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Abstract 

 

Analysis of the geological record has made it possible to delimit for the Guadalquivir 

estuary the traces of extreme wave events (EWEs) during the Roman period in the 

Iberian Peninsula (218 BC to AD 476). The largest event occurred in the 2
nd

-3
rd

 century 

AD. It generated clearly visible erosive effects in the coastal barriers, including 
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washover fans and erosional scarps. In the inner estuary, however, the effects were 

minor: crevasse splays that broke levees and cheniers, as well as a residual sedimentary 

lag. The significant development of the spits protected the inner estuary from the marine 

incursion, which only caused a water level rise with low-regime waves. Correlation of 

the geomorphological and sedimentary marks left by this event with the archaeological 

and geological evidence of other events recognized elsewhere in the Gulf of Cadiz 

effectively argues for a tsunami as to the nature of the 2
nd

-3
rd

 century AD event. Yet this 

and the other identified EWEs in the Guadalquivir estuary during the pre-Roman and 

the Roman period all fit a model of paleogeographic evolution dominated by processes 

of coastal progradation and estuarine infilling. Radiocarbon dating, geomorphological 

analysis, and historical references fail to warrant the so-called ‗218-209 BC‘ Atlantic 

tsunami, as hypothesized in the received scientific literature. In pre-Roman and Roman 

times, human occupation at the mouth of the Guadalquivir River was strongly 

influenced by various geodynamic processes, the location of the settlements being 

contingent upon dependable, fast communication with the sea and, above all, upon 

adequate protection from EWEs, on the leeward side of spits. Progressive progradation 

of these coastal barriers combined with the gradual infilling of the estuary to make 

navigation to open sea increasingly difficult and, eventually, to result in the 

abandonment of settlements. 

 

Keywords: Extreme wave events (EWEs), Coastal Geomorphology, Roman period, 

Southwest Spain. 

 

1. Introduction 

 

Coastal environments are highly dynamic; they undergo significant evolutionary 

changes in short periods of time. This dynamism results largely from the interaction 

between waves, tides, and fluvial inputs, in their turn modified by relative sea-level 

changes, climatic setting, and neo-tectonic processes (Pethick, 1984). A mechanism that 

triggers an especially rapid development is an extreme wave event (hereinafter, EWE). 

Within hours it can generate a complex sedimentary record that has significant 

morphological and environmental effects in low-energy coastal environments such as 

lagoons and estuaries (Sawai, 2002). The EWE may severely hit human settlements as 

well (Goff et al., 2012). Two of the most dangerous and yet most common EWEs 
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violently impinging upon coastal locations are tsunamis and storm surges (Morton et al., 

2011). The combined analyses of geology, archaeology, and history may thus be 

necessary to determine past environmental scenarios and changes. Numerous studies 

have recently been carried out from an interdisciplinary perspective, e.g. to identify and 

assess the imprint of tsunamis in the record of archaeological sites (McFadgen and 

Goff, 2007; Bruins et al., 2008). 

 

The marks of tsunamis in coastal sediments, however, are difficult to distinguish from 

those of violent storm surges as both tsunamis and violent storms are high-energy 

marine events that result in similar deposits. Many studies have been undertaken with 

the aim of establishing diagnostic criteria with which to tell the traces of one type of 

event from those of the other (Fujiwara et al., 2000; Goff et al., 2004, 2012; Morton et 

al., 2007; Ramírez-Herrera et al., 2012). It is precisely because both tsunamis and severe 

storms strike similarly in littoral areas and cause inundation of extensive surfaces by 

sea-water that both have been referred to as ‗extreme wave events‘ or EWEs (Kortekaas 

and Dawson, 2007; Switzer, 2008). 

 

Geomorphological and sedimentary features generated by EWEs are well known along 

the coasts of SW Iberia; such events having been attributed to tsunamis or storm surges, 

or both (Lario et al., 2010; Rodríguez-Ramírez et al., 2015). At present, damaging 

storms occur in the Gulf of Cadiz with a periodicity regulated by the North Atlantic 

Oscillation (NAO; periodicity of c. 6-7 years) as well as by solar irradiation (sunspot 

cycles) (periodicity of c. 11 years) (Rodríguez-Ramírez et al., 2003). Although storm 

surges are known to wreak havoc in littoral areas, the sedimentary record left by them in 

the Gulf of Cadiz has been scarcely studied. Pollen studies, nonetheless, have enabled 

researchers to confirm the already well documented Roman Humid Period in the 

southwestern Mediterranean region (Martín-Puertas et al., 2010). Such humid 

conditions at the time may have consisted of persistent storm activity resulting from a 

negative NAO index (Fletcher et al., 2012). As to tsunamis hitting the Gulf of Cadiz, 

they have drawn increasing interest in the wake of the recent tsunamis that have 

devastated the coasts of the Pacific Ocean. The southwestern Spanish coast is a low-

probability tsunamigenic area (Reicherter, 2001), yet for decades it has been assumed 

that as many as sixteen tsunamis are historically documented for the time-period 

between 218 BC and AD 1900 (Campos, 1991), four of which dating to the years 218-
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216 BC, 210-209 BC, 60 BC, and AD 382, in the Roman period (Galbis-Rodríguez, 

1932-1940). Such an historical record must be revised, however, insofar as clear 

evidence from writers of Antiquity as well as from the archaeological record is 

uncertain (Gómez et al., 2015). 

 

The sedimentary record in the Gulf of Cadiz has been investigated for traces of some of 

these events (Andrade, 1992; Dabrio et al., 1999b; Luque et al., 2002; Whelan and 

Kelletat, 2003; Alonso et al., 2004; Gracia et al., 2006; Morales et al., 2008; Gutiérrez-

Mas et al., 2009; Baptista and Miranda, 2009). Archaeological indications of natural 

destructions in the Roman period recognized in the Gulf (Sillières, 2006; Campos, 

2011; Alonso et al., 2015) would be related to some of these events. The epicenters of 

the corresponding earthquakes have commonly been placed at some 200 km southwest 

of Cape Sâo Vicente, near the Gorringe Bank (Martínez-Solares et al., 1979). Current 

analyses, however, point to movements along the Azores-Gibraltar Fault or along 

associated minor faults such as the Marques de Pombal Fault (Terrinha et al., 2003). 

Still other likely epicenters can be posited in connection with movements of faults that 

are even closer to the coasts of the Gulf (Silva et al., 2005).  

 

The largest estuary in the Gulf is, by far, the Guadalquivir estuary (Fig. 1). Flanked on 

both sides by spits, known as Doñana and La Algaida, the estuary is a particularly 

interesting area with respect to both the intensity of its geomorphological dynamics and 

the large number of archaeological sites in it that date to Classical Antiquity and earlier 

periods in history and prehistory (Carriazo, 1975; Bellido and Pérez, 1985). The 

geodynamic evolution has drawn a great deal of scientific attention over the past few 

decades (Zazo et al., 1994; Rodríguez-Ramírez et al., 1996, 2014; Rodríguez-Ramírez 

and Yáñez, 2008; Dabrio et al., 1999a; Jiménez-Moreno et al., 2015). Archaeologists, 

for their part, have focused on the Roman period. The Doñana spit houses one of the 

most salient sites in the Gulf of Cadiz dating from this period, the well-known Cerro del 

Trigo site, with remains of a fishing-and-salting industry town from the 2
nd

 to the 6
th

 

century AD (Bonsor, 1922, 1928; Schulten, 1924; Campos et al., 2002). The La Algaida 

spit hosts the El Tesorillo site; located upon the eastern bank of the spit, it includes 

remains of a carpentry workshop for repairing boats that date from the middle of the 1
st
 

century BC to the 4
th

 century AD (Esteve-Guerrero, 1952; Blanco and Corzo, 1982; 

Corzo, 1984). East of La Algaida, on hilly terrain on the left side of the Guadalquivir 
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estuary, stand the ruins of the ancient city of Ebora, much vandalized and still awaiting 

thorough, systematic study (Carriazo, 1970) (see Fig. 1). 

 

The main objective of this paper is to furnish geomorphological and sedimentary 

evidence of EWEs having occurred in the lower Guadalquivir estuary during Roman 

times as expressions of the paleogeographic evolution of this estuary. Such evidence is 

the result of a multidisciplinary study of data obtained from boreholes in the upper 

sedimentary record which revealed shell-rich and sand facies. These facies were 

approached from the points of view of geomorphology, sedimentology, paleontology, 

history, and chronological assessment.  

 

2. Geographical and morphodynamic setting 

 

Located in the Gulf of Cadiz under the influence of the Atlantic Ocean (Fig. 1), the 

Guadalquivir estuary contains a wide freshwater marshland of 180,000 ha that includes 

Doñana National Park, a UNESCOMAB Biosphere Reserve. The enclosing spits, 

Doñana and La Algaida, both partly covered by active dunes, make up the largest spit 

system of the Gulf of Cadiz, which extends toward the E and SE. The wide marshland 

located behind the system grew out of the sediment contributions of the Guadalquivir 

and convergent rivers as they filled in the formerly marine estuary in the form of ever 

extensive finger deltas in a low-energy environment. The process was favored by the 

growth of the large littoral spits that isolated the estuary from the sea as well as by the 

development toward the center of a spacious chenier plain (Rodríguez-Ramírez and 

Yáñez, 2008).  

 

Hydrodynamics in the estuary are controlled by the fluvial regime, the tidal inflow, 

wave action, and drift currents. The largest river draining the Spanish southwest and the 

main source for fluvial sediments in the entire southwestern coastline, the Guadalquivir 

has a mean annual discharge of 164 m
3
/s, even though winter spates can easily exceed 

5000 m
3
/s (Vanney, 1970). The highest runoff (>1000 m

3
/s) takes place from January to 

February, with fluvial current velocities of up to 1 m/s (Vanney, 1970; Menanteau, 

1979). The maximum tidal range observed at the river mouth is 3.86 m (period from 

1997 to 2003), the average range being some 2 m (Spanish Ministry of Fomento, 2005). 

The coastline can be described as mesotidal, semi-diurnal. 
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The wave regime depends directly upon the prevailing SW winds, with 22.5% of the 

days of the year blowing in this direction (data of Spain‘s Instituto Nacional de 

Meteorología, I.N.M, for the city of Huelva between 1960 and 1990). In the wintertime 

Atlantic cyclones are common, giving rise to strong SW winds that generate ‗sea-type‘ 

waves more than 6-8 m high (Hsmax; data of Spain‘s Departamento de Clima Marítimo 

of Organismo Autónomo Puertos del Estado, OAPE). Although these waves cause 

significant erosion in the littoral zone (Rodríguez-Ramírez et al., 2003), they represent 

only around 3–5% of the total annual waves. In general, the wave regime in the Gulf of 

Cadiz is a medium-to-low energy one, with waves usually smaller than 0.6 m high (data 

of Departamento de Clima Marítimo). Most of the wave fronts approach the coast 

obliquely and induce littoral currents that transport sand from the Portuguese coast to 

Spanish nearshore areas. 

 

3. Methodology 

 

3.1. Geomorphology 

 

As a first step in the investigation, the geomorphology of the Guadalquivir river mouth 

was mapped from 1:33,000 aerial photographs taken in 1956, checked with satellite 

images of 2012 commissioned by Servicio Cartográfico of the regional government of 

Andalusia in Spain. The initial cartography of the fluvial and littoral elements (i.e., 

levees, fluvial channels, spits, cheniers, littoral strands) was partly modified after direct 

observation in the field. The Topographic Map of Andalusia (1:10,000) was used as a 

base document for the geomorphological mapping. All of this information was 

integrated and analyzed into the gvSIG GIS program. 

 

3.2. Lithostratigraphy 

 

We examined the sedimentary sequence and facies obtained from shallow drillings (< 3 

m) in surface formations (Figs. 1, 2), for which we used a 2 cm diameter Eijkelkamp 

gouge, an 8 cm diameter helicoidal drill, and trenches. Our aim was to identify 

depositional features through small variations in the textural and compositional 

characteristics of the deposits. Grain-size analyses were conducted at different levels of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

7 

 

the sedimentary sequences by means of a Malvern Mastersizer 2000 laser diffraction 

particle analyzer, which makes it possible to determine precise particle distributions for 

sizes between 2 mm and 2 μm. For sizes larger than 2 mm, a conventional sieving 

method was employed. We looked for morphological, geometrical, and extension marks 

of EWE deposits, as well as for relations of these deposits with underlying and 

overlying sediments if they existed. 

 

3.3. Paleontology 

 

Macrofossil analysis from sediment samples was performed to identify types and 

diversity of species (faunal composition and shell taphonomy) (Fig. 2). Several samples 

were collected from different cores, and the bulk sediment of each (12 cm
3
) was washed 

through a 1 mm sieve. Bivalves and gastropods were identified to the species level and 

then counted in order to determine the semi-quantitative distribution of species in each 

core. The presence and relative abundance of other groups (such as scaphopods, 

barnacles and bryozoans) were also noted.  

 

3.4. Dating 

 

Nine dates resulted from radiocarbon determinations at the laboratories of Centro 

Nacional of Aceleradores (Seville, Spain) and Accium BioSciences Accelerator Mass 

Spectrometry Lab (Seattle, USA) from mollusc shells (Table 1, Fig. 3). The shells 

selected were those that showed no or low degree of transport and were preserved as 

articulated valves in the lag deposit. Published radiocarbon data were also used 

(Rodríguez-Ramírez et al., 1996; Dabrio et al., 1999a; Ruiz et al., 2004; Rodríguez-

Ramírez and Yáñez, 2008). Radiocarbon data were calibrated by using CALIB 7.0 

(Stuiver and Reimer, 1993) and the Reimer et al. (2013) calibration dataset. The final 

results correspond to calibrated ages (cal.) with 2σ uncertainty, corrected for the 

reservoir effect in this area as measured by Soares & Martins (2010). For the Late 

Holocene on the Andalusian coast of the Gulf of Cadiz, Soares (2015) has 

recommended a ΔR value of −108 ± 31 
14

C yr. 

 

4. The historical references to tsunamis during the Roman Period 
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All references in the current scientific literature to historical tsunamis hitting SW Iberia 

and the Gulf of Cadiz in pre-Roman and Roman times cite the chronology of José 

Galbis-Rodríguez (1932-1940), which lists events in the years 218, 216, 210, 209, and 

60 BC, and AD 382. Galbis-Rodríguez‘s sources for such events, however, can no 

longer be accepted with confidence. 

 

For the event of 218 BC, Galbis-Rodríguez‘s source is 16
th

-century Spanish historian 

Florián de Ocampo (1578, first edition in 1544). For the event of 216 BC, the source is 

early 20th-century Spanish geologist M. M. S. Navarro-Neumann (1920), whose source 

was, again, Ocampo. The 16
th

-century historian mentions but one tsunami rather than 

two, however. He wrote (1578: 174r-174v) that this event occurred in the year 216 BC, 

early during the Second Punic War, when the Carthaginian army led by Hannibal 

marched from eastern Iberia across southern France and the Alps to invade Italy and 

attack Rome—a development, it is known today (Bordet, 2000: 71-72), that took place 

in 218 BC. Ocampo‘s words call to mind some of the defining features of a large 

seismic crisis that includes a tsunami: ―grandes terremotos o temblores que derrocaron 

edificios y mataron gentes... Y la mar anegó muchos lugares que primero fueron 

descubiertos; lanzó fuera de sí multitud de pescados, dellos comunes y conocidos y 

dellos nunca vistos...‖ (―large earthquakes or tremors that tore down buildings and 

killed people… And the sea flooded many places that had first been exposed, throwing 

out of itself a multitude of fish, some of them commonplace and known, yet others not 

seen before….‖)  

 

As his own sources for this information, Ocampo vaguely refers to ―some Spanish 

chronicles‖ (―memorias españolas‖), which he fails to cite, plus two authors whom he 

calls ―the two Julians‖ (―los dos Julianos‖) and includes in the list of references for his 

work (1578: 4r-5v). One is a Julian who late in the 7
th

 century AD was archbishop of 

Toledo and allegedly wrote a major chronicle on early Spanish history. This chronicle, 

however, was actually the work of a shadowy contemporary of his by the name of 

―Wulsa‖ and is known to contain no more than a chronology of kings of Iberia during 

the Visigothic Period (AD 415-711) (Antonio, 1998: I, 374-375, 461-473). The other 

Julian is Juliano Luca Diácono, who according to Ocampo was a Greek national and 

also lived in the latter years of the Visigothic kingdom in Iberia. But the work of this 

second Julian, Comentarii hispanicarum antiquitatum, has escaped scholars entirely; 
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including Ambrosio de Morales, Ocampo‘s close friend, colleague, and editor (Antonio, 

1998: I, 488-489; Pellicer de Ossau in Antonio, 1799: 680).  

 

Revealingly enough, neither Primera Crónica General de España, by 13
th

-century King 

of Castile Alphonsus X, nor the 7
th

-century writings of Isidorus Hispalensis, arguably 

the most authoritative sources in the Middle Ages for the ancient history of Iberia which 

Ocampo cites, makes any reference whatsoever to the event of 218 BC. In the 18
th

 

century, the Portuguese historian J. J. Moreira de Mendonça, an early enquirer into the 

cataclysmic Lisbon earthquake of 1755, does make reference (1758: 16) to a large 

seismic event in 216 BC, yet he cites as sources Spanish historian Juan de Mariana 

(1852-1853, first edition in 1601), who relied on Ocampo, and Portuguese historian 

Amador Patricio (1739: 116), who referred to an earthquake-cum-tsunami in 217 BC in 

Italy rather than Western Iberia at the time of Hannibal‘s victory at the battle of Lake 

Trasumennus, north of Rome. Patricio‘s source was Roman historian Livy (in Foster et 

al., 1919-1959: V, 216-218).  

 

Possibly because of this flimsy evidence, the Official Register of Historical Earthquakes 

and Tsunamis in Spain (before 1370) by Instituto Geografico Nacional (Madrid) 

(www.ign.es/resources/sismologia/pdfTerremotos/Catalogohasta1370.pdf; last accessed 

January 2016) assesses the 218 BC event in SW Iberia as historically ill-founded (see 

also Udías 2015: 1003; electronic supplement: 9).  The shaky documentary grounds on 

which it rests stand in stark paradoxical contrast with Ocampo‘s dramatic though 

accurate rendition of the event. This puzzle might perhaps be solved by establishing that 

Ocampo recorded the tradition of an actual event in the Gulf of Cadiz, albeit a more 

recent one such as the tsunami of AD 881 (Guidoboni et al., 1994: 388) or the tsunami 

of AD 1356 (Pemán, 1941: 31; Bosch Vilá, 1984: 260, 270). 

 

A similar situation obtains for the events reported for 210 and 209 BC. Galbis-

Rodríguez‘s chronology includes a tsunami in 210 BC and another one in 209 BC. For 

the former event his source is, again, Ocampo. For the latter, the source is Navarro-

Neumann, who cited Ocampo‘s narrative. Yet, as for the previous juncture, Ocampo 

told of only one tsunami rather than two (1578: 213v) which he dated to 210 BC. The 

crisis was vivid in the city of Cadiz: ―Los vecinos de Cádiz padecieron algunos 

terremotos y la mar anduvo muchos días tan gruesa, con bravezas y corrientes 
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excesivas que pasó harto adelante de donde solía...‖ (―The residents of Cadiz suffered a 

number of earthquakes and the sea surged so much for many days, with such fury and 

excessive flows, that it advanced far ahead of where it used to‖). Ocampo failed to 

mention his own source for this information. This event also appears marked down by 

the Official Register of Historical Earthquakes and Tsunamis in Spain as unlikely to 

have actually occurred. 

 

As to the tsunami of 60 BC, the source of Galbis-Rodríguez is Navarro-Neumann, who 

relied on Moreira de Mendonça. Moreira, in turn, had trusted the 17
th

-century treatise 

Europa portuguesa, by Portuguese historian and poet Manuel Faria y Sousa. The event 

(―en la costa de Portugal y Galicia un terremoto… horrible y peligroso…, el mar 

excediendo de sus ordinarios límites ganó campos, descubriéndolos también en otras 

partes…‖) (―on the coast of Portugal and Galicia there happened an earthquake…; it 

was horrible and dangerous… The sea trespassed its ordinary limits to flood spaces in 

some areas while exposing other spaces elsewhere…‖) Faria y Sousa (1680: 203) dated 

to sometime in the years from 68 to 60 BC, upon the assassination of Roman opposition 

leader Quintus Sertorius. Faria failed to cite his source. The event is not mentioned by 

Ambrosio de Morales in his extension of Ocampo‘s chronicle of ancient Iberia 

(Morales, 1574-1586). The Official Register of Historical Earthquakes and Tsunamis in 

Spain also lists this event as unlikely to have actually taken place. Perhaps Faria learnt 

of the information, recorded fragmentarily by Roman historian Caius Sallustius Crispus 

(Sallust in Maurenbrecher, 1893: I, 70), that a large earthquake had been felt in Cordova 

about the time of the war waged by the Roman Senate against Sertorius. An army sent 

by the Senate was stationed in Cordova when that happened. The event, it is now 

established, occurred in the winter of 77-76 BC. Sallust wrote about it in his Historiae, 

just a few decades after the event. Because this work has come down to us incomplete, 

it is uncertain whether he specified that the earthquake was part of a larger seismic 

context that also included a tsunami in SW Iberia and the Gulf of Cadiz.  

 

Finally, with respect to the tsunami of AD 382, which allegedly struck the Portuguese 

littoral zone, the sources of Galbis-Rodríguez are, again, Navarro-Neumann and 

Moreira de Mendonça. Moreira wrote: ―subverterâo-se ilhas, de que ainda ao presente 

apparecen algumas eminencias defronte do cabo de S. Vicente‖ (―a number of isles 

were submerged, the tops of which still to be seen in front of Cape S. Vicente‖) (1758: 
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26). Moreira relied on Monarchia lusytana by Frey Bernardo de Britto, a 16
th

-century 

Portuguese chronicler whom Faria often read for his own work. De Britto cited as his 

source Antiguidades lusytanas by a Portuguese author from the late Visigothic Period to 

whom he refers as ―Laymundo Ortega‖ or ―Laymundus‖ (1597: 4v; 1609: 124v). The 

actual existence of this author has been seriously doubted, however, and Antiguidades 

lusytanas has been considered a 16
th

-century forgery (Antonio, 1998: I, 504-509). De 

Britto also made reference (1609: 124v) to the large earthquake-cum-tsunami that 

ravaged the central and eastern Mediterranean in AD 21 July 365, reported by 

Ammianus Marcellinus, Paulus Orosius, and other authors of Antiquity. De Britto may 

have meant this event and no other when he cited ―Laymundus‖ for its effects in the 

Portuguese littoral. The Official Register of Historical Earthquakes and Tsunamis in 

Spain lists no event for the year AD 382.  

 

5. The Geological evidence 

 

5.1. The geomorphology of the marshland 

 

The geomorphology of the marshland is characterized by fluvial levees on both sides of 

the Guadalquivir River, in addition to ancient courses of the river and the inter-levee 

areas. The clay-rich fluvial levees have a variable width (300–2000 m) and great length, 

reaching heights of 0.5–1.5 m above the adjacent inter-levee marshes which are the 

zones that get flooded the most. These levees are part of a deltaic system that has been 

filling the old estuary; topographically, the levees diminish progressively in height, 

from 2 m high to the north to 0.5–1 m near the mouth of the river, with a slight slope on 

the order of 0.004%.  

 

Beach ridges of sandy and shelly deposits with a littoral strand morphology, known as 

‗cheniers‘, overlie the clayey infilling of the marshland (Rodríguez-Ramírez and Yáñez, 

2008).  Cheniers signal the location of ancient shorelines and are evidence of changes in 

paleoenvironmental conditions, specifically changes in sediment supply, river 

discharge, sea level, and the frequency of storms, among others (Augustinus, 1989).  

These formations, found on top of the different fluvial levees of the Guadalquivir 

marshes, were part of a wider chenier plain. Chenier plains consist of two or more 

parallel to subparallel ridges (the cheniers), separated from one another by 
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progradational littoral muddy deposits; in the Guadalquivir marshes, the original 

extension of the chenier plain has been eroded by both fluvial-tidal activity and EWEs 

during relative sea-level highstands, generating crevasse-splays and washover fans at 

some locations (Figs. 4, 5). The age of these crevasse splays and washover fans may be 

gathered from the chronology of the affected chenier.  

 

The sandy chenier systems are 50 to 100 m wide and 2.00 to 2.25 m high above sea 

level. They consist of overlapped strands associated with the two ancient inlet channels 

(paleo-mouths) of the Guadalquivir River. The first, westernmost paleo-mouth, defined 

by the littoral strands of Vetalengua (VL1), was flanked on the right side of the estuary 

by the Doñana spit and on the left side by the La Algaida spit. On the right side the 

Vetalengua strands are distally attached to the Doñana spit and oriented toward the NE 

over long distances; on the left side, the strands are attached to the La Algaida spit, 

though over less geographical extent (Q4 to Q9). The second paleo-mouth, to the east of 

the first one and defined by the littoral strands of Los Prados (LP), was flanked on the 

right side by the La Algaida spit and on the left side by the hills of Sanlúcar de 

Barrameda. The geomorphological evidence and the dates obtained indicate that VL1 

and LP remained active up to the 1st century AD (Table 1, Fig. 3), while Q4 to Q9 

represent stages of a progressive migration of the Guadalquivir River toward the west 

(Fig. 1).  

 

The main shelly chenier systems are located in Las Nuevas and Vetalengua. 

Geomorphological analysis of the cheniers in Las Nuevas revealed a progressive growth 

of the system toward the west and south in the form of successive ridges (VAT, AA, 

AR, LV, and PB), ridges AA and AR overlapping toward the east. Ridge LV exhibits 

the bulkiest morphological development, including beach ridge morphology of narrow 

(5-15 m), small ridges and landward-dipping crests which rise some 1.75 to 1.95 m in 

height above sea level. Ridges VAT, AA, AR, and PB, of lesser morphological build 

and partly buried by estuarine deposits, reach heights of 1.30 to 1.50 m above sea level. 

The oldest ridges are in the east, as the dates range from the 7
th

 century BC in VAT 

through the 4
th

 century BC in AA to the 3
rd

 century BC in AR (Figs. 1, 3, 5, and Table 

1). The growth of Ridge LV started in the 2
nd

 and continued on to the 4
th

 century AD 

and beyond (Table 1), not counting two dates that are older but concern samples that 

have been subject to reworking (B-145202 and GX-21825) (Fig. 3 and Table 1). It was 
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precisely from the 2
nd

 to the 4
th

 century AD that this ridge experienced its largest 

morphological development, like a transgressive shelly chenier. The most recent shelly 

cheniers—VL2, in Vetalengua, and PB, in Las Nuevas—would have resulted from the 

last phases in the accumulation process during the 6
th 

and
 
7

th
 centuries AD (Figs. 1, 3, 4, 

5) and would have been affected by the unremitting evolution of the fluvial levees. 

Eventually, all these cheniers would turn into the thin layers of residual shell that one 

finds embedded in the fluvial levees, especially at locations that are the farthest from the 

present-day mouth of the river.  

 

In Las Nuevas, because of EWEs in the past, the chenier system exhibits a number of 

erosive incisions that resulted in crevasse splay formations over the marshland 

floodplain (crevasse splays A and B, Fig. 5). Because these incisions can be seen in 

chenier AA, they must date from the 4
th

 to the 3
rd

 century BC. Those on ridge LV date 

mostly from the 2
nd 

to the 3th century AD; erosion there has been active until recently 

(Figs. 1, 5). 

 

5.2. The geomorphology of the spits 

 

Two dune systems lie over the spits‘ oldest section. The first extends from the shoreline 

toward the hinterland of the spit, displaying formations that range from foredunes to 

transversal bodies that can be as high as 35 m at Cerro de los Ánsares (Fig. 1). Below 

these bodies and extending further inland there spreads the second dune system, which 

consists of rather blurred parabolic dunes no more than 10 m high. The two systems are 

clearly discernible in the Doñana spit, but not so in the La Algaida spit.  

 

Besides these dune systems, the spits include a number of littoral strands that represent 

intense coastal progradation (Figs. 1, 2). In the Doñana spit, these strands are divided 

into two sets, one separated from the other by a rectilinear cliff and a number of 

incisions (Figs. 1, 2). The strands of the first set slightly curve toward the west. Dates 

obtained at the oldest strand (M1) indicate a development from 188 cal. yr BC to 92 cal. 

yr AD. The second, more recent set of strands, subsequent to an erosional surface, 

exhibits a general development that includes ridges and swales progressively curving 

toward the east. Dates here range from 464-712 cal. yr AD (M2) to the Present, the most 

recent formations being covered by dunes. Because of the age of the strands extending 
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in front of and behind the erosional surface, the event that caused this morphological 

anomaly can be dated to the 2
nd 

or 3
rd

 century AD.  

 

As the oldest strand (M1) shows a number of washover fans (cf. washover fan A, Fig. 4) 

extending toward the marshland, they must date to around the 1
st 

century BC. The 

erosion affected the oldest progradation phases during the early stages of spit growth. A 

more recent development, however, can be recognized on the leeward side of the 

erosional surface and must, therefore, be related to the event that generated this surface 

in the 2
nd-

3
rd

 century AD. Though very blurred by the dunes and the vegetation, these 

washover fans partially reach the apical zone of the first set of littoral strands (cf. 

washover fan B, Fig. 4). 

 

In the La Algaida spit the strands prograde toward the NNE as they surround the core of 

the formation, which is covered by dunes. A number of successive erosional surfaces 

can be recognized on such core in the form of rectilinear cliffs and incisions. Because 

these erosional surfaces break the geomorphological continuity of previous formations 

that resulted from progradation, they enable the observer to identify a number of 

progradation sets. The core of the spit is older than the 6
th

 century BC (Rodríguez-

Ramírez et al., 1996). Separated from it by an erosional incision, a subsequent system of 

littoral strands spreads out with dates ranging from 534 to 107 cal. yr BC (Q1) and from 

142 cal. yr BC to 96 cal. yr AD (Q2). A second erosional incision separates this system 

from the most recent progradation formations. Generally speaking, the sedimentary 

process that resulted in the littoral strands of the spits of Doñana and La Algaida shows 

a marked alternation between ridges and swales. 

 

5.3. Sedimentary lag of EWE (BT core) 

 

Core BT revealed a layer of massive clayey silt with sand (2-5%) in the clayey deposits 

that have filled in the Guadalquivir paleoestuary at a depth of about -1 m under the 

topographical surface (Fig. 2), its thickness varying from 5 to 15 cm. The sedimentary 

succession built upon an erosional uncorformity with the underlying deposit, made of 

clayey silt. Substantial quantities of Cerastoderma glaucum and Solen marginatus, with 

articulated whole shells, appeared mixed in with sporadic fragments of other marine life 

forms (Glycymeris sp.). Overlying this shelly layer, more recent sedimentation, 10 to 25 
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cm thick, contained vertical burrows of S. marginatus and C. glaucum, starting from the 

lower shell level and finishing with the shell itself in life position. The dates obtained 

from the shells range from 9 cal. yr BC to 300 cal. yr AD and from 105 cal. yr BC to 

292 cal. yr AD. These deposits can be interpreted as accumulated sedimentary lag 

caused by a EWE.  

 

5.4. Littoral strands and washover fan (MW core) 

 

Core MW was drilled in the littoral strands of the Doñana spit, where various 

sedimentary facies can be recognized (Fig. 1): 

 

First, an aeolian facies, 1 to 2 m thick from the bottom of the core upwards (Fig. 2), 

made up of fine to medium sands (70-80% sand) with intense yellow shades and 

abundant quartz (66%-91%) which are well sorted and highly bioturbated by plants and 

roots without significant sedimentary structures. Up to 75% of the sediment presents a 

mean grain size between 500 and 125 mm. Macrofauna are virtually absent, with the 

exception of some fragmented, well spread out remains of continental gastropoda (Helix 

sp., Otala sp.). The facies, interpreted as aeolian sands, exhibits on the surface a blunt 

morphology of transversal dunes with sinuous crests. 

 

Secondly, a high-energy facies: a layer of yellowish sands (70-80% quartz) within a 

matrix 0.3 to 0.7 m thick that contains little fine sediment (silt, clay) yet much, 

significant bioclastic material. The basal contact is erosive. The layer has no 

sedimentary structures. The abundant macrofauna, mixed in with rock fragments, 

consists almost exclusively of a bed of Glycymeris glycymeris. This second facies can 

be interpreted as a washover fan lying over the various littoral strands in connection 

with the erosive surface in the Doñana spit. The fan became fossilized by a more recent 

dune system eventually (Fig. 2). 

 

Thirdly, a sandy beach facies made up of coarse grained sands (60-75% quartz) that are 

well sorted and mixed in with abundant remains of marine malacofauna (Glycymeris, 

Clhamys, Mactra) as well as some rocky fragments. It has a sedimentary structure, 

characterized by cross-bedding perpendicular to the shore. This facies can be interpreted 

as a foreshore depositional environment, in transition to the backshore from the top of 
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the swash zone. It is an environment of intense wave energy and constant reworking of 

the sediments. 

 

6. Discussion 

 

6.1. The geological record of EWEs 

 

The impact of EWEs on low-energy coastal environments such as estuaries and coastal 

lagoons generates characteristic sedimentation that may result in significant 

geomorphological changes (Goff et al., 2012). The mouth of the Guadalquivir River 

exhibits a number of geomorphological and sedimentary features that are evidence of 

EWEs (storm surges or tsunamis) having occurred in the Roman period. 

Geomorphological features include washover fans, paleocliffs or erosional scarps, 

coarse gravel deposits, and crevasse splays. Sedimentary features are sedimentary lags 

of sand and shells, as well as coarse deposits that are stratified with various types of 

facies (Morales et al., 2011).  

 

Though largely blurred by more recent dynamics, paleocliffs or erosional scarps still 

border the littoral spits. The Doñana spit conspicuously displays one of these incisions 

in delineating two different phases of progradation, which are local instances of regional 

progradation phases known as H5 and H6 (Zazo et al., 2008). While in other spits in the 

Gulf of Cadiz interruptions in the progradation are marked by large swales or gaps that 

have been recognized in formations of the same kind elsewhere (Zazo, 2006), in the 

Guadalquivir estuary the H5-H6 interruption is due to an EWE. Clear signs of an EWE 

being the cause are the orientation of the incision toward the open sea and the presence 

nearby on the leeward side of the erosional surface—affecting older littoral strands—of 

a washover fan that contains a layer of shells (G. glycymeris) and interstratified pebbles 

(Fig. 2). Washover fans are numerous in the Gulf of Cadiz; they all have been related to 

tsunamis (Luque et al., 2002) as well as to storm surges (Morales et al., 2014).  In 

addition, interstratified layers of Glycymeris sp. that have been studied in coastal 

formations in the Guadalete estuary, located no more than some 25 km to the south of 

the Guadalquivir estuary, have been related to tsunamis (Gutiérrez-Mas, 2011). 
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The La Algaida spit shows a number of erosional scarps that are superimposed on top of 

one another. Their origin owes much to an intense fluvial dynamics, however. There 

was a time when La Algaida was but an isle in the course of the lower Guadalquivir 

River and, therefore, was embraced by two branches of the river (Rodríguez-Ramírez et 

al., 1996). A complex tidal delta would cause the river beds to migrate cyclically, in a 

way similar to the dynamics which animates most other estuaries in the Gulf of Cadiz 

(Morales et al., 2006). Although tsunamis as well as storm surges may have eroded the 

boundaries of the isle, it is such periodic migration of the river branches which chiefly 

explains the erosive morphology that one finds in La Algaida (Fig. 6). In other words, 

marine events are not enough of a cause to account for all of the paleocliffs and 

incisions in La Algaida; the geographical and geodynamic context must be factored in 

as well. By way of illustration of the importance of this context, suffice it to say that the 

present-day dynamics of the Guadalquivir River is causing a large erosional scarp in the 

Doñana spit (Fig. 4). 

 

Associated with these scarps and included in the sedimentary sequence of many littoral 

strands, in the present as well as from the past, are striking accumulations of pebbles, 

some of them large enough to be regarded as true beaches made of coarse gravel 

deposits. The presence of these formations in La Algaida has been interpreted as 

unequivocal signs of one or more of the alleged tsunamis of 218 to 209 BC (Rodríguez-

Vidal et al., 2011). Yet these formations are commonplace in the study area. Some of 

them are even active at present; e.g., in the intertidal zone of the present-day mouth of 

the Guadalquivir River, where an increasingly extensive littoral platform bearing on 

rocky outcrops from the Pleistocene produces numerous pebbles and shells in the 

thunderstorm season, which are thereafter carried to the beaches and result in 

spectacular ridges made of loose coarse gravel deposits (Fig. 7). Indeed, these 

formations are far more related to storms than to any other kind of natural occurrence; 

they cannot be attributed to any specific tsunami.  

 

As far as sedimentology is concerned, EWEs are known to feed a great sedimentary 

load to the inner estuary that includes significant amounts of fauna and a sandy facies 

(Fujiwara et al., 2000). Chronological evidence from archaeological remains as well as 

shell samples in the analyzed sedimentary formation (BT) indicates an EWE that took 

place in the 2
nd

 or 3
rd

 century AD. Similar formations have been studied in the Tinto-
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Odiel estuary, north of the Guadalquivir estuary, in connection with tsunamis (Morales 

et al., 2008). Subsequent dynamics gradually built up the detrital deposits in the form of 

beach ridges lying over the fluvial levees, as in cheniers, which resulted in intense 

reworking and migration toward the hinterland (Narayana et al., 2007; Rodríguez-

Ramírez and Yáñez, 2008).  

 

As many as eight dates have been obtained from chenier LV of Las Nuevas (Rodríguez-

Ramírez et al., 1996; Dabrio et al., 1999a; Ruiz et al., 2004; Rodríguez-Ramírez and 

Yáñez, 2008). Leaving aside the oldest determinations because of reworking of the 

samples, analysis of the reliable dates suggests the period from the 2
nd

 to the 4
th

 century 

AD as development for this chenier, the accumulation cresting about the 3
rd

 century 

AD. Although some researchers (Rodríguez-Vidal et al., 2011; Ruiz et al., 2013) have 

attempted to relate this chenier also to one or more of the alleged tsunamis of 218 to 209 

BC (so weakly anchored in historical evidence) they have failed to consider the whole 

panoply of dates that are available from protracted work in the area, which point to an 

EWE in the 3rd century AD or thereabouts instead. Insofar as this type of formation has 

been subject to much reworking, it is absolutely impossible to identify traces of some 

events in the sedimentary sequence (Rodríguez-Ramírez and Yáñez, 2008; Rodríguez-

Ramírez, 2009). 

 

The various levees and cheniers in the paleoestuary are also subject to erosive processes 

and even ruptures that result in crevasse splays by either storm surges or tsunamis, or 

fluvial flooding or high tides, or by a combination thereof. Similar processes have been 

identified in the Mississippi delta during tropical hurricanes (Cahoon et al., 2011). The 

chenier system of Las Nuevas shows the marks of two significant ruptures and their 

associated crevasse splays. Located in the front of the formation, where the waves hit 

most violently, these crevasse splays date from at least two periods: the 4
th

 to 3
rd

 century 

BC (crevasse splay A) and the 2
nd

 to 3
rd 

century AD (crevasse splay B) (Fig. 5). 

 

The geomorphological and sedimentary evidence for the Guadalquivir estuary in the 

Roman period calls for a model of evolution punctuated by successive small EWEs, 

possibly storm surges, and disrupted by a considerably larger event, likely a tsunami, in 

the 2
nd

-3
rd

 century AD.  
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6.2. The archaeological evidence  

 

The record at archaeological sites on the coasts of the Gulf of Cadiz registers a turning 

point from the late 2
nd

 to the middle 3
rd

 century AD: the number of structures and the 

production and use of pottery vessels, including amphorae, declined dramatically at that 

time (Alonso et al., 2004, 2015; Campos et al., 2015). A downturn in economic activity 

between the late 2
nd

 and the early 3
rd

 century AD has been inferred for the remains 

found at the Roman site of Cerro del Trigo (Campos et al., 2002). Yet the record at the 

country houses and pottery workshops (villae and figlinae) in the hinterland registers no 

such turning point (Vidal and Campos, 2008; Campos, 2011), which suggests that the 

downturn was confined to littoral areas. It is rather telling in this regard that 

archaeologist G. Bonsor, who excavated at Cerro del Trigo in the early 1920s, 

hypothesized (1928) that the collapse and destruction of structures from the Roman 

imperial period that he had recognized at the site would have been caused by an 

earthquake. Likewise, the site of Bolonia (Roman Baelo Claudia), some 10 km north of 

the Strait of Gibraltar, upon the seashore of the province of Cadiz, registers a 

stratigraphic break represented by the collapse and subsequent sealing of structures 

from the Roman imperial period; for which development has been attributed to a 

seismic event that occurred sometime in the second half of the 2
nd

 century AD (Alonso 

et al., 2004) or in the 3
rd

 century AD (Sillières, 2006).  It was not until the middle 4
th

 

century AD at the earliest that Baelo Claudia saw fresh urban developments (Sillières, 

1995). The site of Bolonia stands out as one of the best studied ever in the history of 

archaeology in Spain. Previous earthquakes and possible tsunamis have been 

hypothesized for this area in the middle 1
st
 century AD (Sillières, 1995; Alonso et al., 

2004; Silva et al., 2005). 

 

Comparable evidence of destruction has been identified at the site of Munigua (Roman 

Mulva), near Villanueva del Río, in the province of Seville (Sillières, 1995). Much the 

same is true regarding the record in the estuary of the Sado River, in southwestern 

Portugal; amphorae ceased to be made there in the 3
rd

 century AD (Mayet and Tavares, 

2002; Fabião, 2008).  

 

These are probable instances of the cause-and-effect relationship between tsunamis and 

temporary abandonment of settlements hit by them. The relationship, by way of the 
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wanton destruction of infrastructure and the high anxiety among the population that a 

tsunami brings about, is well known (Kremer et al., 2014). In effect, the solutions of 

continuity registered in the stratigraphy of the sites mentioned are congruous with the 

occurrence of some kind of extremely violent event in the Gulf of Cadiz in the time 

span from the late 2
nd

 to the middle 3
rd

 century AD that the data presented herein 

suggest. As waves generated by cyclonic phenomena do not seem to be destructive 

enough to result in such breaks in the archaeological record, a tsunamigenic process 

appears to be far more likely instead.  

 

It may not be coincidental in this regard that Roman author Rufius F. Avienus, in his 

poem Ora maritima (1959), reported having seen clear evidence of widespread natural 

destruction in the city of Cadiz when he paid this city a visit in the middle 4
th 

century 

AD: ―multa et opulens civitas aevo vetusto, nunc egena, nunc brevis, nunc destituta, 

nunc ruinarum agger est…‖ (―a large, prosperous city in times past, it is nowadays 

impoverished, small, disfranchised, lying in ruins‖). Although further research is 

necessary to ascertain it, one may well surmise that what Avieno saw was nothing but 

the devastation caused by the large tsunami in the Gulf of Cadiz in about the 3
rd

 century 

AD that hit at least Baelo Claudia and Cerro del Trigo.  

 

6.3. A paleogeographical approach 

 

6.3.1. The inception of the progradation of the coast 

 

The earliest commonly accepted reference to the mouth of the Guadalquivir River that 

has come down to us from Antiquity was written by the Greek geographer and 

ethnologist Strabo of Amasia around the beginning of the Christian era. Drawing from 

Greek authors who had been to southern Iberia, mostly in the 2
nd 

and 1
st
 centuries BC, 

Strabo wrote in Book III, Chapter 1 of his encyclopedic Geographiká (1966) that the 

Guadalquivir River, known as Baetis in Roman times, emptied itself into the Atlantic 

Ocean by means of two mouths. In the middle of the 1
st 

century AD, the geographer 

Pomponius Mela of Tingentera, a native to southern Iberia, also wrote, in his De 

chorographia (1987: 8), that the Baetis River reached the sea in the form of two large 

streams, which flowed from a large lake that stood not far from the ocean. The 

geological evidence presented in this paper indicates that the estuary of the 
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Guadalquivir River bifurcated into two inlet channels until the 1
st
 century AD. The 

main, larger channel would cover the distance between La Algaida and the Doñana spit; 

the smaller one would run between La Algaida and the hills of Sanlúcar de Barrameda 

(Fig. 8A). La Algaida, therefore, would have been an isle in that period, lying between 

the two channels. By way of both channels the fluvial current as well as the tidal flows 

would put the open sea in connection with Lacus Ligustinus, the lake referred to by 

Mela of Tingentera and so called by Avienus, doubtless a coastal lagoon (Fig. 8A). The 

evidence of the dynamics at work in such channels is, on the one side (that of the 

Doñana spit), the littoral strands of Vetalengua (V1) and, on the other side (that of La 

Algaida), the strands of Los Prados (LP). 

 

The powerful hold of the drift currents, the extensive mesotidal range, and a fluvial 

current that depends upon wide seasonal fluctuations, all shaped a system of flood and 

ebb tidal deltas which resulted in river beds that were shifting and unstable (Fig. 8A). 

These environmental conditions in the Guadalquivir estuary have also governed other 

large estuaries in the Gulf of Cadiz in the course of the Holocene (Morales et al., 2001; 

2006; Rodríguez-Ramírez et al., 2008). The dynamics of the deltaic systems in these 

estuaries is responsible for the periodic migration of the beds of the rivers. One 

especially clear illustration of such dynamics is La Algaida itself, where it has generated 

erosional scarps or paleocliffs (Fig. 6). Intense prograding processes would have begun 

before the 1
st
 century BC. 

 

From time to time the coastal progradation had to cope with storm surges, which 

generated washover fans in the Doñana spit in the 1
st
 century BC and, before then, 

crevasse-splay developments in the levees of the inner side of the estuary in the 4
th

-3
rd

 

centuries BC (Figs. 2, 8A). Scant sedimentary evidence in the paleoestuary from these 

pre-Roman and early Roman periods leads us to consider that the deltaic systems 

limited the sedimentary contributions of the open sea to the inner estuary. The violent 

storms in the area in the wintertime and the numerous rocky pebbles available 

throughout explain the substantial presence of these pebbles in the littoral strands. 

 

It was against this paleogeographical setting that a Roman settlement was established in 

the isle of La Algaida, at the site of El Tesorillo (Blanco and Corzo, 1982; Corzo, 

1984). The place chosen for the settlement was the northernmost sector of the isle (Figs. 
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1, 8A), possibly because this location had easy access to the western mouth of the 

Baetis River—wider, deeper, and more stable than the eastern mouth—and also because 

the place was on the leeward side of the isle, which would shelter the inhabitants from 

the storm surges of the wintertime. 

 

6.3.2. Intense progradation from the 1
st
 century BC to the 2

nd
 century AD 

 

Coastal progradation would proceed, even more rapidly, after the 1
st
 century BC.  This 

acceleration may have resulted from either the slowing down or cessation of subsidence 

processes in the area from then on (Rodríguez-Ramírez et al., 2014) or the erosive 

consequences in the mainland of deforestation and agriculture over the past two 

millennia, or both. A comparable development of accelerated infilling of estuaries, 

wetlands, and lagoons has been recognized for the Mediterranean coasts of Iberia since 

Roman imperial times; this development was triggered by human encroachment upon 

the environment (Carmona and Pérez, 2011).  Whatever the weight of their respective 

influence may have been, the combined effect of these processes was the beginning of 

the formation of successive littoral strands in Doñana and La Algaida and the inception 

of the closing of both the eastern channel of the river and the Vetalengua channel. Inside 

the estuary, the fluvial levees as well as chenier LV of Las Nuevas grew larger (Fig. 

8B). The shelly chenier of Las Nuevas is the clearest sign that the estuary started to 

become progressively isolated from the sea as the growth of sandy coastal barriers 

caused ever lesser marine sedimentation to reach into the estuary (Rodríguez-Ramírez 

and Yáñez, 2008).  

 

The formation of successive littoral strands in the two spits within the course of the 1
st
 

century BC onto the 2
nd

 century AD generated a sequence therein of ridges and swales 

as well as a slight aeolian development. The Doñana spit grew some 5 km toward the 

SE.  East of La Algaida, the channel that separated the isle from the mainland finally 

closed, which made the access of the nearby city of Ebora to the open sea difficult (Fig. 

8B). A tombolo now connected the isle with the mainland north of Sanlúcar de 

Barrameda. West of La Algaida, the remaining inlet channel of the Baetis River moved 

further west and there narrowed considerably, inviting sustained infilling around La 

Algaida. This development may have brought about the premature abandonment of the 

settlement of El Tesorillo, its residents then moving to the settlement of Cerro del Trigo. 
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It is known that occupation there started in the middle 2
nd

 century AD (Campos et al., 

2002). Cerro del Trigo had easy access to the remaining channel of the river and, 

therefore, to the open sea; furthermore, as the site stands on the leeward side of the 

sandy barrier of Doñana it can avoid the wintertime storms coming from the west.  

 

Such process of coastal progradation from the 1
st
 century BC to the 2

nd
 century AD 

would be the local manifestation in the Guadalquivir estuary of the H5 progradation 

phase defined by Zazo et al. (2008) for the Gulf of Cadiz. 

 

6.3.3. The EWE of the 2
nd

-3
rd

 century AD 

 

The progradational process was interrupted by an EWE in the 2
nd

-3
rd

 century AD. The 

geomorphological and sedimentary manifestations of this event are a significant erosive 

scar on the oldest littoral strands in  Doñana spit and on the washover fans that had 

developed on the spit (Fig. 8C). In addition, the event left a striking sedimentary lag in 

the estuary containing abundant shells (Fig. 2). These are facies that closely resemble 

facies in the Tinto-Odiel estuary that have been recognized as signs of tsunamis 

(Morales et al., 2008). Furthermore, accumulation in the chenier of Las Nuevas crested 

between the 2
nd

 and the 4
th

 century AD, especially in the 3
rd

 century AD; a development 

which can be explained as the result of the reworking and subsequent build-up of the 

basal residual lag in the estuary that the event had originated. Despite such 

geomorphological and sedimentary effects, however, the event failed to break through, 

by means of inlets, the Doñana spit as well as the tombolo that linked the mainland to 

La Algaida, thereby limiting the sedimentary contribution of the open sea. By contrast, 

some 2,250 years earlier, when the estuary was wider and the spits less developed, an 

EWE of comparable energy had destroyed such coastal barriers and pushed the sea 

several kilometers into the inner estuary, dragging with it large amounts of sand and 

marine fauna (Rodríguez-Ramírez et al., 2015).  

 

These geomorphological and sedimentary characteristics, in the light of convergent yet 

independent evidence such as the chronological correlation of the event with 

comparable events elsewhere in the Gulf of Cadiz and the hiatuses in the archaeological 

record identified at a number of sites from the late 2
nd

 century to the 3
rd

 century AD 
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(Sillères, 1995, 2006; Campos et al., 2002), make us submit that this event was a 

tsunami. 

 

6.3.4. The continuous progradation from the c. 3
rd

 to the 6
th

 centuries AD 

 

Coastal progradation and estuary infilling processes resumed upon such EWE of the 

2
nd

-3
rd

 century AD, confining the estuary to a smaller area as a result (Fig. 8D). The first 

littoral strands after the EWE started to form immediately. They had ridges and swales 

clearly marked in them, while favoring substantial aeolian developments which have 

continued up to the present. The west, or remaining, inlet channel of the Guadalquivir 

River narrowed considerably as it migrated toward the south, away from the settlement 

by Cerro del Trigo. The onset of this progradation phase would be the same as that of 

Phase H6 for the Gulf of Cadiz as defined by Zazo et al. (2008). Although these 

researchers have attributed this morphological change to a shift in the patterns of the 

climate in the region, the new data presented here point to the effects of a EWE instead. 

As the successive phases of progradation identified in the sandy barriers of the nearby 

Guadalete estuary (Alonso et al., 2015) can be explained in the same manner, it can be 

inferred that successive morphological changes of first order brought about by coastal 

progradation in the Gulf of Cadiz during the Holocene were a direct consequence of 

events of very high energy rather than of climate changes. In contrast, second-order 

alterations in the barriers such as the generation of gaps can be attributed to storm 

surges and, therefore, to climate-related variables. 

 

In the long run, the progradation in the Doñana littoral and the infilling of the 

Guadalquivir estuary would be detrimental to the fishing-and-salting industry of Cerro 

del Trigo insofar as both developments made commercial navigation to and from the sea 

increasingly difficult. In effect, the beginning of an economic decline has been 

recognized at this site for the 5
th

 century AD. The decline turned into a complete halt 

and final abandonment of the settlement in the 6
th

 century AD (Campos et al., 2002). An 

additional materialization of the new morphological conditions, specifically the gradual 

confinement of the estuary, are the shelly cheniers of Vetalengua (VL2) and Las Nuevas 

(PB) marking the progressive advance of the fluvial levees (Fig. 8D). Concerning La 

Algaida, this spit became ever more isolated from marine influence, as the Guadalquivir 

River moved its course farther and farther away from the west banks of the former isle 
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and left marshes in its place. Eventually, successive trains of dunes would arrive in from 

the west, impinging upon such marshes and burying the abandoned settlements of Cerro 

del Trigo as well as La Algaida. Simultaneously, the evolution of the river and the 

gradual infilling of the estuary would turn Lacus Ligustinus into a tidal marsh and 

subsequently into a freshwater marsh. 

 

7. Conclusions 

 

The combined analyses of geology, archaeology, and history are necessarily called for 

in any scientific attempt to determine past geographies and environmental changes in 

areas with a rich history and a substantial archaeological record, such as the 

Guadalquivir estuary.  

 

The chronology of tsunamis in the Gulf of Cadiz during the Roman period that Galbis-

Rodríguez established (1932-1940) rests on feeble foundations and, therefore, should no 

longer be used for any scientifically rigorous paleogeographical project. Instead, 

evidence of tsunamis over such a period ought to be sought by means of geological 

probing and assays, archaeological investigations, and rigorous consideration of the 

written sources handed down from Antiquity.  

 

The geological record of the Guadalquivir estuary presents a wide spectrum of 

geomorphological and sedimentary developments in connection with EWEs: washover 

fans, paleocliffs or erosional scarps, coarse gravel deposits, crevasse splays, and 

sedimentary lags of sand and shells. In trying to fathom the genesis of each and every 

one of these developments, researchers should adopt a holistic vision of the paleography 

of the estuary as well as of the various geodynamic processes involved in it. 

 

Such geomorphological and sedimentary evidence is consistent with a model of 

evolution that includes periodic small EWEs—possibly storm surges—during the 4
th

 

and 3
rd

 centuries BC and the 1st century BC, on the one hand, and a considerably larger 

event—likely a tsunami—in the 2
nd

-3
rd

 century AD, on the other hand. The 

geomorphological and sedimentary data analyzed are persuasive enough in this regard. 

Furthermore, the effects of the larger event were considerable: formation of an erosional 

surface and washover fans in the spits, and a crevasse splay and sedimentary lags in the 
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estuary. This event, however, neither resulted in inlet channels in the Doñana spit nor 

ruptured the tombolo that connected La Algaida with the mainland.  This succession of 

EWEs (storms surges and tsunamis) would be the cause of the clearly marked 

alternation between ridges and swales that one can observe in the various littoral spits of 

the Gulf of Cadiz. 

 

From a regional perspective, the 2
nd

-3
rd

 century AD EWE caused the end of 

‗Progradation Phase‘ H5 and prepared the ground for ‗Progradation Phase‘ H6. The 

impact of this event in the Gulf of Cadiz was so extensive that its material signs can be 

chronologically correlated with comparable marks left in other estuaries of the Gulf that 

have been interpreted as evidence of a tsunami. This event can also explain the hiatus 

remarked upon in the archaeological record of Cerro del Trigo for the 2
nd

 or 3
rd

 century 

AD and the evidence of seismic destruction at Bolonia (Roman Baelo Claudia) and 

Munigua (Roman Mulva) somewhere between the 2
nd

 and the 3
rd

 century AD. 

Radiocarbon dating, geomorphological analysis, and historical references fail to support 

the so-called ‗218-209 BC‘ Atlantic tsunami in the Guadalquivir estuary, as 

hypothesized in the received literature. 

 

The different geodynamic processes at work in the mouth of the Guadalquivir River and 

its vicinity conditioned to a large extent the peopling of the area. The settling 

communities in the spits always sought a rapid, dependable communication with the 

sea, preferably through the main inlet channel of the river, the west one. In addition, 

they were careful not to expose the settlement to EWEs, which necessarily meant 

settling on the leeward side. The slow and punctuated, yet unremitting growth of the 

sandy barriers and the infilling of the estuary were to result eventually in the gradual 

abandonment of the places that they chose. 
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Figure captions 

 

Figure 1. Study area and location of cores with dates. The Spanish local term ‗caño‘ 

refers to a relict, fully filled-in tidal-fluvial channel.   

 

Figure 2. Lithostratigraphy and paleontology of sedimentary sequence. 

Morphostratigraphic and geomorphological outline of Doñana spit and Guadalquivir 

estuary. 

 

Figure 3. Graphical representation of dated samples (radiocarbon calibrated dataset) 

with respect to EWE. Rectangles indicate 
14

C calibrated ages (cal.) with 2σ uncertainty. 

 

Figure 4. Geomorphological elements of Doñana spit and chenier systems of 

Vetalengua (Left: aerial photograph of 1956; right: satellite images of 2012 

commissioned by the regional government of Andalusia, Spain).  

 

Figure 5. Oblique aerial view of chenier systems of Las Nuevas (2012 satellite image by 

Junta de Andalucía).  

 

Figure 6. Evolution of ebb-tidal delta and inlet channels in Guadalquivir mouth in 

relation to erosional incisions in La Algaida spit. 

 

Figure 7. Present-day beach with coarse gravel deposit in Sanlúcar de Barrameda. 

 

Figure 8. Paleogeographical approach of the Guadalquivir mouth in Roman times.  

 

 

Table captions  

 

Table 1.- Database of 
14

C results after using the Marine13 curve (Reimer et al., 2013) 

and the program CALIB rev. 7.0 (Stuiver and Reimer, 1993). B.- Beta Analytic 

Laboratory (Miami, USA). CNA.- Centro Nacional de Aceleradores (Seville, Spain). 

DAMS.- Accium BioSciences Accelerator Mass Spectrometry Lab (Seattle, USA). 

GX.- Geochron Laboratories, Krueger Enterprises, Inc., (Cambridge, USA). R.- Centro 
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di Studio per il Quaternario e I‘Evoluzione Ambientale de1 CNR-Dipartimento Science 

della Terra, Università La Sapienza (Rome, Italy). (
a
)Rodríguez-Ramírez et al., 1996. 

(
b
)Rodríguez-Ramírez and Yáñez, 2008. (

c
)Dabrio et al., 1999a. (

d
)Ruiz et al., 2004.  In 

boldface, dates determined for the present paper. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 6 
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Figure 8 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

50 

 

 

 

  

Core location Lab. Ref. Depth (m) Sample (shells) 14C age (BP) δ13C%o 14C cal yr 2σ (BC-AD) 

                                                                          Doñana spit 

M1 CNA273 -0.5 Glycimeris sp. 2260±45 -1.15 188 BC - 92 AD  

M2 CNA268 -1 Glycimeris sp. 1680±50 0.07 464 AD - 712 AD 

M3 CNA270 -1.5 Glycimeris sp. 1375±45 1.79 785 AD - 1030 AD 

M4 CNA275 -1 Glycimeris sp. 2170±45 2.48 83 BC - 212 AD 

VL1(a) R-2283 -0.8 Cerastoderma sp 2171±36 -- 73 BC - 188 AD 

VL1(a) B-88016 -0.25 Glycimeris sp. 2230±60 -- 187 BC - 152 AD 

VL2(b) B-154088 -0.40 Cerastoderma sp. 1710±50 -0.2 444 AD - 686 AD 

                                                                        La Algaida spit 

Q1(a) B-88022 -0.6 Glycimeris sp. 2487±70 -- 534 BC - 107  BC 

Q2(a) R-2284 -0.5 Glycimeris sp. 2233±29 -- 142 BC - 96 AD 

Q3(a) R-2272 -0.8 Glycimeris sp. 1972±40 -- 167 AD - 419 AD 

Q4(a) R-2262 -0.4 Cerastoderma sp. 1865±35 -- 288 AD - 551  AD 

Q5(a) B-88021 -0.3 Glycimeris sp. 1530±70 -- 613 AD - 936  AD 

Q6(a) B-88018 -0.3 Cerastoderma sp. 1600±60 -- 551 AD - 840  AD 

Q7(a) R-2263 -0.25 Cerastoderma sp. 1800±40 -- 378 AD - 621 AD 

Q8(a) R-88020 -0.4 Cerastoderma sp. 1450±70 -- 685 AD - 1000 AD 

Q9(a) B-88019 -0.2 Cerastoderma sp. 1340±60 -- 780 AD - 1091 AD 

                                                                             Las Nuevas 

VAT DAMS-006385 -0.5 Cerastoderma sp. 2691±30 -6.1 742 BC - 438 BC 

AA DAMS-008483 -0.5 Cerastoderma sp. 2494±23 -2.1 413 BC - 196 BC 

AR DAMS-008481 -0.5 Cerastoderma sp. 2404±27 0.8 351 BC - 113 BC 

PB DAMS-006383 -0.4 Cerastoderma sp. 1612±32 -9.5 592 AD – 773 AD 

LV(a) R-2278 -0.4 Glycimeris sp. 2284±39 -- 200 BC - 69 AD 

LV(c) GX-21825 0 Mollusc sp. 2895±75 0.3 1045 BC - 625 AD 

LV(c) GX-21826 0 Mollusc sp. 2010±110 0.1 15 BC - 533 AD 

LV(b) B-145202 -0.4 Solen sp. 2570±70 -1.5 699 BC - 227 BC 

LV(c) GX-21823 0 Mollusc sp. 1960±120 0.2 27 AD - 597 AD 

LV(c) GX-21824 -0.5 Mollusc sp. 1955±80 -1.3 109 AD - 530 AD 

LV(d) B-154082 -0.3 Cerastoderma sp. 1940±60 -0.8 146 AD – 492  AD 

LV(d) B-154079 -0.9 Cerastoderma sp. 1960±40 -0.9 169 AD - 429 AD 

BT(d) B-145203 -0.9 Solen sp. 2140±70 -2.0 105 BC – 292 AD 

BT CNA269 -0.9 Cerastoderma sp. 2100±50 -1.27 9 BC - 300 AD 
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Highlights 

 The Guadalquivir estuary is the end product of a complex geological evolution. 

 A wide range of geomorphological and sedimentary developments are EWE-

related. 

 Geological and archaeological evidence calls for a tsunami around 2
nd

-3
rd

 c. AD. 

 There is no historical evidence for a large tsunami between 218 and 209 BC. 

 A multidisciplinary approach is especially apt for archaeologically-rich areas. 


