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The critical behavior of a system constituted by molecules with a preferred symmetry axis is stud-
ied by means of a Monte Carlo simulation of a simplified two-dimensional model. The system ex-
hibits two phase transitions, associated with the vanishing of the positional order of the center of
mass of the molecules and with the orientational order of the symmetry axis. The evolution of the
order parameters and the specific heat is also studied. The transition associated with the positional
degrees of freedom is found to change from a second-order to a first-order behavior when the two
phase transitions are close enough, due to the coupling with the orientational degrees of freedom.
This fact is qualitatively compared with similar results found in pure liquid crystals and liquid-

crystal mixtures.

I. INTRODUCTION

Systems exhibiting coupling phenomena between
different kinds of degrees of freedom have been extensive-
ly studied in recent years. Experimentally, it is known
that such systems display very rich phase diagrams due
to the interplay of the different degrees of freedom.
Many models have been developed in order to explain
these phase diagrams, and have been solved using mean-
field approximations' and computer simulations.?

In this paper, the focus is on systems with coupling be-
tween orientational and positional degrees of freedom
like liquid crystals,® plastic crystals,* or some molecules
adsorbed onto surfaces.’ These systems are basically
constituted by molecules with a preferred symmetry axis.
The positional degrees of freedom are associated with the
movement of the center of mass of the molecules in a
three-dimensional (or two-dimensional in the case of ad-
sorbed molecules) space, while the orientational degrees
of freedom are associated with the direction of the sym-
metry axis.

In principle these degrees of freedom are continuous
but, in order to simulate such systems, we will treat them
as discontinuous. Discretization of the position of the
molecules in the space is usually done by means of the so
called lattice-gas model® which has been extensively used,
to describe solid-liquid and liquid-gas phase transitions.’
This discretization allows the possibility of stabilizing
long-range-ordered phases in two-dimensional systems.®
Moreover, the discretization of the orientational degrees
of freedom has been used, not only on systems where the
symmetry of the interaction potentials clearly justify it,
like some plastic crystals,® but also on liquid crystals'®
giving a good agreement with experiments.

One can classify the phases of these systems in four
groups. First, solid phases (S) with long-range orienta-
tional and positional order that usually appear at low
temperatures. Increasing the temperature, the positional
or the orientational long-range order may disappear re-
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sulting in liquid crystalline phases (LC) (no positional
long-range order) or plastic crystalline phases (PC) (no
orientational long-range order). At high enough temper-
atures, all long-range order disappears resulting in an iso-
tropic liquid phase (L). We will call T,, (T)) the tempera-
ture at which all the positional (orientational) long-range
order vanishes.

In real systems the positional or orientational order
usually does not fully disappear at a given temperature.
For instance, in liquid crystals between the fully S phase
and the LC phase also called the nematic phase, there ex-
ists other mesophases like smectic phases with long-range
positional order in only one direction of the space form-
ing, for example, layered structures.

Critical behavior of most of these phase transitions has
been individually studied by models taking into account
only the relevant degrees of freedom at that temperature
(for instance, the positional degrees of freedom at 7,) and
making some static approximations on the others. The
aim of this paper is to study by means of Monte Carlo
(MC) simulation, and in a very simple case, the whole
phase diagram of such systems. The emphasis will be on
the coupling phenomena that appear in the critical be-
havior of these systems, and which cannot be understood
by a model for an individual phase transition. For in-
stance, some liquid crystals exhibit a change in the behav-
ior of the smectic-nematic phase transition (associated
with the positional degrees of freedom) from second or-
der, when there is no coupling, to first order when the
orientational degrees of freedom begin to play an impor-
tant role.!"!2 Similar phenomena have been found in mi-
cellar solutions!'® and microemulsions. '

In Sec. II we summarize a 2d model that reproduces
the four kinds of phases mentioned above. The phase di-
agram of this model has been studied previously by the
mean-field approximation'® and qualitatively compared
with the liquid crystals and plastic crystal’s phase dia-
grams. Also some Monte Carlo simulations were per-
formed in order to test the main features of the phase dia-
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gram.'® In Sec. III we present the raw Monte Carlo re-
sults. In Sec. IV we focus our attention on the critical be-
havior of the positional transition occurring at T,. Our
studies indicate that the behavior of this phase transition
changes from second order to first order due to the cou-
pling with the orientational degrees of freedom. This fact
is qualitatively compared with existing experimental data
of the critical behavior of liquid crystals found in litera-
ture. 1217 Finally, in Sec. V we present the main con-
clusions of the work.

II. THE MODEL

The model is defined on a 2d square lattice of
N =L XL sites. On each site i (i =1, ..., N) we define a
scalar variable S; which takes values 1 or O depending on
the presence or absence of a molecule on site i. The num-
ber of molecules in the system is kept constant:

N
N,= > S;=Nc, (1)

i=1

where ¢ =0.5 is the coverage or density, and the summa-
tion extends over all the lattice sites. If S;=1 we also
define another variable R; that takes values among a set
of unitary vectors defining »n possible directions in the
space. We will restrict to the case of nonpolar molecules
and only n =4 possible orientations equally distributed
on the lattice plane [see Fig. 1(a)].

This restriction of n =4 is, of course, quite important
and is made in order to simplify the MC simulation of the
model. Nevertheless, a previous mean-field solution of
this model'® suggest that there are no qualitative changes
for n > 2. Also, the Monte Carlo simulation of a more re-
stricted but similar model (in three dimensions) largely
used for the study of the nematic-isotropic phase transi-
tion, '»1° show that no big differences appear when the

(a) ]

(b)

FIG. 1. (a) Four possible directions of the molecules on the
surface. (b) Ground-state configuration.
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number of directions changes from a continuous to a
discrete small value. It is also worth noting that as we
are interested in the study of the smectic-nematic phase
transition, that involves a change in the positional order
of the molecules, a simplified treatment of the orienta-
tional degrees of freedom does not represent a dramatic
approximation.

The Hamiltonian of the system, including only pair-
wise interactions, is written as

ij ij
NNN
+K, 3 S:S;P(R,R;), 2
ij

NN NN
H=J,35:5;+K, 3 S:S;P(R;,R;)
J

where INN (3NNN) is a summation over all nearest-
neighbor [next-nearest-neighbor, NNN] bonds, and J,,
K, and K, are constants. P is a scalar function of the
directions R; and R; defined as

P(R;,R;)=2[cos*(6;)—1], 3)

where 0;; is the angle between the two directions R; and
R;. This orientational interaction is the one proposed by
Maier and Saupe for the study of the order in nematic
phases.

When J,; <0, the first term of (2) acts as a positional
repulsion between nearest neighbors (NN). The other
two terms, with K| and K, negative, are orientational in-
teraction terms which favor parallel alignment of the
molecules.

In order to simulate this system we will define reduced
units as

H T K, K,

H*=1 T*=—"_ ki=—L1 gk3="2, @
7, r KT KT @

where T is the thermodynamic temperature of the system
and kjp is the Boltzmann constant. With these definitions
the Hamiltonian of the system can be written as

NN NN
H*=3 55, +K} 3 5,5;P(R;,R;)
inj ij

NNN
+K3 3 S;S;P(R;,R;) . (5)
IYJ

The phase diagram of this model has been already
studied with mean-field techniques!®> and Monte Carlo
simulation!® in previous papers. A detailed study shows
that when —1.0<K{ <0 and —1.0<K3 <0 then the
ground state of the system is that of Fig. 1(b). This
ground state is eight times degenerated because there are
four possible orientations and two possible sublattices to
fill. From now on, in a given configuration of the system
we will call the + (—) sublattice the one that is more
(less) populated.

As the temperature is increased, this ground state per-
mits the molecules to be positionally and orientationally
disordered. In order to study these phenomena, it is use-
ful to define a positional order parameter (m,) and two
orientational order parameters (my and mg) associated
with the two sublattices + and — as
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mp=[2+ Si—zvsi]/Np’ (6)
mg = [2+ B(R; — R pax ) — 2+ S(Ri*Rmin)]/Np , (1)
Mg = 3 8RR~ 38R~ Roi) | /Ny, ®

where 8 is a Kronecker delta function [8(0)=1 or O oth-
erwise], 31 (3 7) is a summation over the + (—) sublat-
tice, R . is the preferred direction of the molecules for a
given configuration, and R ;. is the direction perpendicu-
lar to R,,,,. These definitions are used in order to avoid
problems associated with the degeneration of the ground
state. With these definitions m,, m, and m, are always
positive.

p?

III. MONTE CARLO SIMULATION

Monte Carlo simulations have been performed on a
40X 40 lattice with N, =800 with periodic boundary con-
ditions and using standard Metropolis algorithm.?!"22 A
combination of Glauber dynamics changing the orienta-
tions and Kawasaki dynamics exchanging particles and
holes has been used. Finite-size effects have been correct-
ed using the subblock methd?® which enables to extrapo-
late the results to the case L — . Usual runs are carried
up to 12000 MC steps per particle. Averages of the
quantities of interest like order parameters ({(m,, ), {m}),
(mgy), (m})), energy ({E)), etc., are taken over 500 un-
correlated configurations, after discarding the first 10*
MC steps. The normal correlation time is about 4 MC
steps, except near the phase transitions where averages
over different evolutions corresponding to different seeds
of the random numbers generator have been taken in or-
der to improve the statistics.

Different points of the phase diagram have been simu-
lated. Depending on the values of K} and K5 one can
find two different behaviors (Fig. 2 shows the different

*
Ki
10 -08 -06 -04 -02

+4-0.2
1-0.4
* N
X
-0.6
-08
-10

FIG. 2. Dots represent the different points (K{,K7) that
have been studied by Monte Carlo simulation in the region
where the ground state is that of Fig. 1. Discontinuous lines are
the sections along which the phase diagram is represented in
Fig. 3. The dot shadowed area is the region where the liquid
crystal-like behavior has been found and the nonshadowed area
is the region where the plastic crystal-like behavior has been
found.
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FIG. 3. Sections of the phase diagram along the lines shown
in Fig. 2. (a) K¥ =K% and (b) K5 =—0.9. Lines are guides to
the eye.

sections and points that have been studied and the re-
gions where the two behaviors occur). When K| and K3
are sufficiently negative, the positional order disappears
at a lower temperature (7,) than the orientational order
(T,). Between these two temperatures a phase with only
long-range orientational order (LC phase) is stable. Oth-
erwise, when K { and K5 are small, one finds T, <7, and
a phase with only long-range positional order (PC phase)
appears.

Figures 3(a) and 3(b) give the sections of the phase dia-
gram along the dashed line plotted in Fig. 2. The four
phases S, LC, PC, and L are clearly identified. Changing
the value of the orientational constants K} or K5, one
can change from a liquid crystal behavior to a plastic
crystal behavior.

Figure 4 shows the evolution (extrapolated to L — o)
of the positional order parameter in two different cases.
Case (a) corresponds to KT =—0.9, K5 =—0.9 and case
(b) to K¥=—0.5, K5 =—0.9. Performing long enough
simulations the results do not depend on the starting
configuration any more and a first-order transition pro-
duces then a broadening due to the existence of long
metastable states. For instance, in case (b) all data are
obtained starting from a disordered state and using
several random number generator seeds. The values of
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FIG. 4. Detailed order parameter evolution versus tempera-
ture. Case (a) corresponds to K| =—0.9 and K5 = —0.9, while
case (b) corresponds with K{=—0.5 and K5 =—0.9. (b) Ex-
hibits some hysteresis that is not present in (a).

the upper branch correspond to runs that have jumped to
the low-temperature phase while the values of the lower
branch correspond to runs that have not jumped. We
have suppressed the values corresponding to runs that
jump during the average procedure and give spurious
values between the two branches. The lines are guides to
the eye showing the two envelopes of the obtained results.

In Fig. 5 examples of the variation of the specific heat
C, with T* are shown for the same two cases (a) and (b)
of Fig. 4. It is calculated as the extrapolation to L — oo
of C,; , calculated as

N,

cuL=T*2(<E2>L—<E>§). 9)

As in the case of the order parameters in case (b) only
the envelope of the obtained values is plotted, and the
values corresponding to runs with a jump during the
average procedure have been suppressed. The peak of
the specific heat has been used in order to have an estima-
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FIG. 5. Specific heat (C,) evolution with temperature when
(@ Kf=—0.9,Ky=—0.9and (b) K =—0.5,K¥=—0.9. T,
and T, indicate the positions of the positional and orientational
transition. The line is a guide to the eye.

tion of the transition temperature 7, with an accuracy of
the order of AT =0.01.

IV. CRITICAL BEHAVIOR

The orientational transition has previously been
identified as a first-order phase transition due to the hys-
teresis shown in the evolution of {m,) and the broad
peak in susceptibilities and specific heat. This broaden-
ing, due to the hysteresis, appears because data are ob-
tained after averaging over different runs with different
random number generator seeds. This fact was pointed
out by the authors already in the first simulations of this
system. !® Here, we will mainly focus our attention on the
nature of the positional transition between the S phase
and the LC phase.
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As can be seen in the evolution of the positional order
parameters (Fig. 4), no hysteresis has been found when
the two phase transitions (7, and T,) are separated
enough (a), while when the LC phase region is narrow
hysteresis appears (b). This hysteresis does not produce a
broadening of the C, peak, possibly because it is very
weak. These results suggest that there is a change in the
character of the positional transition between cases (a)
and (b).

In order to clarify the nature of the positional transi-
tion we have used a finite-size-scaling method proposed
recently.?* In this method the Gaussian character of the
energy distribution function is tested using the quantity

(E*),

_—— 10
WEN (10)

V=1

In the limit of L — o, V; should always tend to the

value Z except at a first-order phase transition where ¥V
tends to a smaller value related to the latent heat.

Figure 6 shows the dependence of V; for the same

cases as in Figs. 4 and 5, for the different subblock sizes

0.7 T T T

VL o5

0.3
0.60 0.65 0.70

07 T T T

VL 05

0.3

0.80 0.85 0.90
T »

FIG. 6. Dependence of ¥, with T* for the different subblock
sizes [L =40 (0),20(X), 10 @, 8 (+), 4 (O)]. Case (a) corre-
sponds to K{ =—0.9, K5 =—0.9 and case (b) to K} =—0.5,
K¥=-0.9.
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(L =40, 20, 10, 8, 4). In both cases one can see the ex-
istence of a minimum associated to the positional transi-
tion that appears overlapped with another broader well
(only partially shown) that corresponds to the first-order
orientational transition. The position of the peaks of the
specific heat curves are always located at the left side of
the V; minima. In case (a) the lack of Gaussian charac-
ter of the energy distribution has practically disappeared
at L =40, while in case (b) it clearly still remains. This
result justifies the continuous nature of the positional
phase transition in case (a) and its first-order character in
case (b), in agreement with the results deduced from the
hysteresis considerations.

We have also studied the effective critical exponent
of this positional transition. This exponent is calculated
fitting a simple power law,

B
T,—T*

T,

m,=A (11)

in a region of temperatures ranging between 0.957, and
T,. The adjusted effective exponent may differ from the
real critical B exponent which is defined by expression
(11) in the limit T—7T,. This difference could be quite
important if the critical region is very narrow. Neverthe-
less, this exponent is the one that should be comparable
with experiments, due to the finite temperature resolution
in most of the experimental systems.

The fit has been done using standard logarithmic least-
squares method on the data, corresponding to the evolu-
tion of (m}) versus temperature (extrapolated to
L — ). Two values of B exponents have been adjusted
in each case, corresponding to consider a fit with 7, + AT
and T, — AT as transition temperatures.

This is probably not the best procedure to determine
very accurate critical exponents. Methods based on
finite-size scaling theories?? can produce better estima-
tions, but they are extremely computer time consuming.
Since our objective is not to obtain absolute values of the
B exponent, but to show possible relative changes, this
relatively simple way seems accurate enough.

Along the two sections indicated in Fig. 2, we have
fitted Eq. (11) to the points obtained after extrapolating
the Monte Carlo simulation data to L — . Figures 7(a)
and 7(b) show the fitted values of the 3 exponent corre-
sponding to the two sections mentioned before. Error
bars arise from the two extreme values of 3 obtained as
indicated before.

The exponent changes from a large value near the
two-dimensional Ising-model universality class when the
two transitions are separated enough, to a smaller (or
vanishing) value when the two transitions are closer.
This fact gives further evidence of the change from a
second-order transition to a possible first-order transition
as indicated on the phase diagram sections [Figs. 3(a) and
3(b)]. We can conjecture, then, the existence of a tricriti-
cal point that appears when the two transitions are very
close.

The region where the critical behavior changes is nar-
rower in the case K} =K than in the case K5 =—0.9.
An explanation to this behavior is that, if the orientation-
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FIG. 7. B exponents calculated adjusting a power-law fit to
the Monte Carlo data along the lines Kf =K (a) and
K3 =-—0.9 (b). Error bars are associated to the deviations on
the adjusted exponents due to the indetermination of 7, as ex-
plained in the text.

al interactions at NNN and NN are equal, it is reason-
able to think that the positional transition (which can be
seen as a transition disordering NNN pairs to NN posi-
tions) is less affected. The mean-field solution of this
model is also in agreement with that explanation. !®

These results can be qualitatively compared with some
measurements made with different pure liquid crystals or
liquid crystal mixtures using calorimetric and x-ray
scattering techniques.!"'>17 Despite the large amount of
phases that these systems exhibit we will focus on the so
called smectic-nematic and nematic-isotropic transitions
corresponding to the complete vanishing of the long-
range positional order and the long-range orientational
order, respectively. The temperature separation between
these two transitions, or in other words the width of the
nematic region, is different in each particular liquid crys-
tal and depends mainly on the ratio between the orienta-
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tional and positional interactions.

Mixing liquid crystals with different molecule lengths
but similar chemical properties opens the possibility of
changing the effective orientational interaction and con-
trolling its value by controlling the composition of the
mixtures. This can be compared with the role played by
the constants K} and K5 in our model. Experiments
have been done with mixtures of alkylbenzoate liquid
crystals (nCB).!? The resulting phase diagram can be
qualitatively compared to the liquid crystal region of the
phase diagrams shown in Figs. 3(a) and 3(b). The width
of the nematic (LC phase) region decreases when the
composition of the mixture is changed. The two transi-
tions, smectic-nematic (corresponding to 7)) and
nematic-isotropic (corresponding to T), have been found
to overlap at a given composition. 1?

In good agreement with our results different authors
have reported the existence of a change in the critical be-
havior of the smectic-nematic transition and the existence
of a tricritical point.'?> This agreement is surprising if
one notes that in principle a liquid crystal is a three-
dimensional system, while our model is only two-
dimensional. A possible explanation of this fact is that
the smectic phase is basically a layered structure and may
behave as if it had a dimensionality less than three.

B effective critical exponents have been measured on
different liquid crystals and liquid crystal mixtures. !»"1%17
Figure 8 shows some results of such measurements found
in the literature as a function of the McMillan parameter
M, defined as

_ TSmN

(12)
Ty,

which measures the relation between the orientational
and positional interaction energies, and which can be
qualitatively compared to the ratio 7,/T,. The ex-
ponents measured experimentally are scaled by the ex-

L] How T oo
x
> 0.8 - x
2 R
06
~
= oaf .
0.2r
1 1 ol
08 0.9 1.0 14
M=T/ Ty

FIG. 8. Values of the 3 exponents versus the McMillan pa-
rameter defined in the text. Different symbols show different ex-
perimental values collected from literature: X nSS (Ref. 12), R
CBOOA (Refs. 11 and 17), + 40.8-40.7 (Ref. 11), /A 8CB (Ref.
11), @ 9CB-10CB (Ref. 12), © 80CB (Refs. 11 and 17).
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ponents corresponding to the 3D XY model universality
class to which such liquid crystals are supposed to be-
long. The diagram is very similar to those given in Figs.
6(a) and 6(b) and shows that when the two transitions are
very close, coupling phenomena appear and the behavior
of the positional phase transition changes from second
order to first order.

V. SUMMARY AND CONCLUSIONS

A model that reproduces some features of pure liquid
crystals and liquid crystal mixtures phase diagrams,
presented recently, 15,16 hag been studied. The model con-
siders the positional degrees of freedom of the molecules
as a lattice gas but introduces an extra variable taking
into account the orientational degrees of freedom of the
molecules. Two different phase transitions appear, each
associated with one of the degrees of freedom. For cer-
tain values of the interaction constants we are able to
reproduce the liquid crystal behavior, where the transi-
tion associated to the positional degrees of freedom (7))
corresponds to the smectic-nematic transition, and the
transition associated with the orientational degrees of
freedom (T'y) corresponds to the nematic-isotropic transi-
tion. The model reproduces the fact that the ratio be-
tween the positional and orientational interactions con-
trols the width of the nematic phase.

We have studied by means of Monte Carlo simulations
the critical behavior of this model. The orientational
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transition, as seen in preliminary simulations, is first or-
der, in agreement with the experimental results on the
nematic-isotropic transition. The positional transition
changes from a second-order behavior to possibly first-
order behavior when the nematic region above 7T, is nar-
row enough. This fact has also been reported by experi-
ments on liquid crystal mixtures.

We have also measured the effective 3 exponent of the
positional transition in order to locate the possible tri-
critical point. We have found that when the two transi-
tions are very close the 3 exponent decreases indicating a
possible change to a first-order phase transition. This
fact compares well with experimental data collected from
the literature.

Therefore, we can conclude that the coupling phenom-
ena that appear in liquid crystals, like the existence of a
tricritical point and its dependence on the nematic phase
width, seems to be closely related to the competition be-
tween the orientational and positional degrees of free-
dom, rather than to the detailed microscopic interaction.
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