring genes within the TI; somatic copy number alterations (SCNAs) are also shown as red bars 
indicating genomic gains and green bars indicating genomic losses.  
 

LHX8 is a member of the LIM homeobox subfamily of transcription factors. These 

proteins regulate important developmental pathways in multiple tissue types (Hobert 

and Westphal, 2000). A role in cancer of these proteins has been suggested either 

acting as oncogenes or TSGs depending on the member (Wang et al., 2014a). 

However, little is known about their specific functions in tumourigenesis and so far no 

report has associated LHX8 to cancer.  

 

CDCA8, Cell Division Cycle Associated 8, encodes the protein borealin, a component 

of the chromosomal passenger complex (CPC), a heterotetramer that regulate several 

processes during mitotic and meiotic cell divisions (reviewed in Ruchaud et al., 2007). 
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CDCA8 has been associated to gastric (Chang et al., 2006), and colorectal cancer 

(Wang et al., 2014b).  

 

BCAT1 encodes the enzyme Branched Chain Amino-Acid Transaminase 1 that 

catalyzes the reversible transamination of branched-chain alpha-keto acids to 

branched-chain L-amino acids (Ichihara and Koyama, 1966). It is a MYC target and it 

has been associated to nasopharyngeal (Zhou et al., 2007), urothelial (Chang et al., 

2015) and ovarian carcinoma (Wang et al., 2015), and glioma (Tonjes et al., 2013).  

 

CCDC8 encodes a coiled-coil domain-containing protein that is a core component of 

the 3M complex, a centrosomal complex that is required to regulate microtubule 

dynamics and genome integrity (Yan et al., 2014). The 3M complex inhibits CUL9, 

which, in turn, promotes the degradation of survivin (Li et al., 2014). So, survivin, 

encoded by BIRC5, is an indirect target of CCDC8. 

 

Gene 
Chromo- 

somal 
location 

P-value 
differential 
expression  
in tumours 

Log2 fold 
change 

expression 
in tumours 

Association 
to TI 

P-value 
differential 
expression 

in cells 

Log2 fold 
change 

expression 
in cells 

% MPNSTs 
with gains / 

losses 

LHX8 1p31.1 4.1 x 10-13 5.53 In TI of under-
expression 4.9 x 10-4 2.74 0 / 12.5 

CDCA8 1p34.3 2.3 x 10-6 2.91 In TI of under-
expression 0.062 1.91 12.5 / 12.5 

BCAT1 12p12.1 3.9 x 10-5 2.02 In TI of under-
expression 0.028 2.00 37.5 / 25 

CCDC8 19q13.32 3.0 x 10-5 2.18 Flanking TI of 
underexpression 0.006 1.54 25 / 0 

GINS2 16q24.1 1.9 x 10-8 3.00 Flanking TI of 
underexpression 0.072 1.61 25 / 12.5 

 
Table 10. Genes selected because of their opposed differential expression to the TI overall 
differential expression. Information on their chromosomal location, the significance (P-value) and the fold 
change in the differential expression in tumours (MPNSTs vs. neurofibromas) and in cells (MPNST cell lines 
vs. SCs), and the proportion of MPNSTs from our set showing a SCNA in their genomic location. 
 

GINS2 is a component of the GINS complex, which plays an essential role in the 

initiation of DNA replication (Kanemaki et al., 2003). A role of this protein in breast 

cancer has been suggested (Rantala et al., 2010; Zheng et al., 2014). 

 

Again, the expression knockdown of all five genes after siRNA transfection was 

checked by RT-qPCR in both S462 and T265, and was found relevant and significant 

for all five genes (Figure 27.A). The mean±SD expression reduction for all genes 

considering the two cell lines was of 86±6% (Figure 27.A). 
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Figure 27. Expression knockdown and cell viability in S462 and T265 cell lines after depletion of 
genes selected because of their opposed differential expression to the TI overall differential 
expression. A. Fold change of expression knockdown in S462 (light blue) and T265 (dark blue) 72 hours 
post-transfection of siRNA pools targeting LHX8, CDCA8, BCAT1, CCDC8 or GINS2 genes vs. a non-
targeting control siRNA (NTC). B. Fold change of cell viability in S462 (light orange) and T265 (orange) 72 
hours post-transfection of siRNA pools targeting LHX8, CDCA8, BCAT1, CCDC8 or GINS2 genes vs. a non-
targeting control siRNA (NTC). Analysis of cell viability by cell counting in S462 and by XTT colourimetric 
assay in T265. All experiments in A and B were repeated three times. A T-test considering unequal 
variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
 

The results from the functional genetic approaches, considering all readouts and cell 

lines, showed that the expression knockdown of CDCA8 consistently and significatively 

affected the in vitro tumourigenic features of S462 and T265 cell lines. In S462, 

CDCA8 expression depletion produced significant effects in all readouts: viability (82% 

reduction; Figure 27.B), proliferation (40% reduction; Figure 28.A), cell cycle arrest in 

G2/M phase (2.6-fold increase in the percentage of G2/M cells; Figure 28.B), apoptosis 

(3.6-fold  increase;  Figure 29.A),  total cell  death  (3.2-fold  increase; Figure 29.B), and  
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Figure 28. Cell proliferation and cell cycle analysis in S462 and T265 cell lines after expression 
knockdown of genes selected because of their opposed differential expression to the TI overall 
differential expression. A. Fold change of the percentage of proliferating S462 (light green) and T265 (dark 
green) 72 hours post-transfection of siRNA pools targeting LHX8, CDCA8, BCAT1, CCDC8 or GINS2 genes 
vs. a non-targeting control siRNA (NTC). Analysis of EdU incorporation in 10,000 cells by flow cytometry. B, 
C. Percentages of cells in cell cycle phases G1 (bottom of column), S (middle of column) and G2 (top of 
column) in S462 (B) and T265 (C) 72 hours post-transfection of siRNA pools targeting LHX8, CDCA8, 
BCAT1, CCDC8 or GINS2 genes vs. a non-targeting control siRNA (NTC). Analysis of propidium iodide 
staining in 10,000 cells by flow cytometry. All experiments in A and B were repeated three times. A T-test 
considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
 



Results 2	  

	  128	  

anchorage-independent growth (91% and 98% reduction in colony number and area, 

respectively, Figure 30). In the case of T265 cell line, there were also significant 

differences in viability (38% reduction; Figure 27.B), proliferation (39% reduction; Figure 

28.A), cell cycle arrest in G2/M phase (3.1-fold increase in the percentage of G2/M 

cells; Figure 28.B) and apoptosis (2.9-fold increase; Figure 29.A). 

 

These results indicated that CDCA8 is required for the survival and cell cycle 

progression of these MPNST cell lines. CDCA8 encodes borealin, a component of the 

CPC, together with survivin (the product of BIRC5 gene) and two other proteins 

(reviewed in Ruchaud et al., 2007). Considering this, our results suggest that the CPC 

may have a role in MPNST pathogenesis. 

 

Another gene from this group, CCDC8, when knocked down, was also found to have 

an effect in the tumourigenic properties studied, especially for S462. This cell line 

showed a 84% reduction in cell viability (Figure 27.B), a 49% reduction in cell 

proliferation (Figure 28.A), an arrest in G2/M phase of the cell cycle (2.6-fold increase 

in the percentage of G2/M cells; Figure 28.B), a 1.7-fold increase in total cell death 

(Figure 29.B), and a 97% and 99% reduction in colony number and area, respectively, 

in the soft agar assay (Figure 30). In T265, CCDC8 expression depletion also produced 

a 29% reduction in viability (Figure 27.B) and an 18% reduction in proliferation (Figure 

28.A). The centrosomal protein CCDC8 has been found to positively regulate survivin 

by inhibiting its negative regulator CUL9 (Li et al., 2014), linking mitosis with cell 

survival, which is in consistency with our results.  

 

In the case of LHX8, there was a dramatic reduction in viability in both cell lines: 77% 

reduction in S462 (Figure 27.B) and 84% reduction in T265 (Figure 27.B). In fact, an 

elevated number of detached cells was observed for both lines as soon as 24 hours 

after LHX8 expression knockdown. Moreover, in S462, there was 2.6-fold increase in 

apoptosis (Figure 29.A), a 2.0-fold increase in total cell death (Figure 29.B) and a 78% 

and 83% reduction in colony number (Figure 30.A) and area (Figure 30.B), respectively, 

in the soft agar assay, after 72 hours of siRNA transfection. In T265, there was a 1.3-

fold increase in EdU incorporation (Figure 28.A), supported by a 1.4-fold increase in 

the percentage of cells in S phase (Figure 28.B). In this case, rather than an increase in 
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cell proliferation, an arrest in S phase of the cell cycle is suggested, which is consistent 

with the EdU incorporation increase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 29. Apoptosis and total cell death in S462 and T265 cell lines after expression knockdown 
of genes selected because of their opposed differential expression to the TI overall differential 
expression. A. Fold change of the percentage of early apoptotic S462 cells (light violet) and T265 cells (dark 
violet) 72 hours post-transfection of siRNA pools targeting LHX8, CDCA8, BCAT1, CCDC8 or GINS2 genes 
vs. a non-targeting control siRNA (NTC). Analysis of Annexin V staining in 30,000 cells by flow cytometry. B. 
Fold change of the percentage of dead S462 cells (light blue) and T265 cells (dark blue) –considering as 
dead cells those in late apoptotic or necrosis– 72 hours post-transfection of siRNA pools targeting LHX8, 
CDCA8, BCAT1, CCDC8 or GINS2 genes vs. a non-targeting control siRNA (NTC). Analysis of Annexin V 
and bisbenzimide co-staining in 30,000 cells by flow cytometry. All experiments in A and B were repeated 
three times. A T-test considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
 

These results showed that LHX8 has probably different functions in S462 and in T265, 

but a possible role in MPNST pathogenesis is plausible as long as the cells die soon 

after siRNA transfection. A better characterization of these tumourigenic properties 
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before 72 hours post-transfection is encouraged to unravel the role of LHX8. In any 

case, to our knowledge, this is the first time that an essential role of LHX8 in the cell 

survival of tumoural cells is demonstrated.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30. Anchorage-independent growth analysis in S462 cell line after expression knockdown 
of genes selected because of their opposed differential expression to the TI overall differential 
expression. A. Fold change of the number of colonies of S462 cells in soft agar 15 days post-transfection of 
siRNA pools targeting LHX8, CDCA8, BCAT1, CCDC8 or GINS2 genes vs. a non-targeting control siRNA 
(NTC). B. Fold change of the area of colonies of S462 cells in soft agar 15 days post-transfection of siRNA 
pools targeting LHX8, CDCA8, BCAT1, CCDC8 or GINS2 genes vs. a non-targeting control siRNA (NTC). 
Measurement of both number and area of colonies was performed with ImageJ software. All experiments in 
A and B were repeated three times (in CBX8, six times). A T-test considering unequal variances was applied. 
*, P < 0.05; **, P < 0.01; ***, P < 0.001. 
 

The expression knockdown of the other two studied genes, BCAT1 and GINS2, did not 

affect the majority of the tumourigenic properties of S462 and T265.  
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In sum, our results indicated that CDCA8 is required for the cell survival and cell cycle 

progression of both S462 and T265. If we take into account the role of BIRC5 in 

MPNSTs, we claim that the CPC could be an important player in MPNST 

pathogenesis. CCDC8 also seemed to be important for maintaining the tumourigenic 

properties of, at least, S462 cell line. Hence, it can be suggested that CCDC8 may 

have also a role in MPNST pathogenesis. Moreover, LHX8 rapidly affected the cell 

survival of both S462 and T265, and despite a better characterization is needed, LHX8 

could be also involved in the pathogenesis of these tumours. 

  

Although the limitations and constraints of our experimental model and candidate gene 

selection should be considered, as in previous experiments, with this approach we 

have identified at least two candidate genes to be involved in MPNST pathogenesis. 

TIs provide exclusive information on genes whose expression is mainly regulated 

independently from the regional genomic events observed. We suggest that these 

genes and the molecular pathways where they participate could help in a better 

understanding of MPNST pathogenesis. 

  

 



	  

	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  Role of mitotic kinesins in MPNST 

pathogenesis: potential therapeutic 

targets for MPNST treatment 
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3.1. TIs allowed the identification of kinesin genes involved in cell 

division 

 
When TIs were generated, a first evaluation of the overexpressed genes associated to 

TIs (either included in or flanking) was performed. In this analysis, a clear enrichment 

in genes from the kinesin superfamily involved in cell division was found. In particular, 

using data from the NF1 Microarray Consortium (Miller et al., 2009), from the 16 

kinesin genes known to participate in cell division, 13 of the 15 kinesins present in the 

expression array were significantly overexpressed in MPNSTs compared to benign 

neurofibromas (Table 11).  
 

Gene 
Chromo- 

somal 
location 

P-value 
differential 
expression 
in tumours 

Log2 fold 
change 

expression 
in tumours 

Association 
to TI 

P-value 
differential 
expression 

in cells 

Log2 fold 
change 

expression 
in cells 

% MPNSTs 
with gains / 

losses 

KIF2A 5q12.1 5.9 x 10-4 1.15 In TI of over-
expression 3.2 x 10-4 0.66 25 / 25 

KIF2B 17q22 1 0.00 Flanking TI of 
overexpression 1 0.00 87.5 / 12.5 

KIF2C 1p34.1 4.2 x 10-8 1.59 Flanking TI of 
underexpression 0.019 1.80 12.5 / 12.5 

KIF4A Xq13.1 6.8 x 10-5 3.78 n/a 0.133 1.29 0 / n/a 

KIF10 4q24 5.0 x 10-8 3.64 Flanking TI of 
overexpression 0.273 1.16 25 / 0 

KIF11 10q23.33 3.4 x 10-6 4.51 Flanking TI of 
underexpression 0.158 1.11 0 / 12.5 

KIF14 1q32.1 2.5 x 10-9 3.34 Flanking TI of 
underexpression 0.058 1.60 37.5 / 0 

KIF15 3p21.21 2.4 x 10-7 2.65 In TI of under-
expression 0.028 1.86 12.5 / 12.5 

KIF18A 11p14.1 1.4 x 10-4 1.35 NO 0.157 1.04 12.5 / 12.5 

KIF18B 17q21.31 1.6 x 10-6 5.91 Flanking TI of 
underexpression 0.054 2.30 50 / 25 

KIF20A 5q31.2 9.5 x 10-9 3.61 NO 0.281 1.40 25 / 12.5 

KIF20B 10q23.31 0.019 0.99 Flanking TI of 
underexpression 0.500 0.43 0 / 12.5 

KIF22 16p11.2 0.747 0.08 NO 0.005 0.99 37.5 / 25 

KIF23 15q23 2.1 x 10-9 3.44 In TI of over-
expression 0.134 1.17 75 / 0 

KIFC1 6p21.32 2.7 x 10-7 2.56 NO 0.040 1.41 37.5 / 0 

 
Table 11. Expression of mitotic kinesins in MPNSTs and association with TIs. Information on their 
chromosomal location, the significance (P-value) and the fold change of the differential expression in 
tumours (MPNSTs vs. neurofibromas) and in cells (MPNST cell lines vs. SCs), and the proportion of 
MPNSTs from our set showing a SCNA in their genomic location. In bold are those kinesins that were 
selected for experimental studies. n/a: not available. 
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Among these overexpressed kinesin genes, two of them, KIF2A and KIF23 (also 

known as MKLP1) were both present in TIs of overexpression; one kinesin, KIF15, was 

in a TI of underexpression; two other members, KIF10 (also known as CENPE) and 

KIF18B, were genes flanking TIs of overerexpression; and 5 genes, KIF2C, KIF11 

(also known as EG5), KIF14, KIF18B and KIF20B were flanking TIs of 

underexpression (Table 11). Other overexpressed mitotic kinesins in MPNSTs, 

including KIF18A, KIF20A (also known as MKLP2), KIF22 and KIFC1, were not 

associated to any TI. 

 

3.2. Selection of mitotic kinesins and study of their loss of 

function in MPNST cell lines 

 
As kinesins have emerged as potential targets for cancer drug development during the 

last years and some clinical trials have been performed (reviewed in Rath and 

Kozielski, 2012), we wanted to address whether some of the kinesins identified using 

information from TIs were involved in MPNST pathogenesis and could represent 

potential therapeutic targets for MPNST treatment.  

 

In order to do so, an experimental framework was designed to disrupt the function of a 

selection of kinesins involved at different stages of mitosis and cytokinesis. In 

particular, in addition to a gene expression knockdown using siRNA as in sections 2.3 

and 2.4, a chemical inhibition using drugs was also considered. The selected kinesin 

members in this study included four members identified through TI analysis (KIF23, 

KIF15, KIF11 and KIF18B) and two kinesins (KIF10, KIF11) targeted by drugs studied 

in clinical trials (Figure 31). KIF11 fulfilled both aspects. For the siRNA approach we 

selected KIF15, KIF18B, and KIF23, involved in prophase, prometaphase and 

telophase, respectively. For the chemical inhibition, we used three chemical 

compounds, ispinesib (Lad et al., 2008), GSK923295 (Wood et al., 2010), and 

paprotrain (Tcherniuk et al., 2010), to chemically inhibit the kinesins KIF11, KIF10, and 

KIF20A, which are also involved in prophase, prometaphase and telophase, 

respectively. Among these compounds, GSK923295 is in clinical phase I and ispinesib 

is in phase II (reviewed in Rath and Kozielski, 2012). 
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KIF11 is required for the separation of duplicated centrosomes during spindle 

formation in prophase (Blangy et al., 1995; Zhu et al., 2005) and KIF15 is required for 

the maintenance of the spindle (Tanenbaum et al., 2009; Vanneste et al., 2009). KIF10 

participates in the microtubule–kinetochore capture during the spindle assembly 

checkpoint (Yen et al., 1991; Mao et al., 2005; Zhu et al., 2005). KIF18B binds to the 

microtubule plus end and controls the length of the microtubule (Stout et al., 2011), 

forming a complex with KIF2C (Tanenbaum et al., 2011). KIF20A and KIF23 are 

involved in telophase and are essential for cytokinesis (Nislow et al., 1992; Zhu et al., 

2005).  

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 31. Mitotic kinesins and members selected for the loss of function approach. Kinesins are 
placed at the stages at which they have been shown to fulfil their mitotic functions. Expression of KIF15, 
KIF18B and KIF23 has been knocked down with siRNA molecules. KIF15, KIF10 and KIF20A have been 
chemically inhibited with ispinesib, GSK923295 and paprotrain, respectively.  

 

All of these kinesin genes, excluding KIF18B, have been found deregulated in some 

cancers. KIF11 is overexpressed in chronic myelogenous leukaemia (Nowicki et al., 

2003) and pancreatic cancer (Liu et al., 2010). Moreover, it has been shown to be 

essential for head and neck squamous cell carcinoma (Martens-de Kemp et al., 2013) 

and more recently, for glioblastoma pathogenesis (Venere et al., 2015). KIF15 has 
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been associated to breast cancer (Scanlan et al., 2001). KIF10 has been found 

downregulated in hepatocellular carcinoma (Liu et al., 2009) and overexpressed in 

some breast cancers (Agarwal et al., 2009). Finally, KIF23 is overexpressed in glioma 

(Takahashi et al., 2012), and KIF20A, in pancreatic cancer (Imai et al., 2011). 

 

3.3. KIF23 is required for the survival and cell cycle progression of 

MPNST cell lines 

 
The same in vitro functional assays used in sections 2.3 and 2.4 assessing cell 

viability, cell proliferation, cell cycle, cell death and anchorage-independent growth, 

were used to evaluate the effect of the expression knockdown of KIF15, KIF18B and 

KIF23 in the tumourigenic properties of S462 and T265 cell lines. 

 

First of all, the gene expression knockdown after siRNA transfection was checked by 

RT-qPCR for the three selected kinesin genes in both S462 and T265. The expression 

reduction was relevant and significant for KIF15 and KIF23 genes, but not for KIF18B.  

Considering the same criteria than in sections 2.3 and 2.4, KIF18B was consequently 

excluded for the functional genetic assays. The mean expression reduction for KIF15 

considering the two cell lines was of 70%, and for KIF23 was of 81% (Figure 32.A). 

 

KIF23 expression knockdown produced a significant reduction in both cell viability 

(85% reduction; Figure 32.B) and proliferation (25% reduction; Figure 33.A) in S462 cell 

line after 72 hours of siRNA transfection, as well as a cell cycle arrest in G2-M phase 

(2.2-fold increase in the percentage of G2-M cells; Figure 33.B). Increases in apoptosis 

(2.2-fold increase) and total cell death (2.3-fold increase) were also found, although 

they were not significant, probably due to the high variability among the biological 

replicates (Figure 34). Moreover, KIF23 knockdown also significantly abrogated the 

colony-forming capacity of S462 cell line (86% and 94% reduction in colony number 

and area, respectively; Figure 35).  

 

Similar results were found for the T265 cell line, where nearly all readouts yielded 

significant differences compared to the NTC treatment: viability (42% reduction; Figure 
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32.B), proliferation (44% reduction; Figure 33.A), G2-M arrest (4.2-fold increase in the 

percentage of G2-M cells; Figure 33.B) and apoptosis (3.0-fold increase; Figure 34.B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 32. Expression knockdown and cell viability in S462 and T265 cell lines after depletion of 
kinesin genes. A. Fold change of expression knockdown in S462 (light blue) and T265 (dark blue) 72 hours 
post-transfection of siRNA pools targeting KIF15, KIF18B or KIF23 genes vs. a non-targeting control siRNA 
(NTC). B. Fold change of cell viability in S462 (light orange) and T265 (orange) 72 hours post-transfection of 
siRNA pools targeting KIF15 or KIF23 genes vs. a non-targeting control siRNA (NTC). Analysis of cell 
viability by cell counting in S462 and by XTT colourimetric assay in T265. All experiments in A and B were 
repeated three times. A T-test considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 
0.001. 
 

In conjunction, these results obtained in both MPNST cell lines support a functional 

role of KIF23 in the survival and the cell cycle progression of these cell lines and 

suggests that KIF23 could be an important player in MPNST pathogenesis. 
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Figure 33. Cell proliferation and cell cycle analysis in S462 and T265 cell lines after expression 
knockdown of kinesin genes. A. Fold change of the percentage of proliferating S462 (light green) and 
T265 (dark green) 72 hours post-transfection of siRNA pools targeting KIF15 or KIF23 genes vs. a non-
targeting control siRNA (NTC). Analysis of EdU incorporation in 10,000 cells by flow cytometry. B, C. 
Percentages of cells in cell cycle phases G1 (bottom of column), S (middle of column) and G2 (top of 
column) in S462 (B) and T265 (C) 72 hours post-transfection of siRNA pools targeting KIF15 or KIF23 genes 
vs. a non-targeting control siRNA (NTC). Analysis of propidium iodide staining in 10,000 cells by flow 
cytometry. All experiments in A and B were repeated three times. A T-test considering unequal variances 
was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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KIF15 expression knockdown affected most of the in vitro tumourigenic properties of 

T265, but this was not the case for S462. In T265, cell proliferation was significantly 

reduced in 49% (Figure 33.A). In this case, a significant cell cycle arrest in G0/G1 

phase was detected (1.2-fold increase; Figure 33.C), which also produced significant 

increases in apoptosis (1.7-fold increase; Figure 34.A) and total cell death (1.3-fold 

increase; Figure 34.B).  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34. Apoptosis and total cell death in S462 and T265 cell lines after expression knockdown 
of kinesin genes. A. Fold change of the percentage of early apoptotic S462 cells (light violet) and T265 cells 
(dark violet) 72 hours post-transfection of siRNA pools targeting KIF15 or KIF23 genes vs. a non-targeting 
control siRNA (NTC). Analysis of Annexin V staining in 30,000 cells by flow cytometry. B. Fold change of the 
percentage of dead S462 cells (light blue) and T265 cells (dark blue) –considering as dead cells those in late 
apoptotic or necrosis– 72 hours post-transfection of siRNA pools targeting KIF15 or KIF23 genes vs. a non-
targeting control siRNA (NTC). Analysis of Annexin V and bisbenzimide co-staining in 30,000 cells by flow 
cytometry. All experiments in A and B were repeated three times. A T-test considering unequal variances 
was applied. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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The siRNA transfection targeting KIF15 caused an expression reduction of 60% in 

S462 (Figure 32.A). However, this had not any remarkable effect in this cell line. 

According to this, a functional role of KIF15 in the survival and the cell cycle 

progression of T265 cell line is suggested. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 35. Anchorage-independent growth analysis in S462 cell line after expression knockdown 
of kinesin genes. A. Fold change of the number of colonies of S462 cells in soft agar 15 days post-
transfection of siRNA pools targeting KIF15 or KIF23 genes vs. a non-targeting control siRNA (NTC). B. Fold 
change of the area of colonies of S462 cells in soft agar 15 days post-transfection of siRNA pools targeting 
KIF15 or KIF23 genes vs. a non-targeting control siRNA (NTC). Measurement of both number and area of 
colonies was performed with ImageJ software. All experiments in A and B were repeated three times (in 
CBX8, six times). A T-test considering unequal variances was applied. *, P < 0.05; **, P < 0.01; ***, P < 
0.001. 
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3.4. Inhibition of KIF11 and KIF10 with ispinesib and GSK923295, 

respectively, reduces cell viability in a set of MPNST cell lines 

 
A first screening of a chemical inhibition of the three selected kinesin proteins, KIF11, 

KIF10 and KIF20A was conducted using the NF1-associated MPNST cell lines T265, 

S462, ST-8814 and the sporadic STS26T. A primary SC culture from a benign dNF 

and the CCD-1112Sk human foreskin fibroblast (HFF) cell line were also used as 

benign and normal control cell lines. All cells were treated with vehicle (DMSO) and 4 

concentrations of ispinesib, GSK923295 or paprotrain in a short time course. Cell 

viability was measured before treatment at 0h, after 24h, and 48h post-treatment using 

the XTT assay, as in sections 2.3 and 2.4 (Figure 36). 

 

MPNST cell lines showed a reduction in cell viability when treated with these kinesin 

inhibitors, especially for ispinesib and, in a less extent, for GSK923295. In contrast, a 

mild effect of these drugs was found in the viability of the SC culture and the fibroblast 

cell line (Figure 36). High doses of ispinesib (40 nM and 1000 nM) were cytotoxic after 

48h of treatment for all MPNST cell lines, while lower doses (0.064 nM and 1.6 nM) 

seemed to produce a diverse cytostatic effect among the cell lines, except for STS26T, 

which showed a dramatic reduction in viability. In the case of GSK923295, only the 

highest dose (5000 nM) was found to be cytotoxic for all MPNST cell lines and lower 

doses (0.32 nM, 8 nM and 200 nM) were either cytostatic or did not have a profound 

effect in cell viability, depending on the cell line. A mild effect of the inhibitor paprotrain 

was found for MPNST cell lines, which was similar in both the SC and fibroblast control 

cultures. Only ST-8814 and STS26T showed a remarkable reduction in viability at the 

highest dose (500 µM). 

 

Taken together, these results support a functional role of KIF10 and KIF11 for the 

survival of MPNST cell lines and suggests that KIF10, and especially KIF11, could be 

involved in MPNST pathogenesis. 
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Figure 36. Effects of ispinesib, GSK923295 and paprotrain in MPNST cell lines, SCs and 
fibroblasts. Log2 fold viability of S462, T265, ST-8814, STS26T, a primary Schwann cell (SC) culture and 
the human foreskin fibroblast (HFF) cell line CCD-1112Sk at 24h and 48h versus 0h of treatment with 
different doses of ispinesib (A, green), GSK923295 (B, red) and paprotrain (C, blue). Analysis of cell viability 
by XTT colourimetric assay. 
 

3.5. MPNST cell lines are more sensitive to ispinesib and 

GSK923295 than fibroblasts 

 
To better assess the therapeutic potential of inhibiting kinesin function in MPNSTs, the 

sensitivity to the three kinesin inhibitors was further studied in the MPNST cell lines 

S462 and T265 and the control fibroblasts. Cells were again treated with vehicle 

(DMSO) and 4 concentrations of ispinesib, GSK923295 or paprotrain. Cell number was 

then calculated after 48h of treament by automated cell counting and used for 
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determining the half maximal inhibitory concentration (IC50) for each compound and 

cell line. When treated with ispinesib, both S462 and T265 were more sensitive than 

fibroblasts, with a 4.6-fold decrease and a 7.2-fold decrease, respectively, in the IC50 

values (Figures 37.A and 37.D). Exposure to GSK923295 also showed a higher 

sensitivity of S462 and T265 cell lines than the HFFs, with a 1.9-fold decrease and a 

1.5-fold decrease, respectively, in the IC50 values (Figures 37.B and 37.D). Treatment 

with paprotrain exhibited a higher sensitivity for this drug for S462 compared to 

fibroblasts (6.4-fold decrease in IC50), but this was not the case for T265, whose IC50 

value was even higher than the one from the HFFs (322.7 µM vs. 223.8 µM; Figures 

37.C and 37.D). These results are in agreement with those generated in the previous 

section 3.4 from the XTT viability assay for the same drugs and cell lines.  

 

Both experiments indicated that the MPNST cell lines S462 and T265 are more 

sensitive to KIF11 inhibition, and in less degree to inhibition of KIF10, than non-

transformed SCs or HFFs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37. Viability curves and IC50 determination of kinesin inhibitors in S462, T265 and 
fibroblasts. A, B, C. Viability curves of the MPNST cell lines S462, T265 and the control HFFs (CCD-
1112Sk cell line) after 48 hours of treatment with ispinesib (A), GSK923295 (B) or paprotrain (C). Log of 
several concentration points vs. the percentage of viable cells with respect to dose 0 are plotted. Analysis of 
cell viability by cell counting. D. IC50 values and 95% CI for each compound and cell line was calculated by 
applying a non-linear regression model curve fitting with the GraphPad Prism 5 software. 
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Both drugs ispinesib and GSK923295 inhibit the interaction between KIF11 and KIF10, 

respectively, with microtubules. This blockade prevents the formation of a functional 

bipolar mitotic spindle and the cell, consequently, dies. In order to check the 

phenotypic effect of these kinesin inhibitors, the mitotic spindle formation of S462 and 

T265 was studied by immunofluorescence of α-tubulin after 24h of treatment (Figure 

38).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Effect of ispinesib and GSK923295 in the mitotic spindle of S462 and T265 cells. 
Immunofluorescence of the microtubular protein α-tubulin (green) 24 hours after ispinesib or GSK923295 
treatment of S462 and T265 cell lines. Normal functional bipolar spindles were replaced by monopolar 
spindles, when treated with either ispinesib or GSK923295; or by multipolar spindle, when treated with 
GSK923295. Nuclei were counterstained with DAPI (blue). Images were taken in a fluorescence-inverted 
microscope (100x). 
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Inhibition of KIF11 with ispinesib replaced the functional bipolar mitotic spindles by 

monopolar spindles, and the alignment of chromosomes at metaphase plate was 

abrogated in both S462 and T265 cell lines (Figure 38), as described elsewhere 

(Walczak et al., 1998). Inhibition of KIF10 with GSK923295 also replaced the functional 

bipolar mitotic spindles by a combination of monopolar spindles and multipolar mitotic 

spindles, as it has been described when KIF10 is depleted (Brevini et al., 2012), and 

several chromosomes were placed outside the spindle pole in cluster, as described 

(Wood et al., 2010). Moreover, both S462 and T265 also showed no alignment of 

chromosome at metaphase in mitosis when treated with GSK923295 (Figure 38). 

 

In conjunction, these in vitro results obtained in both S462 and T265 cell lines suggest 

that KIF11 is a potential therapeutic target for the treatment of MPNST treatment, 

although more experimental work and an in vivo validation is needed to conclude so. 

 

3.6. KIF15 expression knockdown sensitizes S462 cell line to 

KIF11 inhibition with ispinesib 

 
Both KIF11 and KIF15 kinesins are crucial for a functional bipolar mitotic spindle. 

KIF11 is involved in the spindle formation (Blangy et al., 1995), while KIF15 

participates in the spindle maintenance (Vanneste et al., 2009). However, it has been 

described that KIF15 can replace all essential functions of KIF11 in the creation of the 

bipolar spindle (Tanenbaum et al., 2009). Therefore, we wanted to address whether 

S462 cell line, which did not show to be affected by a KIF15 expression knockdown, 

was more sensitive to KIF11 inhibition when the KIF15 expression was previously 

depleted. In this experiment, KIF15 expression knockdown was checked after ispinesib 

treatment (96 hours post-transfection) and resulted in a significant expression 

reduction of 49% (data not shown). Then, S462 cells transfected either with a siRNA 

pool targeting KIF15 or a NTC were treated with vehicle (DMSO) or 5 doses of 

ispinesib, ranging from 1 pM to 10 nM. Cell number was calculated 48h post-treatment 

for IC50 determination, as in section 3.5. KIF15-depleted S462 cells were more 

sensitive to ispinesib treatment than cells transfected with a NTC siRNA, with a 

significant 2.8-fold decrease in the IC50 value (Figure 39). 
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Figure 39. Viability curves and IC50 determination of ispinesib in S462 after KIF15 expression 
knockdown. A. Viability curves after 48 hours of treatment with ispinesib of S462 cell line previously 
transfected with siRNA pools targeting KIF15 or a non-targeting control siRNA (NTC). Log of several 
concentration points vs. the percentage of viable cells with respect to dose 0 are plotted. Analysis of cell 
viability by cell counting. B. IC50 values and 95% CI for ispinesib in KIF15-depleted S462 cells and KIF15-
non depleted S462 cells were calculated by applying a non-linear regression model curve fitting with the 
GraphPad Prism 5 software. The experimental combination of siRNA transfection plus ispinesib treatment 
was repeated three times. A paired T-test was applied. 
 

These results show that although KIF15 expression knockdown does not have an 

apparent effect in the survival and cell cycle progression of S462, unlike in T265 cell 

line, KIF15 depletion conferred S462 to be more sensitive to KIF11 inhibition than 

when the expression of KIF15 was not depleted.  

 

 In conjunction, these results support a functional role of KIF11 and KIF15 in the 

survival and the cell cycle progression of MPNST cell lines, and suggest that KIF11 

and KIF15 could be also important players in MPNST pathogenesis. Again, although in 

vivo experimental support is required, KIF11 and KIF15 are proposed as potential 

therapeutic targets for MPNST treatment. 
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1. A novel application of qPCR technique for DNA copy number 

assessment in the context of NF1 

 
Different techniques, including fluorescence in situ hybridization (FISH), multiplex 

ligation-dependent probe amplification (MLPA), and array comparative genomic 

hybridization (aCGH), are currently being used to assess the presence of 

microdeletions involving the NF1 locus. More recently, our group and others have 

proposed next-generation sequencing (NGS) not only for detecting NF1 point 

mutations but also deletions of NF1 exons or the entire NF1 locus (Pasmant et al., 

2015; Castellanos, manuscript in preparation).  
 
qPCR has already been used to assess the copy number status of the NF1 gene at the 

constitutional level: a qPCR approach has been developed to validate deletions 

involving specific exons within the NF1 gene, previously detected by MLPA (De Luca 

et al., 2004); and a sequence-tagged site qPCR has been designed to locate the 

deletion end points of a 7.6-Mb NF1 constitutional deletion from a neurofibromatosis 

type 1 (NF1) patient (Pasmant et al., 2008). At the somatic level, a cohort of acute 

myeloid leukaemia patients has been screened for NF1 somatic deletions using qPCR 

(Boudry-Labis et al., 2013), and qPCR has been also used, moreover, to detect low 

percentages of somatic NF1 point mutations in cultured Schwann cells (SCs; Maertens 

et al., 2006b). However, no probe-based qPCR assay has been developed so far to 

detect and distinguish between the four different types of NF1 constitutional 

microdeletions in NF1 patients or to check for NF1 somatic second-hit deletions in 

neurofibromas and other NF1 traits. 

 

In addition, some NF1 research groups, including our group, have tried to characterize 

the copy number of the genome of NF1-associated tumours [dermal neurofibromas 

(dNFs), plexiform neurofibromas (pNFs) and malignant peripheral nerve sheath 

tumours (MPNSTs)] and derived samples [Schwann cells (SCs), MPNST cell lines] 

using several methodologies, such as CGH (Mechtersheimer et al., 1999; Schmidt et 

al., 2000; Fang et al., 2009), cytogenetic karyotyping (Wallace et al., 2000; Mertens et 

al., 2000), array CGH (Mantripragada et al., 2008; Beert et al., 2011), and single 

nucleotide polimorphism (SNP) array (Garcia-Linares et al., 2011; Upadhyaya et al., 
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2012; Lee et al., 2014). In MPNSTs, the qPCR technique has been used for validating 

some somatic copy number alterations (SCNAs) found by array CGH (Mantripragada 

et al., 2008; Upadhyaya et al., 2012). Nevertheless, qPCR has not been used to 

prospectively analyze SCNAs in the MPNST genome.  

 

We believed that, given the advantages of the qPCR technique, it was a suitable 

technique to be used for the characterization of the copy number status of samples in 

the context of NF1. In this regard, two qPCR assays were developed in this thesis: 

NF1-qPCR, a novel probe-based qPCR assay that detects both NF1 constitutional and 

somatic deletions; and another similar qPCR assay, MPNST-qPCR, that detects copy 

number alterations in the MPNST genome. 

 

qPCR is a reliable technique for the quantification of DNA copy number 

 
qPCR is a highly analytically sensitive, specific, and precise technique that has several 

advantages over other methodologies. It is cheap and fast. Determining the copy 

number status of different loci in several samples can be performed in just three hours, 

including plate preparation, PCR amplification, and data analysis. Detecting copy 

number changes in samples of DNA extracted with different methodologies and kits or 

from different tissues and tumours can be challenging for many techniques, such as 

MLPA. Quantitative PCR, however, is very robust with respect to DNA quality, thereby 

permitting the screening and comparison of DNA samples from different sources.  

 

Both NF1-qPCR and MPNST-qPCR assays require small amounts of DNA: each 

reaction can be performed in just 8 µL, and only 15 ng per interrogated locus is 

required. Five nanograms of DNA per PCR reaction have been used, although smaller 

DNA quantities may be analyzed. 

 

qPCR reactions were highly efficient with large linear dynamic ranges. Moreover, to 

increase specificity and minimize the false-positive rate, we applied a stringent 

confidence interval (CI) of 99% to assess for the absence of a copy number change.  

 

In addition, these assays fulfil most of the essential aspects of the MIQE (minimum 

information for publication of quantitative real-time PCR experiments) guidelines. MIQE 



Discussion 

 153	  

is a set of guidelines that describe the minimum information necessary for evaluating 

qPCR experiments, allowing more reliable and unequivocal interpretation of qPCR 

results (Bustin et al., 2009). Our adherence to these criteria strengthens the reliability 

of the developed qPCR assays and the results obtained. All the information regarding 

the development, validation and performance of the NF1-qPCR assay has been 

published in Clinical Chemistry journal (Terribas et al., 2013; see Annexe 2).  

 

The NF1-qPCR assay accurately detects NF1 constitutional deletions 

 
Most of the NF1 constitutional microdeletions are directly inherited from the parental 

germline. When this happens, all cells from the body present one copy of the NF1 

gene deleted. The NF1-qPCR assay was used in these cases and enabled the 

detection of the NF1 constitutional microdeletions in thirteen blood samples from NF1 

patients, including Type-1, Type-2 and atypical microdeletions. The sensitivity and 

specificity of the assay were near or at 100% when all of the interrogated loci were 

considered.  

 

The reliable design of the NF1-qPCR assay, along with the specific locations of the 

eleven interrogated loci within the NF1 region, allow an accurate detection of Type-1, 

Type-2, and atypical NF1 microdeletions and are suitable for detecting the rare Type-3 

microdeletions. The assay could be expanded, if required, to incorporate more loci for 

copy number assessment. 

 

The NF1-qPCR assay accurately detects NF1 deletions that occur 

somatically or in mosaicism  

 
When NF1 constitutional microdeletions are not inherited directly from the germline 

and occur post-zygotically, these deletions are present in mosaicism. In these cases 

not all cells of the body bear the deletion. This is particularly important for Type-2 

microdeletions, which are generated by somatic mitotic recombination and can be 

transmitted to the offspring (Petek et al., 2003). Moreover, NF1 somatic second-hit 

deletions are found in ~10% of dNFs (Garcia-Linares et al., 2011), and in a similar 

manner, not every cell from the dNF presents a deletion of the NF1 gene.  
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Because in both cases the NF1-deleted cellular component is not total, we wanted to 

also apply the NF1-qPCR assay for detecting NF1 deletions in these contexts. Thus, 

the performance of the qPCR assay in admixtures of NF1-deleted and NF1-nondeleted 

DNA samples was studied.  

 

The NF1-qPCR assay enabled the detection of a Type-2 microdeletion in the context of 

mosaicism in one blood sample, and somatic deletions in twenty-one samples, 

including dNFs and SCs, which contained less than 56% of NF1-nondeleted cells. 

Considering somatic deletions, the specificity of the assay was close to 100%. The 

sensitivity was around 90% because there were some false negative results: the qPCR 

assay detected in some dNFs two copies for a few loci that were, in fact, deleted. 

However, the presence of a deletion event in these dNF samples was considered 

because most of the deleted loci within the 2.8-Mb NF1 region in that samples were 

detected as single copies.  

 

In conclusion, the NF1-qPCR assay allows an accurate identification of NF1 deletions 

in constitutional samples, and other NF1 traits that require the double inactivation of 

the NF1 gene, when the deletion is present in at least 44% of the tissue sample. This 

qPCR assay is ready to be incorporated into a genetic-testing setting as a useful 

diagnostic tool, either as a first screening step or as a validation technique for NF1 

microdeletions (approximately 5% of NF1 cases) and also for the detection of somatic 

deletions in NF1 traits, such as dNFs, pNFs or café-au-lait macules (CALMs).  

 

The MPNST-qPCR assay is a reliable tool to detect SCNAs in the MPNST 

genome 

 
Similarly to the fact that not all the cells from a dNF or other NF1 traits are bearing the 

NF1 somatic deletion, when detecting SCNAs in MPNST samples, not all the cells 

present in the tumour are genomically altered. This is particularly important during 

tumour sampling, where some normal diploid cells from surrounding tissue can be also 

removed together with the tumoural ones. In addition, some stromal cells from the 

tumour are also diploid. Moreover, and most importantly, MPNST genomes are 

hyperploid and present several chromosomal alterations, with many genomic gains 
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and also some losses. Hence, the detection of copy number changes in these tumours 

by qPCR can be challenging if all these factors are considered, as it is for other DNA-

based techniques.  

 

Requirement for a thorough normalization of copy number data, 

especially in genomically altered tumours 

 
Inappropriate normalization of expression data in RT-qPCR experiments has been 

thoroughly discussed during the last years, claiming that reference gene validation is 

essential to ensure accurate and reliable gene expression results (Vandesompele et 

al., 2002; Nolan et al., 2006; Bustin et al., 2009; Jacob et al., 2013; Hellemans and 

Vandesompele, 2014). However this concern has barely been applied for the 

normalization of DNA copy number data from qPCR experiments in highly aneuploid 

genomes presenting copy number alterations. For instance, two studies using qPCR 

for validating SCNAs found in MPNSTs by aCGH have been published so far 

(Mantripragada et al., 2008; Upadhyaya et al., 2012), but information on the 

normalization process was insufficient or inexistent. 

 

Some expressed repetitive elements, such as expressed Alu repeats, have been 

recently shown to improve normalization of expression data when using RT-qPCR in 

tumours (Rihani et al., 2013) and other samples (Marullo et al., 2010; Vossaert et al., 

2013; Vanhauwaert et al., 2014). Other repetitive sequences, long interspersed nuclear 

elements (LINEs), present in high number in the genome, have been used for 

normalization of DNA copy number data in two studies comparing qPCR with digital 

karyotyping for the assessment of copy number alterations in cancer cell lines (Wang 

et al., 2002; Wang et al., 2004). In these studies it was suggested that the copy 

number values per haploid genome of these repetitive element are similar among all 

human cells, either normal or tumoural. 

 
Hence, in the development of the MPNST-qPCR assay, the average of the relative 

quantities (RQ) of the two LINE repetitive genomic sequences, the LINE1 consensus 

sequence, L1, and the family consensus sequence, L1PA, were found to be the most 

suitable normalization factor (NF) for the normalization of copy number data. We 

demonstrated that the utilization of repetitive sequences as reference genes in 
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samples with aberrant genomes, as our set of MPNSTs, was more precise than using 

single genes, according to the value obtained from the gene stability M (Vandesompele 

et al., 2002). The only combination that yielded an M value below 0.2, as it has been 

proposed for DNA copy number (D'Haene et al., 2010), was the combination of the two 

LINE sequences. Moreover, when single genes are used for normalization purposes, 

misleading results can be generated, as we showed for AURKA copy number in 

MPNST samples (see Table A.3). In this regard, we also encourage the use of multiple 

loci for DNA copy number normalization in aneuploid genomes, as suggested by 

others (Rosenberg et al., 1997; Fang et al., 2011). 
 

Limitations of copy number assessment in hyperploid genomes by 

qPCR and other DNA-based techniques 

 
Some limitations of qPCR, shared by other methodologies for DNA copy number 

assessment – such as SNP array or CGH – should be considered when dealing with 

DNA samples coming from hyperploid genomes, as for MPNSTs. These DNA-based 

techniques calculate the copy number of a particular locus with respect to the general 

ploidy of the studied sample. Since the mean ploidy of a sample is generally assumed 

to be diploid (2N), there is a bias when determining the copy number status of a 

particular locus of the sample. This effect can be partially overcome by applying some 

algorithms that compensate for the ploidy of the sample, like ASCAT for the analysis of 

SNP array data (Van Loo et al., 2012), although this cannot be completely controlled. 

So, for a particular amount of DNA from a hyperploid genome, some genomic gains 

would not be detected and some genomic losses would be detected as so being not 

real deletions. In other words, in samples with hyperploid genomes the MPNST-qPCR 

can generate both false negative results of genomic gain events and false positive 

results of deletion events (see Table 7).  

 
Consequently, when normalizing copy number data in hyperploid tumours using qPCR, 

CGH or SNP array techniques, this bias should be taken into account, and either use 

the correct algorithm to correct for the ploidy or be aware of this bias when interpreting 

copy number results. This drawback could be overcome if working with a particular and 

precise number of cells instead of a given DNA quantity. However, when working with 
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tumours and other tissues this can be challenging, as the number of cells present in a 

particular amount of tissue can differ among tissue types. Moreover, some tumours 

can also show tumour heterogeneity and a proportion of normal cells with a diploid 

genome.  

 
Copy number gains and losses in MPNSTs are detected by the 

MPNST-qPCR assay 

 
Despite of these limitations, the design of the MPNST-qPCR assay allowed the 

detection of copy number gains of the AURKA locus in our set of MPNSTs and derived 

cell lines, and an association with the high AURKA expression values found in an 

independent set of MPNST samples was suggested (Patel et al., 2012). Moreover, this 

qPCR assay also permitted to find a significant association between four TIs of 

overexpression with genomic gains, and between four TIs of underexpression with 

genomic losses in our set of MPNSTs. These results were later confirmed for the 

global sets of TIs and SCNAs by the regioneR tool. 

 

2. Transcriptional imbalances: how they are generated and what 

information they contain 

 
Using genomic regional information as part of our integrative biology 

approach 

 
In our research group we are interested in finding genes and molecular mechanisms 

driving the development, progression and maintenance of MPNSTs. In order to do so, 

an integrative biology approach has been conceived considering both information at 

the single gene level and regional genomic information. This approach includes a 

thorough characterization of a set of MPNSTs and derived samples including genome-

wide expression data, data coming from genomic structural analysis, epigenetic data 

from DNA methylation, and a collection of point mutations from whole-exome 

sequencing.  
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So far, among the mutational spectrum of the known drivers of MPNST pathogenesis, 

somatic point mutations have only been found in some tumour suppressor genes 

(TSGs), such as NF1, TP53, SUZ12 and EED (see Introduction, sections 6.1 and 6.2). 

These genes are also frequently deleted and other drivers – such as the TSG CDKN2A 

and oncogenes from the EGFR family receptors – are mainly mutated by genomic 

alterations rather than point mutations (see Introduction, section 6.1). 

 

As part of our integrative biology approach, a whole-exome sequencing analysis is also 

being performed in order to check the mutational status of the known MPNST drivers 

and especially for the identification of possible novel drivers of MPNST pathogenesis. 

However, in this thesis, the gene point mutational status has not still considered and a 

first focus on regional genomic information, especially at the transcriptomic level, has 

been intended following two premises: the distinctive hallmark that differentiated pNFs 

from MPNSTs is that MPNSTs contained highly altered and hyperploid genomes with 

recurrent SCNAs, and gene expression is closer to gene function that genomic copy 

number. The use of this regional information for the identification of novel candidate 

genes for the pathogenesis of NF1-associated MPNSTs is proposed. 

 

Confirmation of CDKN2A loss as an early event in MPNST 

tumourigenesis 

 
The molecular characterization of the genome of our set of pNFs has confirmed that 

CDKN2A genomic loss is an early event in the progression of pNF to MPNST. One of 

the eight pNFs analyzed, diagnosed as an atypical pNF, showed an homozygous loss 

of this locus, as it has been described in an elegant study demonstrating that CDKN2A 

loss is an early event in the malignant progression of atypical pNF to MPNST (Beert et 

al., 2011). Moreover, CDKN2A locus is also deleted in five of the eight MPNSTs 

analyzed by SNP array. 

 

Confirmation of a hyperploid genome and recurrent SCNAs in MPNSTs 

 
All the studies published so far using DNA-based methodologies for the analysis of the 

genome of NF1-associated tumours have evidenced that, in general, both dNFs and 



Discussion 

 159	  

pNFs do not present recurrent structural aberrations in their genome, beyond those 

found in 17q11.2 region due to NF1 double inactivation (Mantripragada et al., 2008; 

Garcia-Linares et al., 2011; Beert et al., 2011). However, MPNSTs present a high 

degree of genomic instability and frequently altered genomic regions have been 

identified in these tumours (see Introduction, section 6). 

 

MPNSTs are very aggressive soft-tissue sarcomas. There are three types of sarcomas 

according to the degree of genomic stability: translocation-associated sarcomas with 

few copy number alterations, an intermediate category characterized by few but highly 

recurrent amplifications, and a group with highly complex genomes (Taylor et al., 

2011). MPNSTs seem to fall in this last category, as they are highly hyperploid tumours 

characterized by the occurrence of many chromosomal aberrations.  

 

The molecular characterization of the genome of our set of NF1-associated MPNSTs 

has confirmed this hyperploid genome, being globally nearly triploid. In addition, the 

recurrence of some SCNAs has also been corroborated: the most frequent genomic 

gains were found in chromosomes 2, 7, 8, 15q and 17q22-25, as it has also described 

elsewere (see Table 12), and the most frequent genomic losses were present in 9p, 

11q, 17p and 17q11.2-12, which it has also been previously found (see Table 12). 

 
No. of 

MPNSTs  
Method-

ology Genomic gains Genomic losses Reference 

8 CGH 
2p22-p23, 7p, 7q31-qter, 8q13-
qter, 9p, 9q22-q33, 12p, 12q12-

q23, 15q, 17q22-qter 
1p, 9q12-q21, 13q21-q22, 17p Schmidt et al., 

1999 

6 CGH 1q, 5p, 7, 17q21-25 1p22p31, 11q14-22, 13q21-22, 
18q 

Mechtersheimer 
et al., 1999 

14 CGH 7, 8q, 15q and 17q 17p Schmidt et al., 
2000 

7 aCGH 1q, 8p, 9q and 17q 9p22.3-p21.2, 11p13, 11q, 
14q21.3-q23.3 

Kresse et al., 
2008 

24 aCGH 1q25, 3p26, 3q13, 5p12, 5q, 6, 7, 
8q22-q24, 14q22, and 17q21-q25 

1p, 9p21.3, 10q25, 11q22-23, 
17q11 and 20p12.2 

Mantripragada  
et al., 2009 

23 aCGH 4, 7, 8q, 12, 15, 17q 1p, 4q, 9p, 10, 11, 13, 17p, 18, 
22 

Beert et al., 
2011 

15 SNP 
array 2p, 5p, 7, 8q, 15q, 17q, 18q 1p, 10q, 11q, 17q11.2-12, 18 Upadhyaya  

et al., 2012 

8 SNP 
array 2, 7, 8, 15q, 17q22-25 9p, 11q, 17p, 17q11.2-12 this thesis 

 
Table 12. Recurrent SCNAs found in NF1-associated MPNSTs. Information on the main SCNAs found 
in MPNST samples from NF1 patients (a total of 105 samples from 8 independent studies) by CGH, aCGH or 
SNP array, including those SCNAs found in our set of NF1-associated MPNSTs by SNP array (last row in 
bold). Gained and lost genomic regions from the other 7 studies that were coincident with the SCNAs found 
in our set of MPNSTs are highlighted in bold. 
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Moreover, some of the SCNAs we found in the MPNST cell lines, such as the genomic 

gains in 17q and the copy number losses in 9p and 12q, have also been described 

(Fang et al., 2009). 

 
Global gene expression from MPNSTs is influenced by the genomic copy 

number in a regional manner: generation of transcriptional imbalances 

 
An association between SCNAs and the expression changes of the genes 

encompassed in these altered regions has been described in different cancer types, 

although the number of these studies is limited (see Introduction, section 8). This direct 

relationship between DNA copy number changes and gene expression has allowed the 

identification of cancer driver genes in SCNAs and also expression signatures that 

have been correlated with these altered regions (Akavia et al., 2010; Huang et al., 

2012). In this regard, several integrative methodologies of SCNAs and gene 

expression data have been developed (reviewed in Huang et al., 2012).  

 

In NF1 research, these studies have been restricted to individual genes and copy 

number alterations of some known drivers of MPNST pathogenesis have been 

associated with changes in the expression levels of these single genes in the MPNST 

genome, such as in CDKN2A (Berner et al., 1999; Nielsen et al., 1999; Perrone et al., 

2003; Tajima and Koda, 2015), EGFR (Holtkamp et al., 2008; Tabone-Eglinger et al., 

2008; Perrone et al., 2009; Du et al., 2013), PDGFRA (Holtkamp et al., 2006; Perrone 

et al., 2009; Zietsch et al., 2010), IGF1R (Yang et al., 2011), and other receptor 

tyrosine kinases (RTKs; reviewed in Katz et al., 2009). Moreover, some recently 

described candidate drivers can also be included, such as BIRC5 (Storlazzi et al., 

2006; Kresse et al., 2008; Ghadimi et al., 2012b; Alaggio et al., 2013; Kolberg et al., 

2015), AURKA (Patel et al., 2012; Mohan et al., 2013) and TOP2A (Skotheim et al., 

2003; Kresse et al., 2008; Kolberg et al., 2015). In addition, comparative transcriptomic 

analyses using MPNSTs, MPNST cell lines, benign neurofibromas and derived SCs 

have been performed and some candidate driver genes of MPNST tumourigenesis 

have also been proposed, such as TWIST1 (Miller et al., 2006), SOX9 (Miller et al., 

2009), EYA4 (Miller et al., 2010), miR-34a (Subramanian et al., 2010), AURKA (Patel 

et al., 2012), MEK (Jessen et al., 2013) and MAF (Brundage et al., 2014). 
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In this thesis, we describe for the first time that global gene expression from MPNSTs 

is influenced by DNA copy number changes in a regional manner. Genomic copy 

number data were generated from a set of NF1-associated MPNSTs and derived cell 

lines and some SCNAs were identified with the analysis of SNP array experiments with 

ASCAT. Moreover, the differential expression from MPNSTs vs. neurofibromas in an 

independent set of samples was used to identify regions of the MPNST genome, 

known as transcriptional imbalances (TIs), where the mean differential expression was 

significatively higher or lower than expected by chance, presenting a significant 

abundance of over- or underexpressed genes in MPNSTs compared to their 

expression in benign tumours (pNFs and dNFs). TIs were also identified in MPNST cell 

lines using differential expression from another independent set of MPNST cell lines 

and primary neurofibroma-derived SC cultures. The use of the regioneR tool with SNP 

array results, and in a less extent, the analysis of MPNST-qPCR results, showed a 

significant association of TIs and SCNAs in MPNSTs, especially for TIs of 

overexpression and copy number gains. These results are robust, as long as two 

independent sets of samples (DNA copy number assessment from our set of tumours 

and differential expression analysis from samples of the NF1 Microarray Consortium; 

Miller et al., 2009) were used for determining the association of TIs with SCNAs. 

 

Considering the results obtained with regioneR, we propose that during the process of 

MPNST tumourigenesis, the formation of TIs of overexpression could be explained by 

the selection of regions of the MPNST genome exhibiting recurrent copy number gains; 

whereas the formation of TIs of underexpression could be in turn explained by a 

combination of a selection of regions that, within the hyperploid MPNST genome, are 

either maintained as not changed or lost in terms of copy number.  

 

Regional epigenomic silencing could be contributing to the generation of 

TIs of underexpression 

 
We also studied the differentially methylated genes between MPNSTs and benign 

neurofibromas in a regional manner: the main results from regioneR analysis indicated 

a significant enrichment of differentially hypermethylated genes in TIs of 

underexpression in MPNSTs. Moreover, this association was found to be stronger for 
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those hypermethylated genes present in TIs not overlapping with copy number losses. 

This result suggests the possibility that TIs of underexpression could be associated 

with different phenomena, either with copy number losses or with regions with no 

change in copy number and enriched in epigenetic modifications, generating a regional 

genomic silencing. 

 

Different possibilities could explain this possible regional epigenetic silencing 

associated to TIs of underexpression. It has been shown that some epigenomic 

mechanisms, such as long-range epigenetic silencing (LRES), could be the underlying 

cause of the inactivation of the gene expression of a large genomic region (Frigola et 

al., 2006; Coolen et al., 2010). In this regard, we have also performed ChIP-on-chip 

experiments to check the global levels of the three LRES-associated histone marks 

H3K27me3, H3K9me2 and H3K9ac in the two MPNST cell lines S462 and T265. We 

are currently analyzing these results and planning to check, by using regioneR, 

whether there is an association of TIs from MPNST cell lines with these histone marks 

in a regional manner.  

 

Another possibility would be that these regions enriched in hypermethylated genes 

reflect the epigenetic status of the cell originating an MPNST. The cell-of-origin of an 

pNF is still an open debate (Buchstaller et al, 2012). However, experiments in 

genetically engineered mice (GEM) models point to a SC precursor in the lineage from 

neural crest to committed SC (Chen et al., 2014). MPNSTs could represent a clonal 

expansion of these progenitor cells, only present in a low percentage in pNFs, which 

retain some stem cell properties, including those epigenetic mechanisms involved in 

self-renewal and cell identity. In this regard, TIs of underexpression enriched in 

hypermethylated genes could also be interpreted as signatures of cancer stemness at 

an epigenetic level, as it has been shown for other tumour types (reviewed in 

Hernandez-Vargas et al., 2009). 

 

Whether our results are compatible with LRES, epigenetic signatures of cancer 

stemness, or probably with a combination of both, needs to be better experimentally 

addressed to conclude so. 
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TIs mainly represent signatures of passenger gene expression 

 
After showing the association of TIs with SCNAs in MPNSTs, we wanted to focus on 

understanding what a TI was and what kind of information was capturing. We 

wondered if all the differential expression contained in TIs was relevant to MPNST 

pathogenesis. To answer this question we selected a TI encompassing a described 

candidate driver of MPNST pathogenesis, BIRC5, and functionally dissected this TI by 

studying other overexpressed genes within this TI. 

 

The RNAi functional in vitro genetic approach together with the physiological readouts 

studying the viability, proliferation, death and anchorage-independent growth of the 

MPNST cell lines S462 and T265 confirmed BIRC5 as a gene involved in MPNST 

pathogenesis (Ghadimi et al., 2012b). In contrast, this genetic approach showed that 

the other studied genes present in the same TI (i.e. NUP85, TK1, CBX4 and CBX8) 

had not a remarkable effect in the assessed tumourigenic properties of these cell lines, 

when their expression was depleted. At least, when any of these genes was depleted 

and considering all readouts in both cell lines, their tumourigenic properties were not 

as compromised as when BIRC5 was knocked down. So, although these genes are 

also differentially overexpressed in MPNSTs compared to benign neurofibromas and 

present in genomically gained regions, they seem not to be essential for the studied 

MPNST cell lines. 

 

According to these results, the overexpression of these four studied genes NUP85, 

TK1, CBX4 and CBX8 would be passenger regarding MPNST pathogenesis, unlike 

BIRC5 overexpression, which seems to be driver. Although only one TI has been 

functionally dissected to conclude so, we suggest that TIs found in MPNSTs would 

capture expression changes produced mainly by genomic copy number alterations 

(and maybe by regional epigenomic mechanisms) affecting large regions of the 

genome. Our hypothesis is that these regions include the gene (or genes) that are 

responsible for the acquisition of tumourigenic properties as long as they undergo a 

gain or a loss of function caused by the copy number alteration. However, these 

selected genes may represent a minority in these genomic regions and most of the 

other neighbouring genes within the region would also change in expression because 

of the regional change but without a major functional implication. In consequence, 
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analogously to the fact that not all genes present in SCNAs are important for the 

pathogenesis of a tumour type (Beroukhim et al., 2010), TIs would mainly represent 

signatures of passenger gene expression containing only a few genes relevant for 

MPNST pathogenesis, as it has been suggested in a similar way for head and neck 

squamous cell carcinoma (Masayesva et al., 2004) and colorectal cancer (Tsafrir et al., 

2006). We also highlight that when studying differential expression in tumours with 

genomes governed by large SCNAs, a consideration of these regional effects can help 

in a better selection and interpretation of this expression in the context of tumoural 

pathogenesis. 

 

Genomic alterations with a regional impact on gene expression: an easy 

way to identify candidate drivers of MPNST pathogenesis? 

 
According to our hypothesis, most of the gene expression contained in TIs would be 

passenger and not related to tumour pathogenesis, and only one or a few genes within 

TIs would be relevant to MPNST pathogenesis.  

 

Thus, TIs would represent a transcriptional impact produced by genomic (or 

epigenomic) phenomena in a regional manner. Despite of the fact that only one or few 

genes within each of these regions may have an important effect in MPNST 

pathogenesis, we believe that TIs can help in the identification of these genes, as TIs 

reduce the size of the altered genomic region (Figure 40).  

 

In this regard, if we consider the genomic location of candidate driver genes that have 

already been functionally involved in MPNST pathogenesis, most of the TSGs – such 

as CDKN2A, TP53, and PTEN – are present in TIs of underexpression associated to 

genomic copy number losses in MPNSTs (Figure 40). In the case of the candidate 

oncogenes that have also showed a role in MPNST pathogenesis, including RTKs, 

their ligands and others, the majority are associated to genomic gains, being also 

some of them present in TIs of overexpression, such as MET, NRG1 or CXCR4. Other 

candidate oncogenes are in TIs of underexpression, such as ERBB2 or TOP2A (Figure 

40). 
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Figure 40. Karyoplot showing TIs and SCNAs found in MPNSTs and the genomic location of genes 
with a described role in MPNST pathogenesis. A karyogram showing the idiograms of the 22 human 
autosomes with G-banding pattern is depicted. Above the chromosomes: red and green boxes represent, 
respectively, the TIs of overexpression and the TIs of underexpression identified in MPNSTs. Below the 
chromosomes: the red line represents the number of MPNSTs from our set with genomic gains at that locus; 
the green line represents the proportion of MPNSTs with genomic losses at that locus. The space between 
the two lines and colour-filled shows the number of tumours with a SCNA at that locus: a red area indicates a 
higher proportion of genomic gains; a green area indicates a higher proportion of genomic losses. Green 
names are the candidate driver TSGs with a described functional role in MPNST pathogenesis, which are 
placed at their location in the genome: most of them are present in TIs of underexpresssion. Red names are 
the candidate oncogenes with a described functional role in MPNST pathogenesis, which are placed at their 
location in the genome: some of them are present in TIs. 
 

When considering TIs for the identification of candidate drivers of MPNST 

pathogenesis (Figure 21), a previous knowledge of cancer genes, putative drivers of 

other tumour types, together with the overexpression status of these genes in MPNST 
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cell lines were the two major constraints when selecting candidates within TIs of 

overexpression. After gene selection, the effect of the expression knockdown of the 

cancer-associated genes CAD, EPHA4, BUB1, MYBL2 and HOXA13 in the 

tumourigenic properties of S462 and T265 cell lines was studied.  

 

Among these genes, only the transcription factor MYBL2 and the enzyme CAD showed 

to have a role in the cell survival and cell cycle progression of the studied MPNST cell 

lines, suggesting that they could be also contributing to MPNST pathogenesis. 

However, as these results were not as consistent as the effect of BIRC5 depletion in 

these cell lines, we point to MYBL2 and CAD not to be candidate drivers of MPNST 

pathogenesis. 

 

Although the number of genes analyzed is low and our experimental model is limited 

(as discussed below), our results indicate that previous knowledge of cancer genes 

associated to other tumour types seem not to provide valuable information for the 

identification of driver genes within TIs. If we assume that TIs of overexpression must 

contain at least one driver that can be functionally identified with the tumourigenic 

properties studied in S462 and T265 cell lines, a previous information on known drivers 

of other cancers have not helped in the identification of drivers of MPNST 

pathogenesis and, consequently, other genes present in these TIs may be the true 

drivers. So, considering the information of being a driver cancer gene contained in a TI 

would not be that useful when identifying candidate driver genes of MPNST 

pathogenesis. 

 

TIs capture unique information that helps to identify genes and 

molecular mechanisms involved in MPNST pathogenesis 

 
When we observed what was the differential expression of the genes within TIs or the 

genes placed contiguously to TI boundaries, we identified some genes whose 

differential expression was in an opposite direction than the differential expression of 

most of their neighbouring genes (i.e. we found differentially overexpressed genes in or 

flanking TIs of underexpression and differentially underexpressed genes in or flanking 

TIs of overexpression; Figure 26).  



Discussion 

 167	  

These are genes whose expression would be regulated independently from the 

regional genomic alteration, so as many other genes located along the MPNST 

genome. We hypothesized that their expression could be related to a physiological 

adaptation of the tumoural cell to a new altered state. This kind of genes could be 

distributed all over the genome. However, TIs are able to trap some of these genes, 

thus providing this unique information. We believed they could be considered as 

representatives of pathways and molecular mechanisms where they participate and we 

wondered if they were involved in MPNST pathogenesis. Since the expression of these 

genes would be mainly regulated by the physiological state of the tumour cell and 

independently from SCNAs, they would not be genes driving MPNST tumourigenesis 

but they could be in part participating somewhat in pathways and molecular 

mechanisms relevant for MPNST pathogenesis. Hence, some of them may represent 

candidates for MPNST pathogenesis. 

 

Considering this unique information provided by TIs for the identification of candidate 

genes involved in MPNST pathogenesis, we first performed a selection of candidate 

genes that fulfilled to be overexpressed within or flanking TIs of underexpression and 

to be also overexpressed in MPNST cell lines. Secondly, we studied the effect of the 

expression knockdown of the selected candidates, LHX8, CDCA8, BCAT1, CCDC8 

and GINS2 in the tumourigenic properties of S462 and T265 cell lines. 

 

Among the studied genes, two of them, CDCA8 and CCDC8, are both related to 

BIRC5: CDCA8 as a partner of BIRC5 forming the chromosomal passenger complex 

(CPC), and CCDC8 as an indirect activator of BIRC5 function. These two genes 

showed to be required for cell survival and cell cycle progression in MPNST cell lines, 

indicating a possible contribution to MPNST pathogenesis. A possible contribution of 

LHX8 is also suggested according to our results. LIM homeobox member LHX8 has 

not been related to cancer so far (Wang et al., 2014a), so in this thesis some 

preliminary data on a potential tumourigenic role for LHX8 have been shown.  Although 

the number of genes analyzed was again low and our experimental constraints must 

be considered (see below), with this approach we have identified at least two genes as 

candidates for MPNST pathogenesis. This suggests that the use of the differential 

gene expression status together with the unique information provided by TIs was 

helpful when identifying genes candidates for MPNST pathogenesis. 
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Limitations of our experimental approach when identifying candidate 

drivers of MPNST pathogenesis 

 
Our experimental framework presented some limitations that must be considered for 

an appropriate interpretation of the results. First, only in vitro experiments with two 

MPNST cell lines were performed. Information on protein levels from primary MPNST 

samples and an in vivo validation in mice models of the discovered candidate genes 

are mandatory before reaching conclusions on their real implication in MPNST 

pathogenesis. Secondly, both S462 and T265 cell lines are two in vitro representative 

models of MPNSTs but some of their tumourigenic properties could have been 

acquired during their establishment or as a result of their consecutive passages in cell 

culture over time, providing some experimental noise. Third, the several physiological 

readouts studied on these cell lines included important tumourigenic properties, which 

can be globally integrated as the study of the cell survival as a surrogate of the tumour 

maintenance. However, other readouts, such as cell migration or invasion, which would 

be related to the metastasic properties of MPNSTs, were not studied. Lastly, only 

overexpressed genes in MPNSTs associated to TIs have been considered and their 

loss-of-function has been studied. For a global picture on how informative TIs can be 

when searching drivers of MPNST pathogenesis, underexpressed genes in MPNSTs 

should also been studied using gain-of-function approaches. Hence, all the results 

generated from this candidate search approach should be contemplated as a first 

round of screening and, consequently, a further experimental characterization of these 

genes would be needed to describe them as true drivers of MPNST pathogenesis. 

 

These experimental limitations have leaded us to reconsider what is needed for 

characterizing the funtion of a gene in order to determine that it is really involved in 

MPNST pathogenesis. Cancer driver genes are defined as those genes carrying 

mutations that are causally implicated in oncogenesis, conferring a growth advantage 

and being positively selected during tumourigenesis (Stratton et al., 2009). In our 

understanding, the genes that are drivers of MPNST pathogenesis are those that are 

mutated by genetic or epigenetic alterations and are required for the development of 

an MPNST from a preexisting pNF (in the case of NF1-associated MPNSTs), the 

maintenance of their tumourigenic properties (survival, proliferation, apoptosis 
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avoidance, anchorage-independent growth) or the acquisition of metastatic properties 

(migration, invasion and colonization of distant organs). Hence, a mutation in a driver 

gene is essential for one of these stages of tumour progression to occur but not 

necessarily for the others.  

 

We believe that the tumourigenic properties of a particular tumour are composed by 

genetic and epigenetic alterations (including SCNAs, point mutations, hypermethylation 

of gene promoters, etc), which represent driver mutations, but also by changes in the 

cell physiology arising by an adaptation to the new tumoural state. These two 

components are tangled and it is a challenging task to distinguish between genes that 

drive the development, maintenance and acquisition of metastatic properties of a 

malignant tumour and those genes that are essential (althought not being mutated in 

the genome) for the maintenance of these tumourigenic properties. We have 

particularly focused on searching genes that are involved in MPNST maintenance 

(including driver genes and other genes that are required), as we have assessed in 

vitro the role of a list of candidate genes in cell viability, proliferation, death and 

anchorage-independent growth. To elucidate whether these genes are also involved in 

MPNST development or not, requires a different experimental approach. 

 

A working model of MPNST pathogenesis  

 
Taken together the results generated in this thesis, we propose a model of MPNST 

pathogenesis. In this model, a pNF would be generated when a SC precursor from a 

nerve from an NF1 patient would acquire a second-hit NF1 somatic mutation (Figure 

41), as it has been described in mice models (Chen et al., 2014). These pNF benign 

cells would then acquire a loss of CDKN2A locus (and probably also other mutations), 

which lead to the development of an atypical pNF containing bigger and 

hyperchromatic pre-malignant cells (Figure 41), as reported (Beert et al., 2011). The 

SCNA analysis of our set of pNFs is in consistency with this finding, as one of the pNF 

samples presented a homozygous deletion in CDKN2A. These pre-malignant cells 

would then undergo a hyperploidization of their genome and the occurrence of several 

SCNAs, such as gains in chromosomes 2, 7, 8, 15q, 17q22-25 and genomic losses in 

9p, 11q, 17p, 17q11.2-12, as found in our set of MPNSTs. These SCNAs would have 



Discussion	  

	  170	  

an impact on gene expression in a regional manner and TIs would be generated. 

These TIs would contain, among a major passenger gene expression, some of the 

genes that drive the development of an MPNST (Figure 41), although some other 

drivers of MPNST tumourigenesis may also not be associated to TIs. Malignant cells 

from MPNSTs would then adapt to the new altered state, which could imply 

transcriptional regulation of other genes and molecular mechanisms required for the 

maintenance of the tumour. Some of these genes and molecular mechanisms could be 

detected by analyzing the unique information captured by TIs, that is those genes 

whose differential expression is in an opposite direction than the differential expression 

of most of their neighbouring genes within the TI (Figure 41). 

 
 

 

 

 

 

 

 

 

Figure 41. Working model of MPNST pathogenesis including the results generated in this thesis. A 
working model of MPNST pathogenesis is proposed considering TIs for the identification of genes drivers of 
MPNST pathogenesis and for the identification of genes that are required for their tumoural maintenance. 
 

From genes to molecular mechanisms: the chromosome passenger 

complex as an important player in MPNST pathogenesis 

 
Considering all genes studied in the RNAi functional in vitro genetic approach together 

with the physiological readouts studying the viability, proliferation, death and 

anchorage-independent growth of the MPNST cell lines S462 and T265, only two 

genes consistently affected all the tumourigenic properties studied in both cell lines, 

when their expression was depleted: BIRC5 and CDCA8. Hence, in addition to BIRC5, 

the CDCA8 gene was also found to be required for the survival and cell cycle 

progression of MPNST cell lines, being therefore its functional role in MPNST 

pathogenesis also plausible.  
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Borealin, encoded by the CDCA8 gene forms, together with survivin (BIRC5), aurora-

B-kinase (AURKB) and the protein encoded by INCENP, an heterotetramer known as 

CPC. The CPC is an essential coordinator of several cellular processes that are 

necessary for a proper cell division, such as the regulation of the kinetochore–

microtubule attachment during the spindle assembly checkpoint, and the spindle 

disassembly during cytokinesis (reviewed in Ruchaud et al., 2007). We propose the 

CPC as an important player in the pathogenesis of MPNSTs. Thus, it can be explored 

if other CPC members, such as borealin, could also be viable targets for MPNST 

treatment, as it has been proposed for survivin (Ghadimi et al., 2012b).  

 

MPNSTs can be classified as aneuploid tumours with a heterogeneous karyotype and 

a general hyperploid landscape. Polyploidy or aneuploidy can result in chromosome 

instability, a condition that is highly prevalent in different forms of cancers. 

Overexpression of CPC proteins, such as AURKB or survivin, is a hallmark of various 

cancers and it has been demonstrated that inducing stable forms of CPC proteins, 

such as AURKB, can promote tetraploidy or aneuploidy, suggesting a functional role of 

CPC in chromosome instability (reviewed in Nguyen and Ravid, 2006). However, 

whether aneuploidy and chromosome instability may be caused by deregulation of the 

CPC remain unknown and still a subject of debate (Nguyen and Ravid, 2006). 

According to our results, a possible role of the CPC in the generation and/or the 

maintenance of the hyperploid MPNST genome are suggested.  

 

In addition, during mitosis, the CPC regulate the function of, among others, some 

kinesin proteins (reviewed in Carmena et al., 2012). Kinesin genes have also been 

identified when using information from TIs. We also suggest that some members may 

have a role in MPNST pathogenesis and are proposed as potential therapeutic targets 

for MPNST treatment, which is discussed below.  

 

3. Kinesins are potential therapeutic targets for the treatment of MPNSTs 

 
The mitotic spindle as a validated target in cancer chemotherapy 

 
Several anti-mitotic drugs are being used, either as single agents or in combination 

with other compounds, for the treatment of certain types of cancers. These agents 
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target tubulin, the microtubular protein that is essential for a functional mitotic spindle 

(Jordan and Wilson, 2004). During cell division, condensed chromosomes, 

microtubules and hundreds of microtubule-associated proteins comprise the spindle 

apparatus, the machinery that separates chromosome between daughter cells. Among 

the main anti-proliferative compounds targeting microtubules there are the taxanes 

(such as paclitaxel and docetaxel), the vinca alkaloids (such as vincristine and 

vinblastine), and the epothilones. However, microtubules are also essential for the 

neuronal transport and the use of these compounds can develop peripheral 

neuropathy or cumulative neurotoxicity (Cavaletti and Marmiroli, 2010). Moreover, 

resistance to these spindle poisons has also been described (Kavallaris, 2010). 

 

To bypass these problems, several other mitotic spindle proteins have been identified 

as potential anticancer targets, including PLK1 (Strebhardt and Ullrich, 2006); AURKA 

(Dar et al., 2010), which has also been proposed as a target for the treatment of 

MPNSTs (Patel et al., 2012; Mohan et al., 2013); the CPC component AURKB (Dar et 

al., 2010); and some cyclin dependent kinase proteins (Malumbres and Barbacid, 

2009), including CDK4, which has also been recently suggested as a potential target 

for MPNSTs (Perez et al., 2015). Among these alternative mitotic spindle proteins, 

kinesins, an important family of proteins of molecular motors that are essential for 

mitosis, has also emerged as potential antitumoural targets (Wood et al., 2001). There 

are sixteen kinesin members with described roles at different stages of mitosis and 

cytokinesis, and some members, such as KIF11 and KIF10, have been associated with 

cancer (reviewed in Rath and Kozielski, 2012).  

 

Hence, several compounds targeting KIF11 have been developed, showing some of 

them anti-tumour activity in several cancer types and being studied in several clinical 

trials (reviewed in Rath and Kozielski, 2012). Among them, ispinesib, although it has 

not shown promising results when administered as a monotherapy in some clinical 

trials (Lee et al., 2008a; Tang et al., 2008; Knox et al., 2008), it has enhanced the 

antitumoural effect of other drugs in pre-clinical models of breast cancer (Purcell et al., 

2010). In another clinical trial, filanesib (also known as ARRY-520) stabilized tumour 

growth (LoRusso et al., 2015). Another KIF11 inhibitor, SB-743921, has also recently 

shown promising results in patients with relapsed or refractory lymphoma (O'Connor et 

al., 2015). Finally, litronesib (also known as LY2523355), another novel KIF11 inhibitor, 
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has also demonstrated a strong antitumoural activity in tumour xenograft models (Ye et 

al., 2015).   

 

The results from the last part of this thesis provide some evidences of a potential role 

of kinesins in MPNST pathogenesis and tempt to further explore some members of this 

family as molecular targets for the treatment of these tumours. 

 

Transcriptional imbalances allowed the identification of kinesins as 

candidate drivers of MPNST pathogenesis 

 
When analyzing genes associated with TIs, among the significatively overexpressed 

genes, we identified a clear enrichment of genes from the kinesin superfamily involved 

in cell division. From the thirteen out of fifteen kinesin genes found overexpressed in 

MPNST vs. neurofibromas in the expression microarray, two of them were in TIs of 

overexpression and six others were overexpressed kinesins included in or flanking TIs 

of undexpression. Hence, we decided to explore whether the molecular functions 

driven by kinesins were involved in MPNST pathogenesis. In order to do so, some 

kinesins were selected, and we performed an experimental approach combining the 

previous RNAi functional in vitro genetic assays for KIF15 and KIF23 genes with a 

chemical inhibition of KIF10, KIF11 and KIF20A proteins. 

 

KIF11, KIF15 and KIF23 may be involved in MPNST pathogenesis 

 
In our data set, KIF23 is overexpressed in a TI of overexpression, KIF15 is 

overexpressed in a TI of underexpression and KIF11 is overexpressed flanking a TI of 

underexpression. The performed RNAi approach showed that KIF23 is required for the 

survival and cell cycle progression of both S462 and T265 and KIF15, for the survival 

and cell cycle progression of T265 cell line. The chemical inhibition of the kinesin 

proteins showed a general reduction in cell viability of a set of MPNST cell lines when 

inhibiting KIF11, and, in a less extent, when inhibiting KIF10. These results strengthen 

that using information from TIs can help to identify genes and molecular mechanisms 

involved in MPNST pathogenesis. Again, despite the limitations of our model should be 

considered, we claim KIF23 as an important player in the pathogenesis of MPNSTs. 
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Moreover the TI where KIF23 is located could be possibly generated as a result of a 

selection of a genomic copy gain in MPNSTs, in a similar way than BIRC5 gene. 

KIF15, and especially KIF11, would also have an important role in MPNST 

pathogenesis and their expression could be regulated regardless of the generation of 

the TI, similarly to CDCA8 gene. 

 

Studying KIF11 as a potential therapeutic target for MPNSTs 

  
The last results of this thesis demonstrated that treating S462 and T265 cell lines with 

the KIF10 inhibitor GSK923295, and most importantly, with the KIF11 inhibitor 

ispinesib, were more effective reducing their viability than in a control fibroblast cell 

line. According to the calculated half maximal inhibitory concentration (IC50) values, 

MPNST cell lines globally showed an average IC50 value around six times lower than 

fibroblasts for the KIF11 inhibitor. This in vitro therapeutic window found for ispinesib 

encourages the performance of further experiments to assess tumour growth in in vivo 

mice models treated with ispinesib or other KIF11 inhibitors. With this in mind, KIF11 is 

proposed as a novel potential therapeutic target for the treatment of MPNSTs (Figure 

42). KIF11 could be targeted in combination to other targets, such as MEK, which has 

shown to be a promising therapeutic target in several pre-clinical models for MPNST 

treatment, especially when combined with other targets (see Table 2).  

 

In addition, whereas the expression knockdown of KIF15 in S462 cell line seemed not 

have a remarkable effect in their tumourigenic properties, an increased sensitivity to 

KIF11 inhibition with ispinesib was found for S462 when KIF15 expression was 

previously depleted. As KIF15 has been described to replace all essential functions of 

KIF11 in the creation of the bipolar spindle in vitro (Tanenbaum et al., 2009) and there 

are not specific KIF15 inhibitors so far, we also propose to better experimentally 

address both the in vitro and in vivo effects of inhibiting KIF11 in a KIF15-deficient 

cellular background, as another potential therapeutic approach for MPNSTs. The 

design of a combined treatment aiming to bypass a potential KIF15-dependent 

resistance to KIF11 inhibitors is also under consideration. In this regard, a combined 

therapy targeting AURKA and KIF11 has recently proved to overcome in vitro a KIF15-

dependent resistance to the KIF11 inhibitor SB743921 (Ma et al., 2014). 
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During the last decade several targets have been proposed for the treatment of 

MPNSTs. These targets participate in various molecular mechanisms, including 

neurofibromin-associated signalling pathways, angiogenesis, apoptosis, epigenetics 

and mitosis (reviewed in Farid et al., 2014; Figure 42). In this thesis, throughout the 

information provided by TIs, we have identified two important players of mitosis as 

candidates of MPNST pathogenesis: the CPC and mitotic kinesins. Moreover, the 

kinesin KIF11, also known as EG5, is proposed as a potential therapeutic target for 

MPNSTs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 42. Pathways and potential targets for the treatment of MPNSTs. Pathways involved in 
MPNST pathogenesis, including proliferation, survival, angiogenesis, interaction with tumour 
microenvironment, epigenetic regulation and mitosis. The main inhibitors of these pathways are also shown. 
Inhibition of KIF11 in mitosis is suggested as a novel potential therapeutic target. 
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The main conclusions of this thesis are: 

 

• A probe-based qPCR assay has been developed and validated for an accurate 

detection of constitutional microdeletions in the NF1 locus – including those 

occurring in mosaicism – and for NF1 somatic deletions found in NF1 traits. 

 

• A second probe-based qPCR has been designed to detect somatic copy 

number alterations in MPNSTs. The use of repetitive sequences improves the 

normalization of copy number data in altered genomes, as LINEs in MPNSTs.  

 

• A loss of the CDKN2A locus has been confirmed as an early event of pNF 

progression to MPNST. 

 

• A hyperploid genome with recurrent SCNAs has been confirmed for MPNSTs, 

with the most recurrent gains in chromosomes 2, 7, 8, 15q and 17q22-25, and 

losses in 9p, 11q and 17p and 17q11.2-12. 

 

• Regions of the MPNST genome with a significant abundance of over- or 

underexpressed genes, known as transcriptional imbalances (TIs), have been 

identified. 

 

• Genomic copy number – especially genomic gains – influence global gene 

expression from MPNSTs in a regional manner: the generation of TIs in 

MPNSTs can be explained as a result of a selection of genomically altered 

regions. 

 

• TIs of underexpression are, in addition, significatively enriched in 

hypermethylated genes and thus could also be influenced by a regional 

epigenomic silencing.	  	  

•  

•  
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•  

 

• TIs would include some drivers of MPNST pathogenesis but they would mainly 

capture signatures of passenger gene expression containing only a few genes 

relevant to tumour biology. 

 

• The use of exclusive information provided by TIs facilitates the identification of 

candidate genes and molecular mechanisms involved in MPNST 

pathogenesis. 

 

• Borealin, encoded by the CDCA8 gene, and the chromosomal passenger 

complex are suggested to be involved in MPNST pathogenesis. 

 

• Some mitotic kinesins, such as KIF11, KIF15 and KIF23, are also proposed as 

important players in MPNST pathogenesis. 

  

• KIF11 represents a novel potential therapeutic target for the treatment of 

MPNSTs. 
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Figure A.1. Experimental design of the thesis project. Diagram including the experiments performed in 
the molecular characterization of NF1-associated tumours, MPNST cell lines and other samples and the in 
vitro experiments performed in the functional identification of candidate genes for MPNST pathogenesis. 
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Figure A.2. Characterization of NF1 constitutional deletions by MLPA and NF1-qPCR. Graphs 
showing the RCN±SD value (y-axis) calculated for each locus interrogated (x-axis) in MLPA and qPCR 
assays in the 5 Type-1 (A), 6 Type-2 (B) and 3 atypical (C) NF1 microdeletions. Violet bars and red bars 
show the assessed loci within NF1 region in MLPA and qPCR, respectively. Green bars and the brown bar 
are control loci placed in other sites within the genome in MLPA and qPCR, respectively. Dashed green and 
brown lines show, respectively, the extents of Type-1 and Type-2 microdeletions. 
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Figure A.3. Performance of the NF1-qPCR and MLPA assays in admixtures of 2 DNA samples with 
either 1 or 2 copies of NF1. Linear regression of RCN values (mean and SD; y-axis) of the percentage of 
DNA with 2 copies of NF1 within the admixtures (x-axis). Separate calculations for the qPCR assay (A) and 
the MLPA assay (B). Dashed thick lines indicate the threshold for deletion detection: <56% for qPCR (A) and 
<51% for MLPA (B). 
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Figure A.4. Characterization of NF1 somatic deletions by MLPA and NF1-qPCR. Graphs showing 
the RCN±SD value (y-axis) calculated for each locus interrogated (x-axis) in MLPA and qPCR assays in the 
11 dNF samples containing 56% or less of NF1-deleted component. Violet bars and red bars show the 
assessed loci within NF1 region in MLPA and qPCR, respectively. Green bars and the brown bar are control 
loci placed in other sites within the genome in MLPA and qPCR, respectively. Dashed green and brown lines 
show, respectively, the RCN cutoff values for qPCR (0.81) and MLPA (0.80) below which a deletion is 
considered.  
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Figure A.5. Circos representation showing TIs and SCNAs found in MPNST cell lines. From outside 
to inside, idiograms of the 22 human autosomes with G-banding pattern are depicted. Over these idiograms 
red and green boxes show TIs of overexpression and underexpression, respectively, obtained from 
microarray expression data. The 7 consecutive circles summarize the SCNAs obtained from SNP array data 
in the 7 NF1-associated MPNST cell lines analyzed. Genomic gains are shown in red, and losses, in green. 
Colour intensity denotes the copy number of the alteration. MPNST cell lines showed a higher hyperploid 
genome than MPNSTs, with also some recurrent SCNAs. LOH of every MPNST cell line sample is also 
depicted in blue. In the inner part, the recurrence of the SCNAs (in red and green) and LOH (in blue) of all 
cell lines is shown. 
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Figure A.6. Circos representation showing TIs found in MPNSTs considering three levels of 
significance with PREDA. From outside to inside, idiograms of the 22 human autosomes with G-banding 
pattern are depicted. The 3 consecutive circles show TIs of overexpression (red boxes) and TIs of 
underexpression (green boxes) obtained from microarray expression data and applying three levels of 
significance with PREDA: P=0.1, P=0.05 and P=0.01. A P=0.05 level of significance was chosen to delimit 
the boundaries of the TIs to be further studied (intense red and green boxes).  
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Figure A.7. Karyoplot showing TIs found in MPNSTs and TIs found in MPNST cell lines. A 
karyogram showing the idiograms of the 22 human autosomes with G-banding pattern is depicted. Red and 
green boxes represent, respectively, the 36 TIs of overexpression and 28 TIs of underexpression identified in 
MPNSTs (above the chromosomes), and the 35 TIs of overexpression and 31 TIs of underexpression 
identified in MPNST cell lines (below the chromosomes). Those TIs that are coincident for both tumours and 
cell lines (25.4% of TIs of overexpression from MPNSTs and 20.6% of TIs of underexpression from 
MPNSTs) are shown as intense red and green boxes. In blue are depicted the genes selected for the 
functional identification of genes involved in MPNST pathogenesis and their location in the genome. 
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Figure A.8. Global association of TIs with SCNAs and with hypermethylated genes in MPNST cell 
lines by regioneR. regioneR plots showing the results of permutation tests. A. TIs of overexpression found 
in MPNST cell lines were significatively associated with genomic gains. B. TIs of underexpression found in 
MPNST cell lines were significatively associated with non-gained regions. C. TIs of underexpression found in 
MPNST cell lines were not enriched in hypermethylated genes. D. TIs of overexpression were significatively 
enriched in hypomethylated genes. 
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 Cell line 
Marker S462 T265 sNF96.2 NMS-2 90-8 STS26T 
D8S1179  10, 12 14 13 12, 13 10, 12 13, 14 
D21S11  29 29, 32.3 30 30 30 30, 31 
D7S820  8, 10 8 10, 11 9, 12 11 8, 11 
CSF1PO  12 9, 12 12 12 12 10, 13 
D3S1358  14, 17 15, 18 16 15, 16 15 14 

TH01  7, 8 9 6 6 6 6, 9.3 
D13S317  12 12 10 12 8 9, 10 
D16S539  11, 13 13 11 9 9 12, 13 
D2S1338  23 17, 23 17 18, 19 16, 24 20 
D19S433  14 13, 14 13, 14 13.2, 14.2 13, 16 14 

vWA  19 16 17, 19 14, 19 17 17 
TPOX 8 11, 12 11 8, 9 11 8 

D18S51 16 12 16 17 14, 18 17, 18 
AMEL X X, Y X X, Y X X 

D5S818  12 12, 13 11 12, 13 11 11, 12 
FGA  20 21 22 21, 22 25 22, 23 

 
Table A.1. STR profiles of MPNST cell lines. Information regarding the microsatellite profiles of MPNST 
cell lines obtained with the AmpFlSTR Identifiler Plus Amplification kit. 
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  2q 17p 17q NF1 gene 17q   
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D
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D
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D
17

S9
33

 
D

17
S2
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D
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S8
07

 
D

17
S7

89
 

PRA 
assay* 

SNP 
array* 

NF-19 24                                     

NF-28 37                                     

NF-15 42                                     

NF-17 49                                 X X 

NF-18 44                                 X X 

NF-20 44                                 X   

NF-22 n/a                                     

NF-25 45                                     

NF-21 43                                   X 

NF-63 47                                     

NF-24 44                                     

NF-23 56                                     

NF-27 52                                 X X 

NF-29 68                                   X 

NF-16 61                                   X 

NF-26 71                                 X X 
 

Table A.2. Characterization of NF1 somatic deletions in dNFs by MMPA. Calculations obtained with 
the microsatellite multiplex PCR analysis (MMPA) of the percentage of cells with 2 copies of NF1 present in 
each of the 16 dNFs analyzed (see Garcia-Linares et al., 2012 for details). For some samples deletion was 
also assessed by Paralog Ratio Analysis (PRA) and SNP array (Garcia-Linares et al., 2012). Green boxes 
show deleted loci; grey boxes show non-deleted loci; yellow boxes show non-informative microsatellites. n/a, 
not available. 
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Set Sample 
AURKA / 
GLRX3 

AURKA / 
ACSS1 

AURKA / 
ADARB1 

AURKA / 
L1 

AURKA / 
L1PA 

AURKA / 
NF 

S462 1.30 1.38 2.16 1.41 1.39 1.40 
T265 4.01 2.40 2.92 2.56 2.77 2.66 

ST-8814 3.97 1.95 2.52 2.94 2.35 2.63 
S462-TY 1.43 1.33 2.29 1.62 1.40 1.51 

MPNST 
cell lines 

STS-26T 2.92 2.07 2.66 2.95 2.36 2.64 
MPNST_A 2.40 1.23 1.23 1.55 1.45 1.50 
MPNST-1 2.04 1.22 1.29 1.63 1.40 1.51 
MPNST_B 2.55 1.15 1.82 1.86 1.90 1.88 
MPNST_C 1.31 1.32 1.29 1.49 1.28 1.38 
MPNST_D 2.03 1.32 1.51 1.67 1.59 1.63 
MPNST_G 1.16 1.10 0.57 0.85 0.89 0.87 

NF1-
associated 
MPNSTs 

MPNST_K 2.48 2.33 2.24 3.04 2.06 2.50 
M-23 1.28 1.31 1.28 1.68 1.37 1.52 
M-24 1.13 1.25 1.26 1.40 1.08 1.23 
M-25 1.37 1.03 1.18 1.05 1.10 1.07 
M-26 0.83 1.14 1.29 1.05 0.85 0.94 

sporadic 
MPNSTs 

M-27 2.58 1.27 1.29 1.23 1.41 1.32 
M-17 1.18 1.08 1.15 1.45 1.33 1.39 
M-10 1.04 1.15 1.08 1.16 1.09 1.13 
M-38 1.10 1.10 1.11 1.12 1.10 1.11 
M-39 1.22 1.13 1.28 1.16 1.25 1.20 
M-40 0.88 0.98 0.88 0.94 1.02 0.98 
M-46 0.94 1.26 1.06 1.09 1.00 1.04 
M-48 0.79 0.84 0.75 0.79 0.90 0.85 

benign 
neuro-

fibromas 

M-49 0.89 0.96 0.88 1.00 0.83 0.91 
M-18 1.14 1.01 1.11 1.11 1.19 1.15 
M-28 1.04 1.01 1.00 0.93 0.88 0.91 
M-29 0.85 0.93 0.90 1.18 0.99 1.08 
M-30 0.83 0.85 0.80 0.80 0.88 0.84 
M-31 1.04 0.96 1.01 0.89 0.95 0.92 
M-32 1.04 0.96 1.02 1.06 0.95 1.00 
NF-50 0.90 0.95 0.85 0.90 0.96 0.93 
NF-52 0.99 0.94 0.96 0.93 1.05 0.98 
NF-54 0.93 0.96 0.95 1.11 1.06 1.09 

control 
samples 

NF-55 1.33 1.53 1.57 1.17 1.13 1.15 
 
Table A.3. Comparison of copy number assessment using averaged LINEs or single genes as 
normalizers. RCN values of AURKA locus obtained for 5 MPNST cell lines, 12 MPNSTs (7 NF1-associated 
and 5 sporadic), 8 neurofibromas and 10 control samples with the MPNST-qPCR using as normalizers of 
copy number data the single loci GLRX3, ACSS1, ADARB1, L1 or L1PA, or a nomalization factor (NF) 
averaging L1 and L1PA relative quantities (RQ). Those RCN outside the 99% CI of a diploid status for 
AURKA (0.76 – 1.32) are considered to indicate a copy number change: either a genomic gain (red numbers 
in red boxes) or a copy number loss (green numbers in green boxes). RCN values of AURKA locus obtained 
with the NF are in bold. 
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Probe-Based Quantitative PCR Assay for Detecting
Constitutional and Somatic Deletions in the NF1 Gene:

Application to Genetic Testing and Tumor Analysis
Ernest Terribas,1 Carles Garcia-Linares,1 Conxi Lázaro,2 and Eduard Serra1*

BACKGROUND: About 5% of patients with neurofibro-
matosis type 1 (NF1) bear constitutional microdele-
tions that encompass NF1 (neurofibromin 1) and
neighboring genes. These patients are characterized by
the development of a high number of dermal neurofi-
bromas (dNFs), mental retardation, and an increased
risk of developing a malignant peripheral nerve sheath
tumor (MPNST). Additionally, 10% of somatic second
hits identified in dNFs are caused by deletions involv-
ing the NF1 gene. To detect constitutional and somatic
deletions, we developed a probe-based quantitative
PCR (qPCR) assay for interrogating the copy number
status of 11 loci distributed along a 2.8-Mb region
around the NF1 gene.

METHODS: We developed the qPCR assay with Univer-
sal ProbeLibrary technology (Roche) and designed a
Microsoft Excel spreadsheet to analyze qPCR data for
copy number calculations. The assay fulfilled the essen-
tial aspects of the MIQE (minimum information for
publication of quantitative real-time PCR experi-
ments) guidelines and used the qBase relative quantifi-
cation framework for calculations.

RESULTS: The assay was validated with a set of DNA
samples with known constitutional or somatic NF1 de-
letions. The assay showed high diagnostic sensitivity

and specificity and distinguished between Type-1,
Type-2, and atypical constitutional microdeletions in
14 different samples. It also identified 16 different so-
matic deletions in dNFs. These results were confirmed
by multiplex ligation-dependent probe amplification.

CONCLUSIONS: The qPCR assay provides a methodology
for detecting constitutional NF1 microdeletions that
could be incorporated as an additional technique in a
genetic-testing setting. It also permits the identification
of somatic NF1 deletions in tissues with a high percent-
age of cells bearing 2 copies of the NF1 gene.
© 2013 American Association for Clinical Chemistry

Neurofibromatosis type 1 (NF1)3 is an autosomal domi-
nant genetic disorder caused by mutations in NF14 (neu-
rofibromin 1) (MIM 613113; NG 009018.1), a tumor
suppressor gene located at 17q11.2. This disease affects
approximately 1 in 3500 individuals. One of the most
important clinical manifestations is the development
of multiple dermal neurofibromas (dNFs), which are
benign tumors of the peripheral nervous system. NF1
patients show a wide spectrum of constitutional muta-
tions that affect the NF1 gene. Most of the mutations
(93%) are point mutations, including nonsense, mis-
sense, insertion/deletions, and splicing mutations. The
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3 Nonstandard abbreviations: NF1, neurofibromatosis type 1; dNF, dermal neu-

rofibroma; REP, low-copy repeat; MPNST, malignant peripheral nerve sheath
tumor; SC, Schwann cell; FISH, fluorescence in situ hybridization; MLPA, mul-
tiplex ligation-dependent probe amplification; SNP, single-nucleotide polymor-
phism; qPCR, quantitative real-time PCR; UPL, Universal ProbeLibrary (Roche);
LDR, linear dynamic range; LINE, long interspersed repeat element; L1PA, LINE
in the L1 family; Cq, quantification cycle; RQ, relative quantity; NRQ, normalized
relative quantity; NF, normalization factor; RCN, relative copy number; RF,
rescaling factor; MMPA, microsatellite multiplex PCR analysis; MIQE, minimum
information for publication of quantitative real-time PCR experiments.

4 Human genes: NF1, neurofibromin; SUZ12, suppressor of zeste 12 homolog

(Drosophila); SUZ12P1, suppressor of zeste 12 homolog pseudogene 1;
ADARB1, adenosine deaminase, RNA-specific, B1; TBC1D29, TBC1 domain
family, member 29; CRLF3, cytokine receptor-like factor 3; RNF135, ring finger
protein 135; UTP6, UTP6, small subunit (SSU) processome component, homolog
(yeast); RHOT1, ras homolog family member T1; SSH2, slingshot homolog 2
(Drosophila); PSMD11, proteasome (prosome, macropain) 26S subunit, non-
ATPase, 11; MAP2K4, mitogen-activated protein kinase kinase 4; OMG, oligo-
dendrocyte myelin glycoprotein; EVI2B, ecotropic viral integration site 2B;
EVI2A, ecotropic viral integration site 2A; EFCAB5, EF-hand calcium binding
domain 5; NSRP1, nuclear speckle splicing regulatory protein 1; SLC6A4, solute
carrier family 6 (neurotransmitter transporter, serotonin), member 4; BLMH,
bleomycin hydrolase; TMIGD1, transmembrane and immunoglobulin domain
containing 1; CPD, carboxypeptidase D; GOSR1, golgi SNAP receptor complex
member 1; LRRC37BP1, leucine rich repeat containing 37B pseudogene 1;
ATAD5, ATPase family, AAA domain containing 5; TEFM, transcription elonga-
tion factor, mitochondrial; ADAP2, ArfGAP with dual PH domains 2; RAB11FIP4,
RAB11 family interacting protein 4 (class II); COPRS, coordinator of PRMT5,
differentiation stimulator (formerly C17orf79); LRRC37B, leucine rich repeat
containing 37B; RHBDL3, rhomboid, veinlet-like 3 (Drosophila); C17orf75, chro-
mosome 17 open reading frame 75; ZNF207, zinc finger protein 207.
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remaining mutations consist of intragenic deletions/
duplications (approximately 2%) and microdeletions
that span NF1 and neighboring genes (approximately
5%) (1 ). Approximately 90% of NF1 microdeletions
(Types-1, -2, and -3) are recurrent and arise via nonal-
lelic homologous recombination between low-copy re-
peats (REPs), which are paralogous regions flanking
the NF1 gene. REP-A and REP-C regions mediate
Type-1 deletions, which are the most frequent. These
regions span 1.4 Mb and contain NF1 and 14 other
protein-coding genes (2– 4 ). Type 2 deletions are less
frequent and typically appear in the context of somatic
mosaicism. The distance between their breakpoints,
which are located at the SUZ12 [suppressor of zeste 12
homolog (Drosophila)] gene and its pseudogene
SUZ12P1 (suppressor of zeste 12 homolog pseudogene
1), spans 1.2 Mb (5 ). The REP-B and REP-C regions
are involved in the rare Type-3 deletions, which are 1.0
Mb in length (6 – 8 ). In the remaining approximately
10% of constitutional NF1 microdeletions, the so-
called atypical deletions, the REPs are not involved in
generating the breakpoint (7, 9 ). Individuals bearing a
NF1 microdeletion present a more severe clinical phe-
notype, including dysmorphic features, learning
disabilities, cardiovascular malformations, childhood
overgrowth, a higher number of dNFs, and a higher
lifetime risk for the development of malignant periph-
eral nerve sheath tumors (MPNSTs) (10 –12 ).

Deletions of the NF1 gene also occur somatically,
e.g., in tumors such as dNFs arising in patients with
NF1. A key event in the initiation of neurofibroma de-
velopment is biallelic inactivation of the NF1 gene (13–
15 ). dNFs are composed of different cell types, but only
Schwann cells (SCs) bear a double inactivation of the
NF1 gene (16 –18 ). Approximately 75% of the somatic
mutational spectrum of the NF1 gene in NF1-
associated dNFs is accounted for by point mutations
(i.e., nonsense, missense, small insertion/deletion, and
splicing mutations) and intragenic deletions. The re-
mainder (approximately 25%) present as a loss of
heterozygosity in large genomic regions that include
the NF1 gene (19, 20 ). The mechanistic causes of loss
of heterozygosity are mitotic recombination in 62% of
cases and genomic deletions of 80 kb to 8 Mb in the
remaining 38% (20 ).

To date, NF1 constitutional deletions have been
identified with multiple techniques, such as microsat-
ellite analysis with intragenic markers (21–23 ), inter-
phase fluorescence in situ hybridization (FISH) analy-
sis via the use of probes within and flanking the NF1
gene (11, 22, 24, 25 ), multiplex ligation-dependent
probe amplification (MLPA) with commercially avail-
able kits (23, 26 ), and array comparative genomic hy-
bridization (27 ). Microsatellite analysis (20, 28, 29 ),
FISH (30 ), MLPA (19, 20, 29, 31 ), and array com-

parative genomic hybridization (32 ) have also been
used to characterize somatic deletions encompassing
the NF1 gene, together with other techniques, such
as single-nucleotide polymorphism (SNP) analysis
(32 ), paralog ratio analysis (20, 32 ), and SNP array
(20 ).

Quantitative real-time PCR (qPCR) has been used
to confirm intragenic constitutional deletions in NF1
(26 ); however, qPCR has not been used routinely to
detect constitutional NF1 microdeletions. qPCR repre-
sents an alternative methodology because of its high
analytical sensitivity and low imprecision, its relatively
low screening cost, and its fast assay-development
time. We describe a probe-based qPCR assay for de-
tecting all 4 types of NF1 constitutional microdeletions
and somatic deletions that affect the NF1 region. We
also compare our qPCR results with those obtained via
other techniques.

Materials and Methods

PATIENTS AND SAMPLES

This study included 59 samples: 14 venous blood sam-
ples previously tested by FISH and microsatellite mark-
ers and found to carry a constitutional deletion of NF1
in each case (21, 33 ); 16 samples from surgically ex-
cised dNFs; and 5 samples from selective SC cultures
(SCNF1�/�) derived from dNFs, previously analyzed by
MLPA, paralog ratio analysis, and SNP array and found
to bear a somatic NF1 deletion in each case [(20 ) and
data not shown]. In addition, we used a set of 24 con-
trol samples, each of which presents 2 copies of the NF1
gene: 10 dNF samples, 5 blood samples, 4 skin samples,
3 fibroblast samples, and 2 SCNF1�/� samples. All pa-
tients gave written informed consent for the molecular
studies performed.

Total DNA was extracted from blood samples with
different methodologies: the salting-out procedure, the
Wizard Genomic DNA Purification Kit (Promega),
and the FlexiGene DNA Kit (Qiagen). DNA was ex-
tracted from dNFs and skin with the Gentra Puregene
Kit (Qiagen). The QIAamp DNA Mini Kit (Qiagen)
was used to extract DNA from cells (SCs and fibro-
blasts). All extractions were performed according to
the manufacturer’s instructions. A NanoDrop� spec-
trophotometer was used to quantify DNA and to mea-
sure purity and quality. DNA integrity was assessed by
gel electrophoresis. All DNA samples included in this
study presented with high purity and integrity.

qPCR EXPERIMENTAL SETUP

Primers and probes for the qPCR assay were developed
with Roche Universal ProbeLibrary (UPL) technology.
UPLs are hydrolysis probes of 8- to 9-nucleotide locked
nucleic acid that are labeled at the 5� end with the flu-
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orescent dye 6-carboxyfluorescein and at the 3� end
with a quencher dye. The combination of the hydroly-
sis probe and the primer pair provided the specificity
required for each particular genomic locus of interest.
The design of each of the primers (desalted and puri-
fied; Sigma Life Science) was subjected to an in silico
PCR and BLAT search analysis to evaluate their speci-
ficity, which was later assessed experimentally by PCR
and agarose gel electrophoresis before qPCR experi-
ments were conducted. The sequences of the primers
and probes used in this study are listed in Table 1 of the
Data Supplement that accompanies the online version
of this article at http://www.clinchem.org/content/
vol59/issue6.

qPCR experiments were performed in a Light-
Cycler� 480 Real-Time PCR System with white Multi-
well Plate 384 plates (Roche Diagnostics). Conditions
for amplification were as follows: 95 °C for 10 min; 45
cycles of 95 °C for 10 s, 60 °C for 30 s, and 72 °C for 1 s;
and 40 °C for 30 s. The linear dynamic range (LDR)
and efficiency (E) of the primers were evaluated (see
Table 1 in the online Data Supplement). Then, to min-
imize technical variation between runs, we divided all
samples under study into 3 panels of 20 samples each
according to the sample-maximization method
(34, 35 ). Each reaction in all experiments included 5 ng
DNA template, 4 �L of 2� LightCycler 480 Probes
Master Mix (Roche Diagnostics), 0.1 �mol/L UPL
probe, and 0.75 �mol/L of each primer, in a total vol-
ume of 8 �L [except for reactions for the L1PA
locus—a long interspersed repeat element (LINE) in
the L1 family—which included 0.2 �mol/L UPL probe
and 1.2 �mol/L of each primer]. PCRs for each primer
set and sample were performed in triplicate. Each set of
PCR assays included both negative controls without
template and a dilution series of a particular template
for calculating the E value of the primer pair in each
run. In addition, a calibrator sample of known copy
number was included in triplicate in every assay.

qPCR DATA ANALYSIS

We designed a Microsoft Excel spreadsheet to analyze
qPCR data for copy number calculations. We used for-
mulas from the qBase relative quantification frame-
work (34 ), which are based on the Pfaffl method (36 ).
In brief, we averaged the 3 quantification cycle (Cq)
numbers obtained from each triplicate with the
second-derivative maximum method in the Light-
Cycler� 480 software [as long as the difference in Cq
between the replicate with the highest value and the rep-
licate with lowest value was �0.3 for all genes and �0.2
for the L1PA locus (35)]. We then calculated the �Cq
value for the difference between the unknown sample and
the calibrator sample (�Cq � Cqunknown � Cqcalibrator).
The relative quantity (RQ) was later calculated as: RQ �

E��Cq. We calculated the normalized relative quantity
(NRQ) as: NRQ � RQ/NF, where NF is the normaliza-
tion factor. The NF in turn is the geometric mean of the
RQ values for the 2 selected reference loci—the
ADARB1 (adenosine deaminase, RNA-specific, B1)
gene and the L1PA locus—for the particular sample.
The value for the stability parameter, M (37 ), for this
particular NF was previously calculated for the entire
set of samples and was �0.2 (M � 0.168) (35 ). Finally,
we calculated relative copy number (RCN) as: RCN �
NRQ/RF, where RF is a rescaling factor. The RF is the
geometric mean of the NRQ values of a set of 24 control
samples bearing 2 NF1 copies. RCN values close to 1
indicate the presence of 2 NF1 copies, and RCN values
close to 0.5 indicate an NF1 deletion. A 99% CI for
RCN values indicating 2 NF1 copies was calculated for
each interrogated locus (see Table 1 in the online Data
Supplement).

MLPA ANALYSIS

We also used the MLPA technique to assess the NF1
copy number status of both samples with constitu-
tional and somatic deletions. We performed MLPA re-
actions in duplicate with the SALSA MLPA Kit
P122-C1 NF1 Area (MRC-Holland) and 40 ng DNA, in
accordance with the manufacturer’s instructions. Once
ligated and amplified, PCR fragments were separated
by capillary electrophoresis (ABI 3130xl Genetic Ana-
lyzer; Applied Biosystems). Peak intensities were ana-
lyzed with Peak Scanner Software (Applied Biosys-
tems) and normalized for peak heights, as described
elsewhere (20 ). In brief, peak height values were ex-
ported to an Excel spreadsheet. Relative probe signals
were calculated for a particular sample by dividing the
peak height of each of the 28 pairs of probes encom-
passing the NF1 region by the sum of the peak heights
of the 11 pairs of reference probes (not located in the
NF1 region). The ratio obtained for each individual
relative probe height was then normalized for that
specific probe to the mean obtained with 3 control
samples (with 2 copies of the NF1 region). For
genomic regions present in 2 copies in a sample,
these calculations were expected to yield an RCN
value of approximately 1.0. A value �0.8 was con-
sidered to indicate a deletion.

MICROSATELLITE MULTIPLEX PCR ANALYSIS

In parallel, we used microsatellite multiplex PCR anal-
ysis (MMPA) as previously developed in our labora-
tory (28 ) to assess the NF1 copy number status of
tumor samples with NF1 somatic deletions and to
calculate the percentage of cells within the tumors
with 2 NF1 copies. This technique allows the simul-
taneous amplification of 16 microsatellite markers.
MMPA reactions were performed in duplicate with
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the Multiplex PCR Kit (Qiagen) and 50 ng DNA.
Information regarding the amplification protocol,
data analysis, and calculations is described elsewhere
(28 ).

Results

DEVELOPMENT AND VALIDATION OF THE qPCR ASSAY

The qPCR assay was set up with UPL probes and their
corresponding specific primer pairs. For copy number
assessment, we selected 11 genomic loci distributed
along a 2.8-Mb region encompassing the NF1 gene
(Fig. 1). To distinguish Type-1, Type-2, Type-3, and
atypical NF1 microdeletions specifically, we decided to
interrogate 3 regions within the NF1 gene (NF1-5�,
NF1-C, and NF1-3�), 5 loci that closely flank REP-A,
REP-B, REP-C, SUZ12, and its pseudogene (SUZ12P1)
[TBC1D29, TBC1 domain family, member 29; CRLF3,
cytokine receptor-like factor 3; RNF135, ring finger
protein 135; UTP6, UTP6, small subunit (SSU) proces-
some component, homolog (yeast); RHOT1, ras ho-
molog family member T1], and 1 locus within
SUZ12P1 (SUZ12P1). Two other loci located distal to
the NF1 gene [SSH2, slingshot homolog 2 (Drosophila);
PSMD11, proteasome (prosome, macropain) 26S sub-
unit, non-ATPase, 11] were also included. In addi-
tion, the MAP2K4 (mitogen-activated protein kinase
kinase 4) gene, located in 17p, was selected as a con-
trol (i.e., a locus with 2 copies). Moreover, we se-
lected 2 reference genes, ADARB1 (21q22.3) and the

LINE repetitive sequence L1PA (which is inter-
spersed through the genome) to further normalize
copy number data, as has been suggested (35 ). We
chose UPL probes for our study because of their ad-
vantages of higher specificity, higher PCR E values,
and avoidance of primer-dimer signal that hydroly-
sis probes show, in contrast to fluorescent dyes such
as SYBR Green. We also chose UPL probes for their
flexibility of use and their reduced cost compared
with DNA-sequenced hydrolysis probes.

Some experiments were performed to validate the
qPCR assay. First, a set of 2-fold dilutions of pooled
DNA samples (80 to 0.156 ng per reaction in triplicate)
was used to determine the LDR and the E value of the
primers used (34 ). All designed primers showed a large
LDR (at least 9 orders of magnitude) and high E values,
which ranged from 1.88 to 2.11 for the loci analyzed
(see Table 1 in the online Data Supplement).

Then, we determined the range of RCN values for
a 2-copy status of the NF1 gene by analyzing 24 control
samples. The mean (SD) NRQ for the 12 loci and 24
samples interrogated was 0.99 (0.08) (Fig. 2). The
mean calculated 99% CI of RCN for the 12 loci was
0.81–1.23. An RCN value below the lower limit of the
CI for a locus was considered to indicate deletion of
that particular locus.

The qPCR assay also showed low intraassay and
interassay imprecision (see Table 1 in the online Data
Supplement).
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Fig. 1. Schematic representation of the NF1 region at 17q11.2 assessed with the qPCR assay.

Protein-coding genes [except for OMG (oligodendrocyte myelin glycoprotein), EVI2B (ecotropic viral integration site 2B), and
EVI2A (ecotropic viral integration site 2A)] are represented by gray boxes; REPs are represented by black boxes. Indicated are
the positions of the 11 qPCR probes (black arrows), the 24 MLPA probes (“tailed” small gray circles), and the 6 MMPA
microsatellites (“tailed” large gray circles) within the NF1 region. EFCAB5, EF-hand calcium binding domain 5; NSRP1, nuclear
speckle splicing regulatory protein 1; SLC6A4, solute carrier family 6 (neurotransmitter transporter, serotonin), member 4; BLMH,
bleomycin hydrolase; TMIGD1, transmembrane and immunoglobulin domain containing 1; CPD, carboxypeptidase D; GOSR1,
golgi SNAP receptor complex member 1; LRRC37BP1, leucine rich repeat containing 37B pseudogene 1; ATAD5, ATPase family,
AAA domain containing 5; TEFM, transcription elongation factor, mitochondrial; ADAP2, ArfGAP with dual PH domains 2;
RAB11FIP4, RAB11 family interacting protein 4 (class II); COPRS, coordinator of PRMT5, differentiation stimulator (formerly
C17orf79); LRRC37B, leucine rich repeat containing 37B; RHBDL3, rhomboid, veinlet-like 3 (Drosophila); C17orf75, chromosome
17 open reading frame 75; ZNF207, zinc finger protein 207. See human genes footnote for the names of the other genes
identified in this figure.
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DETECTION OF NF1 CONSTITUTIONAL DELETIONS

After validating the qPCR assay with a panel of 24 con-
trol samples, we tested the performance of the qPCR
assay by using a set of 14 DNA samples previously char-
acterized and bearing a constitutional deletion of the
NF1 gene: 5 Type-1 deletions, 6 Type-2 deletions, and 3
atypical deletions. No Type-3 deletion was tested. All
deletions were detected with the qPCR assay (Fig. 3; see
Fig. 1 in the online Data Supplement). The mean (SD)
RCN value within the deleted loci was 0.53 (0.07). Pa-
tient NF-01 bears a type 2 microdeletion. The DNA
sample from this patient showed a mean RCN value of
0.68 (0.05) within the deleted loci. This result could
reflect the presence of mosaicism for this microdele-
tion. Thus, when we considered all of the loci known to
be deleted in our sample set, the qPCR assay showed
100% diagnostic sensitivity and 99.2% diagnostic spec-
ificity (see Table 2 in the online Data Supplement). The

SUZ12 locus, which is essential for distinguishing a
Type-1 deletion from a Type-2 deletion, showed 100%
diagnostic sensitivity and 96.9% diagnostic specificity.
These results were confirmed in a parallel analysis of
these samples with the MLPA technique (see Fig. 1 in
the online Data Supplement).

DETECTION OF NF1 SOMATIC DELETIONS

We also tested the performance of the qPCR assay for
detecting somatic copy number losses by using samples
from tumors and cells bearing different known somatic
NF1 deletions. Because the NF1�/� cellular compo-
nent is not total, not only within a dNF (and other
NF1-associated traits) (17 ) but also in tissues showing
mosaicism for a constitutional NF1 deletion, we first
checked the reliability of the qPCR assay for detecting
deletions in the context of mosaicism.
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Fig. 2. Distribution of NRQ values for each of the 12 interrogated loci in a set of 24 control samples (with 2 copies
of NF1).

Box plots with NRQ values plotted on the y axis and the different interrogated loci on the x axis. Outlier values are indicated
(E). Data for box plots are presented as the median, interquartile range, and range.
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To assess the performance of the qPCR assay in
admixtures of NF1-deleted and -nondeleted DNA
samples, we set a cutoff value for the maximum per-
centage of NF1-nondeleted cells present in a tumor (or
tissue) that the qPCR assay could tolerate and still de-
tect the presence of a somatic NF1 deletion. To choose
this cutoff, we checked the performance of the qPCR
assay with several admixtures of 2 DNA samples, one
with 2 NF1 copies and the other with a single NF1 copy.
We prepared 11 serial dilutions of NF-59 (NF1 consti-
tutional deletion) and NF-60 (sample with 2 NF1 cop-
ies) with different DNA percentages of the 2 samples in
quintuplicate (i.e., 0% to 100% of the sample with 2
NF1 copies). For each admixture, the mean (SD) of the
calculated RCN for the 6 loci (NF1-5�, NF1-C, NF1-3�,
CRLF3, RNF135, and UTP6) was plotted against the
percentage of DNA with 2 NF1 copies present in the
DNA admixture (Fig. 4A). To calculate the cutoff
value for the percentage of cells with 2 NF1 copies
that the qPCR assay could tolerate and still detect the

presence of an NF1 deletion, we used the mean lower
99% confidence limit for all loci (0.81) (Fig. 4A).
Hence, the qPCR assay detected NF1 somatic dele-
tions in dNFs containing less than 56% of NF1-
nondeleted DNA.

We also set a cutoff value for the MLPA technique
by using the same serial DNA admixtures used for the
qPCR. These samples were analyzed in duplicate, and
for each admixture we plotted the mean (SD) of the
calculated copy number of the 11 loci (from the CRLF3
3780 probe to the SUZ12 3786 probe) against the per-
centage of DNA with 2 NF1 copies present in the DNA
admixture (Fig. 4B). We used an RCN value of 0.8 to
obtain the cutoff value for the highest percentage of
NF1-nondeleted cells in tumors at which the MLPA
assay was able to detect the presence of an NF1 deletion.
This percentage was approximately 51%, similar to
that of the qPCR assay.

To evaluate the ability of the qPCR assay to detect
somatic deletions in dNFs and SCNF1�/� cells, we ana-

Fig. 3. Characterization of NF1 constitutional deletions.

Mean (SD) RCN values for the 11 loci located in the NF1 region (gray columns) and the MAP2K4 control locus (black bar) for
sample NF-05 (type 1 microdeletion) (A) and sample NF-12 (atypical microdeletion) (B). Dashed line indicates the RCN cutoff
for deletion detection. For information on all constitutional deletions, see Fig. 1 and Table 2 in the online Data Supplement.
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lyzed 16 DNA samples from dNFs and 5 SCNF1�/�

samples bearing an NF1 somatic deletion. First, we
used MMPA to calculate the percentage of DNA with 2
NF1 copies within tumor samples and cell cultures, as
described elsewhere (28 ). The results with this tech-
nique also confirmed the presence of deletions in the
NF1 region in these samples (28 ) (see Table 3 in the
online Data Supplement).

The qPCR assay detected the presence of deletions
in the NF1 region in all 16 dNF and SCNF1�/� samples
tested that contained �56% of the NF1-nondeleted
component (Fig. 5; see Fig. 2 in the online Data Sup-
plement). When all loci known to be deleted in this
sample set were considered, the qPCR assay showed

90.5% diagnostic sensitivity and 98.9% diagnostic
specificity (see Table 2 in the online Data Supplement).
The technique was still able to detect a deleted locus in
all 4 tumor samples with 	56% of NF1-nondeleted
DNA, but the diagnostic sensitivity and specificity val-
ues were lower (see Table 2 in the online Data Supple-
ment). The mean RCN value within the deleted loci in
SCNF1�/� samples was 0.62 (0.11); this result probably
denotes the presence of cells with NF1-nondeleted
DNA in the SC cultures.

All qPCR results for the detection of somatic NF1
deletions in dNFs were confirmed with the results ob-
tained with the parallel MLPA analysis (see Fig. 2 in the
online Data Supplement).

Fig. 4. Performance of the qPCR and MLPA assays in admixtures of 2 DNA samples with either 1 or 2 NF1 copies.

Linear regression of RCN values (mean and SD) (y axis) on the percentage of DNA with 2 NF1 copies within admixtures (x axis).
Separate calculations for the qPCR assay (A) and the MLPA assay (B). Dashed thick lines indicate the threshold for deletion
detection.

934 Clinical Chemistry 59:6 (2013)



Discussion

Different techniques, including FISH, MLPA, and
array comparative genomic hybridization, are cur-
rently being used to assess the presence of microdele-
tions involving the NF1 locus. A qPCR approach has
also been developed to validate deletions involving spe-
cific exons within the NF1 gene that have previously
been detected with MLPA analysis (26 ). In addition,
qPCR has been used to detect low percentages of so-
matic NF1 point mutations (38 ); however, until the
present study qPCR analysis had not been used to de-
tect and distinguish between different types of NF1 mi-
crodeletions or to check for somatic second-hit dele-
tions. We have developed a probe-based qPCR assay
that detects both constitutional and somatic NF1 dele-
tions in samples from NF1 patients by interrogating the

copy number of an approximately 2.8-Mb region that
includes the NF1 gene.

Our assay fulfills all of the essential aspects of the
MIQE (minimum information for publication of
quantitative real-time PCR experiments) guidelines
(39 ) and most of the desirable information (see Table 4
in the online Data Supplement). Our adherence to
these criteria strengthens the reliability of the devel-
oped qPCR assay and the results we have obtained. The
assay requires small amounts of DNA: Each reaction is
performed in just 8 �L, and only 15 ng per interrogated
locus is required. qPCR reactions are highly efficient
(E 	 1.88) and amplify at similar rates with a large
LDR. We used 5 ng DNA per PCR reaction, although
smaller DNA quantities may be analyzed. Given all of
the interrogated loci and replicates, a total of 210 ng is
required per sample.

Fig. 5. Characterization of NF1 somatic deletions.

RCN values (mean and SD) are shown for the 12 interrogated loci for 2 samples with somatic deletions: NF-28, containing 37%
of cells (A) and NF-17, with 49% of cells with 2 NF1 copies (B). Dashed line indicates the RCN cutoff for deletion detection.
For information on all somatic deletions, see Fig. 2 and Table 2 in the online Data Supplement.
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This assay enabled the detection of the 14 consti-
tutional microdeletions and the 16 somatic deletions in
dNFs containing �56% of NF1-nondeleted cells. The
diagnostic sensitivity and specificity of our assay were
near or at 100% when all of the interrogated loci were
considered. For somatic deletions, the diagnostic sen-
sitivity was around 90%, because the qPCR assay de-
tected 2 copies for a few loci known to have a deletion.
The presence of a deletion event in a dNF sample was
considered, however, because most of the deleted loci
within the 2.8-Mb NF1 region in that sample were de-
tected as single copies. In addition, to increase diagnos-
tic specificity and minimize the false-positive rate, we
applied a stringent CI (99%) to assess for the absence of
a deletion.

qPCR is a highly analytically sensitive, specific, and
precise technique that has several advantages over
other methodologies. It is cheap and fast. Determining
the copy number status of different loci in several sam-
ples can be performed in just 3 h, including plate prep-
aration, PCR amplification, and data analysis. Detect-
ing copy number changes in samples of DNA extracted
with different methodologies and kits or from different
tissues and tumors can be challenging for many tech-
niques, such as MLPA. qPCR, however, is very robust
with respect to the DNA quality, thereby permitting the
screening and comparison of DNA samples from dif-
ferent sources.

The reliable design of the qPCR assay we have de-
scribed, along with the specific locations of the 11 in-
terrogated loci within the NF1 region, allow accurate
detection of Type-1, Type-2, and atypical NF1 mi-
crodeletions and are suitable for detecting the rare
Type-3 microdeletions. The assay could be expanded, if
required, to incorporate more loci for assessment. This
qPCR assay is also capable of detecting deletions in the
context of mosaicism, a feature important for consti-

tutional Type-2 microdeletions and for somatic dele-
tions found in dNFs.

We believe this qPCR assay could be incorporated
into a genetic-testing setting as a useful diagnostic tool,
either as a first screening step or as a validation tech-
nique for NF1 microdeletions (approximately 5% of
NF1 cases). In addition, the assay allows the identifica-
tion of somatic deletions in neurofibromas and other
NF1 traits that require the double inactivation of the
NF1 gene, when the deletion is present in at least 44%
of the tissue sample.
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