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Abstract 27 

 Two in-line enrichment procedures (large volume sample stacking (LVSS) and field 28 

amplified sample injection (FASI)) have been evaluated for the capillary zone electrophoresis 29 

(CZE) analysis of haloacetic acids (HAAs) in drinking water. For LVSS, separation on normal 30 

polarity by using 20 mM acetic acid-ammonium acetate (pH 5.5) containing 20% acetonitrile as 31 

BGE was required. For FASI, the optimum conditions were 25 s hydrodynamic injection (3.5 kPa) 32 

of a water plug followed by 25 s electrokinetic injection (-10 kV) of the sample, and 200 mM 33 

formic acid-ammonium formate buffer at pH 3.0 as BGE. For both FASI and LVSS methods, linear 34 

calibration curves (r
2
>0.992), limit of detection (LOD) on standards prepared in Milli-Q water 35 

(49.1-200 µg/L for LVSS and 4.2-48 µg/L for FASI), and both run-to-run and day-to-day precisions 36 

(RSD values up to 15.8% for concentration) were established. Due to the higher sensitive 37 

enhancement (up to 310-fold) achieved with FASI-CZE this method was selected for the analysis of 38 

HAAs in drinking water. However, for an optimal FASI application sample salinity was removed 39 

by solid phase extraction (SPE) using Oasis WAX cartridges. With SPE-FASI-CZE, method 40 

detection limits in the range 0.05-0.8 µg/L were obtained, with recoveries, in general, higher than 41 

90% (around 65% for monochloroacetic and monobromoacetic acids). The applicability of the SPE-42 

FASI-CZE method was evaluated by analyzing a drinking tap water from Barcelona where seven 43 

HAAs were found at concentration levels between 3-13 µg/L.  44 

 45 

 46 

47 



1. Introduction 48 

 It is well known that chlorination of drinking water has considerably reduced the number of 49 

deaths occurring annually from the outbreak of waterborne diseases. However, the natural organic 50 

matter in the water can also react with chlorine, forming organohalogen compounds usually referred 51 

as disinfection by-products (DBPs) [1,2]. In addition, high bromide levels in water reservoirs used 52 

as sources of drinking water can significantly contribute to the formation of brominated and mixed 53 

bromo/chloro-DBPs during chlorination [3,4]. The presence of some DBPs in drinking water is a 54 

matter of concern for human health and may also cause an unpleasant organoleptic taste. One of the 55 

most prevalent classes of known DBPs are the haloacetic acids (HAAs) which have potential 56 

adverse health effects [5]. At the moment, the US EPA has established a maximum contamination 57 

level (MCL) of 60 µg L
-1

 for the sum of five HAAs: monochloroacetic acid (MCAA), 58 

dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA), and 59 

dibromoacetic acid (DBAA) [6-8]. European legislation is less restrictive than the USA one, and in 60 

relation with DBPs only four trihalomethanes are proposed to be controlled [9]. The World Health 61 

Organization has published guideline values for TCAA (200 µg L
-1

) and MCAA (20 µg L
-1

), and a 62 

provisional guideline value for DCAA (50 µg L
-1

) in drinking water [10].  63 

 The typical methods used to determine HAAs involve gas chromatography (GC) with 64 

electron capture detection (ECD) [11-15] or coupled to mass spectrometry (GC-MS) [16-19]. Ion 65 

chromatography (IC) has also been proposed [20] using fluorescence detection after post-column 66 

derivatization [21], conductimetric detection [22], or coupled to mass spectrometry [23-25]. 67 

Conductometric determination of haloacetic acids in drinking waters has also been recently 68 

described using molecularly imprinted polymer (MIP)-modified electrode sensors [26]. 69 

 Capillary zone electrophoresis (CZE) has also been reported for the determination of HAAs 70 

using indirect UV detection [27-30]. However, many of the indirect UV buffers are expensive and 71 

may be prone to matrix interferences, thus CZE methods with direct UV detection have been 72 



developed [31-33]. Non-aqueous buffers have also been proposed for the analysis of HAAs in 73 

waters by capillary electrophoresis coupled to mass spectrometry (CE-MS) [34], and recently 74 

microchip capillary electrophoresis has also been used for the analysis of DCAA and TCAA [35]. 75 

In general, to improve detection limits, preconcentration methods such as solid phase extraction 76 

(SPE) [30,32] or liquid-liquid extraction (LLE) [31] are usually employed. Today, many in-line CE 77 

preconcentration procedures such as isotachophoresis, field amplified sample injection (FASI), 78 

stacking, and sweeping are described in the literature [36,37], which allow proposing CE 79 

methodologies for the environmental analysis of many pollutants at the required legislated levels. 80 

For the analysis of HAAs in water samples by CZE at low ppb levels only an in-line 81 

preconcentration method has been published [32] that was a stacking with sample matrix removal 82 

(employing NaOH solution as sample matrix) after an off-line liquid-liquid extraction step, 83 

although the method was only applied to the analysis of six HAAs. 84 

The aim of this work is the evaluation of two in-line CZE enrichment procedures, FASI and 85 

stacking with sample matrix removal (without using NaOH solutions), also known as large volume 86 

sample stacking (LVSS), to improve detection in the analysis of nine HAAs (including the mixed 87 

bromo/chloro-HAAs not usually reported in the literature) by CZE. Parameters which can affect the 88 

performance of the in-line preconcentration, such as buffer concentration and pH, injection time and 89 

reversal time (in LVSS), among others, were optimized, and quality parameters were established. 90 

The best preconcentration method was applied to the analysis of HAAs in Barcelona tap water. 91 

Weak anion exchange SPE was proposed to remove sample salinity before submitting the drinking 92 

water to the in-line CZE preconcetration method.   93 

 94 

2. EXPERIMENTAL 95 

2.1. Chemicals 96 



 The reagents, all of analytical grade, were obtained from the following sources: 97 

monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), 98 

monobromoacetic acid (MBAA), dibromoacetic acid (DBAA), tribromoacetic acid (TBAA), 99 

bromochloroacetic acid (BCAA), and trifluoroacetic acid (TFA, used as internal standard) from 100 

Fluka (Buchs, Switzerland), chlorodibromoacetic acid (CDBAA) and bromodichloroacetic acid 101 

(BDCAA) from Supelco (Bellefonte, PA, USA). Hydrochloric acid (25%), sodium hydroxide, 102 

formic acid, acetic acid and ammonium acetate were purchased from Merck (Darmstadt, Germany), 103 

maleic acid from Carlo Erba (Milan, Italy), and ammonium formate from Fluka. Water was purified 104 

using an Elix 3 module coupled to a Milli-Q system (Millipore, Bedford, MA, USA). 105 

 Stock standard solutions of individual HAAs and the internal standards TFA and maleic acid 106 

(1000 mg/L) were prepared in Milli-Q water, stored in plastic vials, and kept at 4 
o
C. Working 107 

solutions were obtained by dilution with Milli-Q water. Buffers were prepared daily by dilution of 108 

stock solutions of formic acid and ammonium formate or acetic acid and ammonium acetate. All 109 

buffers and working solutions were sonicated and filtered through a 0.45 µm membrane filter 110 

before use. 111 

 112 

2.2. Instrumentation 113 

 CZE-UV and FASI experiments were performed on a Beckman P/ACE MDQ capillary 114 

electrophoresis instrument equipped with a diode array. Electrophoretic separations were carried 115 

out using uncoated fused-silica capillaries with a total length of 60 cm (50 cm effective length) x 50 116 

µm I.D. (360 µm O.D.). For CZE-UV a capillary voltage of -20 kV (reversed polarity) was used. 117 

Sample introduction was performed by hydrodynamic injection (25 s, 3.5 kPa). FASI was 118 

performed as follows. The capillary was first filled with BGE (200 mM formic acid-ammonium 119 

formate buffer (pH 3.0)) and then a water plug (20s, 3.5 kPa) was introduced. Samples were then 120 

introduced into the capillary by electrokinetic injection at -10 kV (reversed polarity) during 20 s. 121 



The electrophoretic separation was then performed by applying -25 kV (reversed polarity) through 122 

the capillary. The CE instrument was controlled using a Beckman P/ACE station software version 123 

1.2. 124 

 LVSS experiments were performed on a Beckman P/ACE 5500 capillary electrophoresis 125 

instrument (Fullerton, CA, USA) modified to control the reversal of the electrode polarity and 126 

equipped with a diode array detector. Acquisition data were processed using the P/ACE Station 127 

software version 1.0. The electrophoretic separation was carried out using uncoated fused-silica 128 

capillaries of 57 cm (50 cm effective length) x 50 µm I.D. (360 µm O.D.). An optimal application 129 

of LVSS for the analysis of HAAs required an electrophoretic separation in positive polarity mode. 130 

For this purpose, a 20 mM acetic acid-ammonium acetate buffer (pH 5.5) containing 20% 131 

acetonitrile as BGE, and a capillary voltage of +25 kV (normal polarity) were employed. The 132 

application of LVSS involved several steps. The capillary was first filled with BGE and then a long 133 

plug of sample was introduced hydrodynamically by pressure (140 kPa) for 15 s. A high capillary 134 

voltage (-25 kV, reversed polarity)) was then applied and the electric current was monitored to 135 

indicate when the sample matrix was almost removed from the capillary by the electroosmotic flow 136 

(EOF). When the current was 95% of the original BGE current value, the voltage was turned off 137 

and the electrodes were switched to the separation configuration (reversal time: ~1.7 min). 138 

Electrophoretic separation was then carried out by applying +25 kV (normal polarity).  139 

 All the experiments were performed by keeping capillary temperature at 25 
o
C, and direct 140 

UV detection was carried out at 200 nm. 141 

  142 

2.3. Capillary conditioning. 143 

 New capillaries were pre-treated by using 0.1 M hydrochloric acid for 30 min, Milli-Q water 144 

for 30 min, 0.1 M sodium hydroxide for 30 min, and finally rinsed with Milli-Q water for 30 min. 145 

The capillary was conditioned daily by rinsing with 0.1 M sodium hydroxide for 30 min, Milli-Q 146 



water for 30 min and finally with the BGE for 30 min before the first run. Finally, the capillary was 147 

rinsed with BGE for 5 min between runs and stored after rinsing with water. 148 

 149 

2.4. Sample clean-up and preconcentration step. 150 

 In order to remove water sample salinity and enhance HAAs detection, a SPE step using 151 

Oasis WAX (150 mg) cartridges (Waters, Milford, USA) was performed. The sample treatment was 152 

performed following the procedure described by Taniyasu et al. [38]. Briefly, the cartridge was 153 

washed with 4 ml of MeOH containing 0.1% ammonium hydroxide, 4 ml of MeOH, and finally 154 

with 4 ml of Milli-Q water. Water samples of 100 ml were passed through the cartridge at a flow-155 

rate of 2-3 ml min
-1

 using a Visiprep System (Supelco). The cartridge was then washed with 25 ml 156 

of Milli-Q water (to remove salt content), 2 ml of MeOH, and finally dried with air. Elution was 157 

carried out with 2 ml of MeOH containing 0.1% ammonium hydroxide and the eluate was then 158 

evaporated to dryness under a N2 stream. Finally, the extract was re-dissolved in 1 ml of Milli-Q 159 

water and directly introduced into the CE system and analyzed by the FASI in-line preconcentration 160 

procedure. 161 

 162 

3. RESULTS AND DISCUSSION 163 

3.1. CZE-UV and FASI optimization. 164 

 As a preliminary study, the electrophoretic separation of this family of compounds in 165 

negative polarity mode was optimized. Formic acid-ammonium formate buffers were chosen as 166 

background electrolytes for this purpose, and the effect of both buffer concentration and pH was 167 

evaluated. An important improvement on HAA signals and peak shapes was observed with the 168 

increase of buffer ionic strength, so high buffer concentrations were proposed as optimal. Since 169 

haloacetic acids have pKa values between 0.66 (TCAA and TBAA) and 2.88 (MBAA), pH values 170 

higher than 3.0 must be used in order to guarantee anionic species. However, as the separation of 171 



anions was performed with negative polarity, high pH values must be prevented because the 172 

increase of the electroosmotic flow (EOF), in opposite direction than HAAs, interferes their 173 

separation as well as removes from the capillary those HAAs with low electrophoretic mobility 174 

(MCAA and MBAA). As a compromise, 200 mM formic acid-ammonium formate buffer at pH 3.0 175 

was chosen as optimal BGE for the separation of this family of compounds. Hydrodynamic 176 

injection time was also optimized and an injection time of 25 s was selected as optimal since higher 177 

values produced peak broadening and the loss of electrophoretic separation. Under these conditions, 178 

limits of detection around 1 mg/L were obtained for almost all HAAs, so preconcentration methods 179 

are mandatory to increase sensitivity.  180 

 Among in-line enrichment procedures, FASI is very popular since it is quite simple only 181 

requiring the electrokinetical injection of the sample after the introduction of a short plug of a high-182 

resistivity solvent. In this study, the electrolyte previously optimized for the conventional CZE 183 

separation (200 mM formic acid-ammonium formate at pH 3.0) was used as BGE for FASI-CZE 184 

procedure. 185 

 Water was used as high resistivity solvent for FASI application. Injection times for both the 186 

plug of water (hydrodynamic mode) and the sample (electrokinetic mode) were simultaneously 187 

optimized. Hydrodynamic injection (3.5 kPa) of a water plug from 5 s to 30 s, and electrokinetic 188 

sample injection (-10 kV) from 5 s to 30 s were tested. The best results were obtained with an 189 

injection time of 20 s for both the water plug and the sample. Obviously, when increasing injection 190 

time an enhancement of the response was observed; however, peak broadening occurred at sample 191 

injection times higher than 25 s affecting the electrophoretic separation. On the other hand, a 192 

reduction of the water plug produced a significant decrease on HAA signals. Once the sample was 193 

introduced by FASI, separation was performed by applying -25 kV as capillary voltage. As an 194 

example, Figure 1 shows the electrophoretic separation of a 70 µg/L standard of HAAs (250 µg/L 195 

for MCAA) in Milli-Q water.  196 



 197 

3.2. LVSS optimization.  198 

 The anionic nature of HAAs makes necessary to develop an electrophoretic separation in 199 

cathodic mode for an optimal application of LVSS, as EOF will help in the removal of sample 200 

matrix in a first step and then will produce the electrophoretic separation of HAAs in a second step. 201 

For this reason, relatively high pH buffer values are necessary in order to reach EOF mobilities able 202 

to carry out the analytes (with anionic electrophoretic mobilities) to the detector. The BGE 203 

previously optimized for the application of FASI cannot be applied in this case because of its low 204 

pH value, so for LVSS acetic acid-ammonium acetate buffers at higher pH values were evaluated. 205 

As an example, Figure 2a (0% ACN) shows the electrophoretic separation obtained with a 200 mM 206 

acetic acid-ammonium acetate buffer at pH 5.5, and normal polarity mode (+25 kV). Under these 207 

conditions almost all HAAs were baseline separated but DBAA and TCAA comigrated (peaks 4 208 

and 5). At lower buffer concentrations, separation worsened, and comigration of TBAA, CDBAA 209 

and BDCAA (peaks 1, 2 and 3, respectively) were observed, while higher concentrations did not 210 

improve separation of DBAA and TCAA. In order to achieve baseline separation of all HAAS, the 211 

use of BGE organic modifiers such as methanol and acetonitrile was evaluated. The addition of 212 

methanol did not improve the separation of HAAs, only a decrease in EOF and, consequently, 213 

higher analysis times were obtained. In contrast, acetonitrile affected both, EOF and HAA 214 

electrophoretic mobilities, as it can be seen in Figure 2a where the effect of acetonitrile in the BGE 215 

(from 10% to 30%) is shown. When 20% acetonitrile was added to BGE, separation of all HAAs in 216 

normal polarity mode was achieved. Higher acetonitrile contents produced comigration of DCAA 217 

and MBAA, so 20% was proposed as optimal organic amount. 218 

 To apply the LVSS enrichment procedure the capillary must be first almost filled with a 219 

sample (hydrodynamic injection (15 s, 140 kPa)) prepared in a low conductivity matrix. Then, a 220 

negative voltage is applied until the sample is pushed out from the capillary through the inlet side 221 



by the EOF. The reversal time (i.e. the moment when polarity must be switched) is critical and must 222 

be established at the beginning of every working day. In this work reversal time was established by 223 

monitoring the capillary current (at 95 % of BGE), being in this case 1.7 min. Figure 2b shows, as 224 

an example, the electrophoregram obtained by LVSS-CZE of a 500 µg/L HAA standard prepared in 225 

Milli-Q water. The application of LVSS enrichment procedure did not produce a loss in 226 

electrophoretic separation although an increase in analysis time was observed because of the 227 

characteristics of the methodology used. However, it should be pointed out that reversal time 228 

strongly depends on sample salinity. For this reason, when samples with different matrices are 229 

analyzed reversal time must be determined separately, increasing then the total analysis time and 230 

being a disadvantage in front of the FASI method previously described. 231 

 Finally, the presence of high concentrations of different co-ions between BGE and sample 232 

matrix in both FASI and LVSS procedures evaluated can result in another preconcentration effect 233 

such as transient-isotachophoresis although no terminal electrolyte is used [39].    234 

3.3. Quality parameters. 235 

 Quality parameters of the proposed conventional CZE (hydrodynamic injection), LVSS-236 

CZE and FASI-CZE methods under optimal conditions were determined and are given in Table 1. 237 

The limits of detection (LODs), based on a signal-to-noise ratio of 3:1, were calculated using 238 

standard solutions prepared in Milli-Q water at low concentration levels. The use of conventional 239 

CZE with hydrodynamic injection provided LODs around 1 mg L
-1

 for all HAAs except for MCAA 240 

(5 mg L
-1

), in agreement with values previously described in the literature [31,32]. When LVSS-241 

CZE was applied, a 25-fold signal enhancement was achieved for all HAAs obtaining LODs around 242 

50 µg L
-1

 except for MCAA (200 µg L
-1

). These results are similar to those previously reported for 243 

six HAAs [32], although the method here proposed has the advantage of not needing a NaOH 244 

solution as sample matrix. The best sensitivity for HAAs was observed using FASI obtaining LOD 245 

values between 4 and 6 µg L
-1

 for most of the compounds, except DCAA (11 µg L
-1

) and MCAA 246 



(48 µg L
-1

). This represents a signal enhancement higher than 80-fold and up to 300-fold in the best 247 

of the cases, providing a method sensitive enough for the analysis of these compounds. 248 

 Calibration curves based on peak area ratio (compound/internal standard) at a working range 249 

of 5-100 mg/L (CZE), 0.15-2.5 mg/L (LVSS) and 0.03-0.5 mg/L (FASI) were obtained and good 250 

linearity, with correlation coefficients (r
2
) higher than 0.992, was obtained. Run-to-run and day-to-251 

day precisions for HAA quantification were calculated at two concentration levels, a low level (3 252 

x LOD) and a medium level (see values in Table 1). To obtain the run-to-run precision, a total of 253 

six replicate determinations for each concentration level were carried out, while for the day-to-day 254 

precision a total of 18 replicate determinations of each concentration level on 3 non-consecutive 255 

days (six replicates each day) were performed. The relative standard deviations (%RSDs) obtained 256 

at medium concentration level with conventional CZE were between 2.4 and 3.7 % and between 3.2 257 

and 6.5% for run-to-run and day-to-day precisions, respectively. The values were slightly higher for 258 

the low concentration level, as it can be expected, although always RSD values were lower than 5.5 259 

and 8.3% for the run-to-run and day-to-day precisions, respectively. The use of enrichment 260 

procedures produced a loss in precision, which was lower for FASI than for LVSS. Nevertheless, 261 

RSD values lower than 16% were obtained with the application of both enrichment procedures 262 

which are acceptable for this kind of methodologies at low-ppb levels.  263 

 Summarizing, FASI-CZE provided better detection limits with a similar method 264 

performance than LVSS-CZE for the analysis of HAAs. Moreover, LVSS is a methodology that 265 

requires checking the reversal time for each standard and sample to control differences in sample 266 

matrix. As a consequence, analysis time increases because two runs are needed, one for the reversal 267 

time determination and another one for the HAA analysis making difficult the automation of the 268 

method. For these reasons, FASI-CZE is proposed for the analysis of HAAs in water. 269 

 270 

3.4. Analysis of water. 271 



 Although FASI-CZE provided LODs in Milli-Q water lower than the values established by 272 

legislation [6-8,10], this sensitivity is difficult to be achieved when analyzing real water samples 273 

since in-line preconcentration procedures based on modifications in electrophoretic conditions are 274 

strongly dependent on sample salinity. To evaluate the performance of FASI-CZE method for the 275 

analysis of real water, LODs were determined in two bottled mineral water samples of different 276 

salinity content (water 1 of 663 µS/cm and water 2 of 1187 µS/cm) free of HAAs which were 277 

spiked at very low concentration levels. As expected, an increase in sample salinity produced a 278 

decrease in the FASI signal enhancement achieved, resulting in LODs between 39 and 530 µg/L 279 

(water 1) and between 92 and 1200 µg/L (water 2), which are 9 to 25 times higher than those 280 

observed in Milli-Q water. As a result, the removal of matrix salinity from real water samples is 281 

mandatory for a suitable application of this in-line enrichment procedure.  282 

 To remove sample salinity, the use of Oasis WAX cartridges (150 mg), specifically 283 

proposed for preconcentration of acidic species was evaluated [38]. The breakthrough volume was 284 

determined using a water sample free of HAAs (water 2) spiked at several concentration levels with 285 

the sample amount kept constant (200 ng for each HAA). Therefore, sample volume was increased 286 

(2-250 ml) and the concentration of HAAs was decreased (100-0.8 µg/L). Sample volumes higher 287 

than 250 ml were not studied because the total analysis time would be too long. After 288 

preconcentration, the FASE-CZE method was applied. Recoveries were then calculated by 289 

comparing the peak areas with those obtained from a control sample at a concentration representing 290 

100% recovery (200 µg/L). Recoveries higher than 90% were obtained for all compounds except 291 

MBAA and MCAA that showed a recovery around 65% (Table 2). A decrease on the recoveries 292 

was observed when volumes higher than 100 mL were used, so this volume was chosen as 293 

optimum. Limits of detection were determined using a water sample free of HAAs (bottled mineral 294 

water 2) and values between 0.05 and 0.2 µg/L were obtained for almost all HAAs (0.8 µg/L for 295 

MCAA) (Table 2), which represents a enhancement between 6250 and 26000-fold when compared 296 



to conventional CZE values. However, it should be pointed out that robustness of the proposed 297 

method will be strongly dependent on sample salinity, observing higher LOD values for samples 298 

with important salinity content such as the case of some drinking tap waters.  Nevertheless, these 299 

LODs were always below the maximum contaminant levels stipulated by the EPA (60 µg/L for the 300 

sum of five HAAs) [6-8] and the WHO (20 to 200 µg/L for some HAAs) [10] for drinking water. 301 

So, the combination of SPE using Oasis WAX cartridges and FASI-CZE for in-line enrichment can 302 

be proposed for the analysis of HAAs in drinking waters at the levels established by present 303 

legislation. With the proposed method, the total sample treatment time per sample is about 2 hours 304 

(preconcentration, evaporation and redissolution), but 12 samples can be treated simultaneously 305 

using the Visiprep System from Supelco. So, the total sample throughput per day could be higher 306 

than 48 samples.  307 

 A tap water from Barcelona (Spain) was analyzed using the proposed method. Figure 3 308 

shows the electropherogram obtained when 100 mL were preconcentrated by SPE and analyzed by 309 

FASI-CZE. All HAAs except MCAA and MBAA were detected. Quantiation using standard 310 

addition calibration was performed, and the concentration levels found are given in Table 2.  311 

Concentrations in the range 3-13 µg/L were found for the individual compounds being DCAA, 312 

TCAA and DBAA the HAAs present at higher concentration (11±0.9, 12±0.9 and 13±1.1 µg/L, 313 

respectively). Brominated and mixed (chlorinated/brominated) species represent an important 314 

fraction (60%) of the total HAAs. The presence of these compounds has been described in 315 

Barcelona tap water [16,40,41] and can be explained because the raw water used in the drinking 316 

water treatment plant (DWTP) is rich in bromide [40,42]. The concentrations found were similar to 317 

those described in previously reported analysis of Barcelona tap water [16,40,41]. Despite the 318 

presence of HAAs in the tap water the total concentration for the sum of the 5 HAAs legislated by 319 

USEPA (MCAA, DCAA, TCAA, MBAA and DBAA) was 36 µg/L which is lower than the MCL 320 

(60 µg/L) established by the USEPA [6-8]. So, this drinking water is suitable for consumption. 321 



 322 

CONCLUSIONS 323 

 Two in-line enrichment procedures (LVSS and FASI) were evaluated to enhance sensitivity 324 

in the analysis of HAAs by CZE. Limits of detection ~25-fold (LVSS) and between 82- to 310-fold 325 

(FASI) lower than those achieved by CZE without preconcentration were obtained for standards in 326 

Milli-Q water. Since better detection limits were obtained for the FASI-CZE method, it was 327 

proposed for the analysis of HAAs in water samples. To remove sample salinity and improve 328 

sensitivity when dealing with real water samples ion exchange SPE is recommended. Good results 329 

for drinking water were obtained with the SPE-FASI-CZE method, with LODs down to 0.05-0.8 330 

µg/L and recoveries, in general, higher than 90% (~65% for MCAA and MBAC). The method was 331 

applied to the analysis of Barcelona (Spain) tap water and seven HAAs were found, with 332 

concentrations ranging from 3 to 13 µg/L. The results of this study showed that the combination of 333 

SPE with Oasis WAX cartridges and FASI-CZE in-line enrichment can be used for the analysis of 334 

HAAs in drinking water samples at the levels established by current legislation.  335 
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Figure captions 413 
 414 

Figure 1. Electrophoretic separation of HAAs (70 µg/L; 250 µg/L for MCAA) by FASI-CZE. BGE: 415 

200 mM formic acid-ammonium formate buffer at pH 3.0; Water plug injection time: 25 s 416 

(hydrodynamic injection at 3.5 kPa); Sample injection time: 25 s (electrokinetic injection at -10 417 

kV); Sample matrix: Milli-Q water; Capillary voltage: -25 kV; Capillary temperature: 25 
o
C; 418 

Acquisition:  200 nm; Peak identification: 1, DCAA; 2, BCAA; 3, TCAA; 4, DBAA; 5, BDCAA; 419 

6, CDBAA; 7, TBAA; 8, MCAA; 9, MBAA.  420 

 421 

Figure 2. (a) Electrophoretic separation of HAAs (50 mg/L) by conventional CZE in positive 422 

polarity mode. BGE: 200 mM acetic acid-ammonium acetate buffer at pH 5.5 and different amounts 423 

of ACN. Capillary voltage: +25 kV; Hydrodynamic injection time: 25 s (3,5 kPa); Sample matrix: 424 

Milli-Q water; Acquisition:  200 nm; (b) Electrophoretic separation of HAAs (500 µg/L) by 425 

LVSS-CZE. BGE: 20 mM acetic acid-ammonium acetate buffer at pH 5.5 containing 20% 426 

acetonitrile. Hydrodynamic injection time: 15 s (140 kPa); Sample matrix: Milli-Q water.  Capillary 427 

voltage: -25 kV (sample matrix removal), +25 kV (separation). Other conditions for all 428 

experiments: Capillary temperature: 25 
o
C; Acquisition:  200 nm; Peak identification: 1, TBAA; 2, 429 

CDBAA; 3, BDCAA; 4, DBAA; 5, TCAA; 6, BCAA; 7, DCAA; 8, MBAA; 9, MCAA. 430 

 431 

Figure 3. Analysis of Barcelona (Spain) tap water by SPE-FASI-CZE. FASI-CZE acquisition 432 

conditions as in Figure 1. Peak identification: 1, DCAA; 2, BCAA; 3, TCAA; 4, DBAA, 5, 433 

BDCAA; 6, CDBAA; 7, TBAA. 434 

 435 



Table 1. Quality parameters. 436 

Compound Method 

 

LODs 

 (µgL
-1

) 

 
Sensitive 

enhancement 

(SEc)
a 

 
run-to-run precision, 

% RSD (n=6) 
 

day-to-day precision 

% RSD (n=6x3) 

   

Relative 

migration 

time
b 

Conc. 

(low 

level)
c 

Conc. 

(medium 

level)
d 

 

Relative 

migration 

time
b 

Conc. 

(low 

level)
c 

Conc. 

(medium 

level)
d 

              

MCAA 

CZE  5000  --  0.40 5.2 2.4  0.8 5.3 4.1 

LVSS  200  25  0.21 12.4 8.5  2.20 16 9.8 

FASI  48  104  0.10 11.0 4.5  1.25 11.4 10.7 

              

DCAA 

CZE  1200  --  0.30 4.7 3.0  0.35 7.6 3.2 

LVSS  49.7  24.1  0.25 12.9 5.7  1.84 12.5 8.4 

FASI  11  109  0.15 5.1 3.2  0.98 13.8 10.1 

              

TCAA 

CZE  1300  --  0.25 5.4 3.7  0.35 8.3 6.5 

LVSS  50.5  25.7  0.26 9.1 6.3  1.26 15.2 15.4 

FASI  15.8  82  0.15 6.7 3.7  0.78 7.7 5.5 

              

MBAA 

CZE  1200  --  0.45 4.3 3.7  0.86 7.7 5.9 

LVSS  52.4  22.9  0.24 16.3 10.0  1.94 15.8 13.7 

FASI  6.2  194  0.14 10.4 4.4  1.81 13.3 11.9 

              

DBAA 

CZE  1300  --  0.26 4.7 3.7  0.36 6.8 3.8 

LVSS  49.5  26.3  0.38 8.2 4.5  1.28 12.2 10.3 

FASI  4.2  310  0.13 8.0 5.1  0.81 13.4 11.2 

              

TBAA 

CZE  1200  --  0.28 5.5 2.5  0.40 5.6 4.4 

LVSS  49.2  24.4  0.25 7.9 4.0  1.10 9.2 10.6 

FASI  5.8  207  0.12 5.5 4.1  0.68 13.3 11.4 

              

BCAA 

CZE  1200  --  0.27 4.8 3.5  0.32 4.9 5.8 

LVSS  51.1  23.5  0.25 6.7 9.0  1.31 15.5 14.7 

FASI  6.4  188  0.11 6.6 4.5  0.58 12.2 13.9 

              

BDCAA 

CZE  1300  --  0.26 5.4 3.3  0.37 5.5 3.4 

LVSS  49.1  26.5  0.24 7.0 7.6  1.14 13.5 15.3 

FASI  6.5  224  0.13 6.1 3.6  0.51 12.6 11.6 

              

CDBAA 

CZE  1300  --  0.27 4.5 3.4  0.37 6.3 5.9 

LVSS  50.1  25.9  0.25 9.3 7.9  1.12 11.4 14.8 

FASI  5.8  200  0.13 5.7 4.3  0.54 13.5 11.7 

  437 

a
 SEc = LOD (CZE) / LOD (LVSS or FASI) 438 

b 
Relative migration time = analyte migration time / internal standard migration time 439 

c
 low level concentration = 3 x LOD 440 

d
 medium level concentration: CZE: ~ 25 mgL

-1
; LVSS: ~600 µgL

-1
; FASI: ~350 µgL

-1 
441 

 442 

 443 

 444 

 445 

 446 

 447 



Table 2. SPE-FASI method quality parameters. 448 
 

449 
 

450 
  

451 
 

452 
 

453 
 

454 
 

455 
 

456 
 

457 
 

458 
 

459 
 

460 
 

461 
 

462 
 

463 
 

464 
 

465 
 

466 
 

467 
 

468 
a
 Sensitive enhancement = LOD (CZE method) / LOD (SPE-FASI-CZE method) 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

Compound 
 MLODs 

 (µg/L) 

  

Sensitive 

enhancement
a
 

 
Recoveries (%)

  Barcelona tap water 

(µg/L) 

    

MCAA  0.8  6250  64  n.d. 

DCAA  0.1  12000  91  11 ± 0.9 

TCAA  0.2  6500  92  12 ± 0.9 

MBAA  0.1  12000  67  n.d. 

DBAA  0.05  26000  91  13 ± 1.1 

TBAA  0.07  17140  90  9 ± 0.8 

BCAA  0.06  20000  93  3 ± 0. 3 

BDCAA  0.08  16250  90  6 ± 0.5 

CDBAA  0.07  18570  90  4 ± 0.3 
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