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1. Introduction: When a single EROI is not enough 27 

 28 

In spite the long-lasting research devoted to this important aspect of any 29 

sustainability assessment, the energy analysis of agricultural systems remains a site-30 

specific accounting whose results depends on the research question raised, the system 31 

boundaries placed and the methodological approaches adopted (Pelletier et al., 2011; 32 

Hall et al., 2011; Hall and Klitgaard, 2012). Even if it hampers comparability, this 33 

plurality of assessments is not a sign of sloppy science but a reflection of the 34 

epistemological challenges faced when dealing with a complex, hierarchical reality 35 

(Giampietro and Mayumi, 2000:141). The only workable solution is to make clear from 36 

the beginning for what purpose will each energy accounting procedure be used (Jones, 37 

1989), in order to then compile in a transparent way a set of different approaches and 38 

protocols that allow researchers to understand each other (Mulder and Hagens, 2008; 39 

Murphy et al., 2011b). 40 

Many agricultural energy balances have been accounted by adopting a societal 41 

system boundary and an input-output approach addressed to assess to what extent 42 

agriculture behaves as a net energy provider or a net consumer, which allows allocating 43 

the corresponding polluting emissions among economic sectors. This standpoint only 44 

requires computing the energy return obtained from the agricultural system to the inputs 45 

invested from outside. Although this makes sense on its own right, such a simple input-46 

output ratio of the energy carriers crossing the agricultural boundary inevitably conceals 47 

the internal agroecological functioning of farm systems into a black box.  48 

Any attempt to open the agroecological black box has to deal with the looping 49 

character of biophysical flows in agroecosystems where a relevant share of energy 50 

carriers driven by farmers cycles again into the underlying funds (Giampietro, 2004; 51 



Giampietro et al., 2012, 2013; Guzmán and González de Molina, 2015). As Ho and 52 

Ulanowicz (2005) have pointed out, these internal cycles make thermodynamic sense as 53 

long as they provide a dynamic closure in nested space-time domains that enables living 54 

systems to minimize entropy. Thanks to this emerging property that increases their 55 

internal energy storage capacity, all sorts of living dissipative structures can start a 56 

dynamic process to reproduce themselves and evolve far from thermodynamic 57 

equilibrium (Prigogine and Stengers, 1984; Morowitz, 2002). This happens in 58 

ecosystems, as well as in agroecosystems, by enhancing the complexity of interlinked 59 

loops which allow improving energy throughputs within, while entropy dissipation is 60 

ejected outside. Although this entropy ejection always involves a relevant energy loss 61 

when dissipative structures are seen from outside, the cyclical character of their internal 62 

less-dissipative energy loops leads to an integrated spatial heterogeneity able to give 63 

rise to biodiversity and keep it along time (Ho, 2013:31; Ulanowicz, 1986:147-161; 64 

Tscharntke et al., 2012).  65 

As we shall see, livestock was a key component of many mixed farming systems in 66 

the past that kept a tightly integrated spatial diversity of complex agroecosystems, and 67 

brought some amount of biomass back into the soil through manure that played a crucial 68 

role in keeping up fertility (Krausmann, 2004). The organic matter content of cultivated 69 

soils, either reproduced by means of livestock manure or by burying fresh and burnt 70 

phytomass, becomes a clear example of how energy carriers driven by farmers were 71 

stored within agroecosystems for a while—despite the huge energy loss that this 72 

internal loops always entailed throughout the whole chain of bioconversions required 73 

before the nutrients caught in reused biomass flows could be released and assimilated 74 

again by growing crops. The annual growth of rings of trees, shrubs and woody crops is 75 

another example of net energy storage taking place within farmland, once the removals 76 



of timber, firewood and pruning have been deducted. They become a part of the 77 

unharvested phytomass, which plays a key role in sustaining the associated biodiversity 78 

of agroecosystems (Guzmán and González de Molina, 2015). 79 

We are particularly interested in bringing the internal biomass reuses into light 80 

because our research project is developing an Energy-Landscape Integrated Analysis 81 

addressed to reveal how energy throughputs of agroecosystems relate with the farm-82 

associated biodiversity in landscape mosaics (Altieri, 1999; Margalef 2006), and the 83 

ecosystem services that different types of farming may maintain in a land matrix 84 

(Marull et al., 2010, forthcoming a, b). This spatial-explicit modelling of farming 85 

turnover has to be based on a wider energy profile of agricultural systems than a single 86 

linear input-output ratio.  87 

Drawing on these fundamentals, we can assume that the accounting of internal 88 

energy cycles becomes an important criterion to understand what sustainability means 89 

when looking at the energy carriers flowing in agroecosystems: Entropy can be 90 

minimized within a farm system by interconnecting more life cycles so that the by-91 

products from one may become resources for another (Ho, 2013). This is the rationale 92 

behind a basic trait stressed by Giampietro et al. (2013:142): «A key feature of agro-93 

ecosystems is that some amount of biomass flows taken from the land is reused within 94 

the land system as an investment into the maintenance of its basic funds and services». 95 

As we will see in detail, these flows of biomass reuses always entail a relevant cost for 96 

farmers in terms of labour and land allocations, which translates in terms of energy as 97 

well (Guzmán and González de Molina, 2009). At the same time, they perform vital 98 

roles in the fund-flow maintenance of agroecosystems. It is out of question that, from a 99 

farm-operator standpoint, they become a significant part of the total amount of inputs 100 

invested to maintain a farming system. 101 



But how an Energy Return on Investment (EROI) can be calculated of a cyclical, 102 

rather than a linear agroecosystem? Either we give up accounting energy throughputs as 103 

a useful tool for a sustainable assessment of farm systems, or we start using several 104 

EROIs measured at different parts of the agroecological structure of energy flows so as 105 

to interrelate them in a broader energy profile. Taking the second alternative (Tello et 106 

al., 2015), we present in this article the core of a proposal of energy analysis of past and 107 

present farm systems focused on the role played by the internal biomass reuses as an 108 

alternative to resort on external inputs. 109 

Our main point is to highlight that a significant proportion of biomass reused 110 

becomes a hallmark of organic farm systems, which have traditionally tended to save 111 

external inputs by relying on internal biomass reuses in accordance with a Low External 112 

Input Technology (LEIT) strategy (Tripp, 2008). Conversely, industrialized farm 113 

systems have tended to proportionally reduce biomass reuses by supplementing them 114 

with cheap external inputs mainly coming from fossil fuels—a strategy deeply linked 115 

not only with the lower energy returns to these external inputs but with lessening an 116 

integrated land-use management of complex landscape mosaics that up to a point may 117 

jeopardize the planned and associated biodiversity in agroecosystems (Giampietro, 118 

1997; Gliessman, 1998; Altieri and Nicholls, 2005; Snapp and Pound, 2008).  119 

Section two explains the conceptual framework and accountancy rules of this energy 120 

analysis of agroecosystems seen from a farm-operator standpoint at landscape level, the 121 

three interlinked EROIs proposed, and a decomposition analysis of Final EROI between 122 

the energy returns to the external inputs (External Final EROI, or EFEROI) and to 123 

internal biomass reuses (Internal Final EROI, or IFEROI). This decomposition analysis 124 

helps exploring the contrasting energy profiles of organic and industrial farm systems 125 

through the equation that relates FEROI, EFEROI and IFEROI; it allows plotting in a 126 



three-dimensional space a surface representing all the values that the variables of this 127 

equation can take, and using it to perform some optimality assessments; and it opens a 128 

way to disentangle the role played by the variations of Biomass Reuse and External 129 

Input flows in any historical change of Final EROI. Section three presents the empirical 130 

results obtained in our Catalan case study c.1860 and in 1999. Section four discusses the 131 

results, and section five concludes by presenting the working hypothesis that organic 132 

and industrial farm systems may tend to cluster into two opposite typologies, and the 133 

possibilities offered by this analysis to assess certain optimal improvement pathways. 134 

 135 

2. Methods of energy accounting of farm systems from a farm-operator 136 

standpoint 137 

 138 

We account the energy throughputs of agroecosystems by comparing the amount of 139 

inputs invested by farm-operators, either coming from inside or outside the 140 

agroecosystem, with the final energy outputs obtained to satisfy human needs—and 141 

always bearing in mind that the agroecosystem not only enables farmers to obtain these 142 

flows of energy carriers to render consumable goods, but involves environmental 143 

constraints when it comes to reproduce the underlying fuds that provide those flows and 144 

keep up ecosystem services. This conceptual approach is not just energy economics or 145 

ecology, but a joint agroecological and socioeconomic accountancy of the energy flows 146 

and yields of farm systems that allows comparing the energy profiles in different 147 

regions and through time from an environmental history perspective able to take 148 

sustainability concerns into consideration (Worster, 1990; González de Molina and 149 

Toledo, 2014; Guzmán and González de Molina, 2015). 150 



Fig. 1 represents a simplified flowchart of the energy subsystems and carriers of farm 151 

systems taken into account in our modelling. It does not aim at showing all aspects of 152 

the agroecological functioning, but only represents the operative concepts used in this 153 

energy bookkeeping. The approach is two-sided. On the one hand we adopt the 154 

managing point of view of a specific farming community, which entails an economic 155 

accountancy of inputs and outputs flowing through a set of funds that remain after a 156 

year taken as time frame (Mayumi, 1991). On the other hand, we intend that our energy 157 

bookkeeping does not conceal some basic features of the internal agroecological 158 

functioning into a black box, but remains open enough to bring to light the renewal of 159 

the key components which provide ecosystem services directly or indirectly related with 160 

biodiversity: Soil fertility, pest and disease control and pollination, to name but a few. 161 

 162 

 163 

Fig.1.Proposed model of energy flows on farm systems as seen from a farm-operator 164 

standpoint with an agroecosystem boundary 165 



Source: Tello et al. 2015. 166 

 167 

2.1.Basic funds and flows taken into account in our bookkeeping 168 

The green boxes in the flow diagram represent energy subsystems used by farm 169 

activity to convert energy carriers from one form into another, as seen in the way a 170 

farm-operator may account for them. According to this approach, on Farmland 171 

photosynthesis performed by primary producers converts solar radiation into plant 172 

phytomass (Smil, 2013). Thanks to the Unharvested Phytomass (UPH) and habitats that 173 

remain available within Farmland, an Associated Biodiversity remains to provide 174 

ecosystem services. The subsystems appear partially merged because they actually 175 

overlap one another, meaning that we can conceptually distinguish them in the manner 176 

shown in Fig. 1 only when a site-specific management standpoint is adopted 177 

(Giampietro, 2004). For instance, the rationale behind splitting the photosynthetic 178 

primary production into two different but partially merged subsystems, Farmland and 179 

Associated Biodiversity, can only make sense from this farm-operator viewpoint. In 180 

spite of sharing to some extent the same spaces in actual agroecosystems, they define 181 

two functional subsystems that must be accounted separately when an energy analysis is 182 

locally performed by farmers. Then, after having defined this set of farming subsystems 183 

which include many different bioconverters within, we can observe how they are 184 

interconnected by different energy flows. 185 

The Farmland subsystem encompasses three types of land use: Arable cropland, 186 

pasture, and woodland. Many farm systems integrate all three categories at local scale 187 

and their relative size distinguishes one from another. Accordingly, farmland products 188 

coming from all three types of land use constitute a major energy carrier: Land Produce 189 

(LP) that includes cropland products like cereals, legumes, root crops, vegetables, and 190 



fibre, but also firewood and wood, together with straw or brush used for animal bedding 191 

in barnyards. This flow is the totality of phytomass harvested from Farmland and 192 

directed toward human purposes. Adding Unharvested Phytomass equals the actual 193 

NPP obtained from solar radiation within the system boundaries. 194 

Another important flow is a portion of Land Produce called Biomass Reused (BR). 195 

This term describes energy carriers harvested from Farmland but then re-directed back 196 

to on-farm uses. Biomass Reused includes seeds collected for next year’s sowing and 197 

biomass distributed on cropland soils as fertilizer, such as green manures, stubble or 198 

wooden biomass burned or buried underground. In mixed farm systems that combine 199 

livestock with cropping a portion of Biomass Reused is the feed, forage, fodder, hay, 200 

straw or other bedding materials for animal husbandry. The Livestock-Barnyard 201 

subsystem, after further energy conversions (which take place not only through animal 202 

digestion but in manure heaps composted in barnyards), contributes Livestock-Barnyard 203 

Produce (LBP) including meat, milk, eggs, and fibre. It also contributes Livestock-204 

Barnyard Services (LBS) including manure and physical work in the form of draught 205 

power, both of which return energy flows to Farmland. When a fraction of Land 206 

Produce or Livestock-Barnyard Produce is not properly reused but is wasted, meaning 207 

that the flow does not go to the right place in the right dose to contribute to the renewal 208 

of agroecosystem funds, it is designated as Farmland Waste (FW) or Livestock-209 

Barnyard Waste (LBW). 210 

The Total Produce (TP) of the agricultural system includes the gross production of 211 

Farmland and Livestock-Barnyard subsystems, prior to the recycling of Biomass 212 

Reused. The Final Produce (FP) of the agricultural system is that portion of Total 213 

Produce that remains after the re-direction of Biomass Reused. That is, Final Produce is 214 

the share of farm production not needed to sustain agroecosystem functions, and 215 



therefore available for human consumption, whether locally or afar. This could include 216 

energy consumed by the local Farming Community as food, fibre, fuel, and building 217 

materials or surplus produce exported to the rest of Society. 218 

The two human energy subsystems in the model, the local Farming Community and 219 

the distant Society to which they belong, take in energy carriers from farm produce and 220 

convert them once again to support societal subsistence and demographic reproduction, 221 

as well as a wide array of cultural endeavours from basic infrastructure (such as shelter 222 

and transportation) to high cultural ones (like cathedrals and universities). Both also re-223 

direct energy carriers back to the farm system. Locally such energy contributions take 224 

two forms, first the form of Labour (L), and second the Farming Community Inputs 225 

(FCI) composed by humanure and domestic residues. 226 

Completing the circle, Agroecosystem Societal Inputs (ASI) bring energy carriers 227 

from outside the system boundaries, including organic and inorganic materials such as 228 

imported feed, building supplies, farm implements or manufactured machinery and, 229 

since the early twentieth century, fossil fuel products (tractors and fuel, fertilizers, 230 

pesticides). Exernal Inputs (EI) includes Labour, Farming Community Inputs, and 231 

Agroecosystem Societal Inputs.  Total Inputs Consumed (TIC) adds Biomass Reused as 232 

another input into the farming system. 233 

A subsequent controversial question is how to account for the human population and 234 

activity of the Farming Community placed outside the agroecosystem (Brown and 235 

Herendeen, 1996; Murphy et al., 2011b:1892; Giampietro et al., 2013). In accordance 236 

with our approach, we consider human labour as an external input which is accounted 237 

for as the fraction of the average diet of the farm operators that corresponds to the work 238 

time performed in the agroecosystem—taking physiologically different energy 239 

requirements of human activities into account. That is, we use what Fluck (1992) has 240 



termed the ‘total energy of food metabolized while working’ including the basic 241 

metabolic rate during work time. In this way our analysis remains open to the choices 242 

made by these farm-operators when allocating their own time, and to changes in labour 243 

productivity. 244 

Following this energy approach to farm systems, we define inputs as any energy 245 

carrier consumed with an opportunity cost for the farm-operators. All energy carriers 246 

coming from inside the agroecosystem boundaries, or reinvested inside it, are accounted 247 

only for their enthalpy value thus setting aside the photosynthesis performed by solar 248 

radiation. All energy carriers coming from outside the system boundaries are accounted 249 

for by their direct energy content and their indirect embodied energy (Tello et al., 2015). 250 

Drawing on this, we are going to account three different but interrelated EROIs. 251 

 252 

2.2.A set of three EROIs seen from a farm-operator standpoint 253 

The first of these EROIs, EFEROI (
𝐹𝑃

𝐸𝐼
) relates External Inputs (EI) to the Final 254 

Produce (FP) crossing the agroecosystem boundaries in a way that links the agrarian 255 

activity with the rest of the energy system of a society. Hence, it assesses to what extent 256 

the agroecosytem analysed becomes a net provider or rather a net consumer of energy at 257 

a societal level, an assessment that becomes very important for evaluating the 258 

agricultural component of the ‘Law of minimum EROI’ put forward by Hall et al. 259 

(2009) and Hall and Klitgaard (2012). Final EROI (
𝐹𝑃

𝑇𝐼𝐶
) assesses instead how much 260 

external (EI) and internal (BR) energy carriers have been spent by a farm operator to get 261 

a given basket of human consumable Final Produce (FP) as measured at the exit gate of 262 

the agroecosystem studied. It becomes relevant when we want to assess the energy 263 

performance as seen from the allocation standpoint of their farm-operators, and ceases 264 

to be so when a wider societal perspective is adopted. Yet, even from a farm operator 265 



viewpoint, if we take Final EROI (
𝐹𝑃

𝐸𝐼+𝐵𝑅
) alone an important shortcoming appears from 266 

an agroecological perspective, given that External Inputs are conflated with Biomass 267 

Reused in the Total Inputs Consumed (TIC), disregarding the role BR plays in keeping 268 

up the underlying funds and ecological functioning of agroecosystems. In order to 269 

overcome this limitation, TIC must be broken down into both components, EI and BR. 270 

While the ratio (
𝐹𝑃

𝐸𝐼
) equals EFEROI, the ratio (

𝐹𝑃

𝐵𝑅
)  gives way to calculate IFEROI 271 

which assesses the portion of Land Produce reinvested in the agroecosystem as Biomass 272 

Reused in order to get a unit of Final Produce that exits the boundaries of the system 273 

analysed. Then, Final EROI (
𝐹𝑃

𝐸𝐼+𝐵𝑅
) can be decomposed into the external (EFEROI) 274 

and internal (IFEROI) returns. 275 

 276 

2.3.Interrelation of FEROI, EFEROI, and IFEROI 277 

Final EROI is related with internal (IFEROI) and external (EFEROI) returns 278 

according to equation (1), which can easily be obtained
1
 from the previous definitions 279 

(Tello et al., 2015): 280 

𝐹𝐸𝑅𝑂𝐼 =
𝐸𝐹𝐸𝑅𝑂𝐼 ∙  𝐼𝐹𝐸𝑅𝑂𝐼

𝐸𝐹𝐸𝑅𝑂𝐼 + 𝐼𝐹𝐸𝑅𝑂𝐼
                                                                                                 (1) 

Expression (1) is the equation of the quadratic surface shown in Fig. 2, which 281 

happens to be a cone centred at the origin (right side of Fig. 2) or, to be more precise, a 282 

portion of a cone (left side of Fig. 2), as the values of EFEROI and IFEROI can only be 283 

                                                 

1
 
𝐸𝐹𝐸𝑅𝑂𝐼 · 𝐼𝐹𝐸𝑅𝑂𝐼

𝐸𝐹𝐸𝑅𝑂𝐼 + 𝐼𝐹𝐸𝑅𝑂𝐼
= 

𝐹𝑃

𝐸𝐼
 · 
𝐹𝑃

𝐵𝑅
𝐹𝑃

𝐸𝐼
 + 

𝐹𝑃

𝐵𝑅

=
𝐹𝑃2

𝐸𝐼 · 𝐵𝑅
𝐹𝑃 (𝐵𝑅+𝐸𝐼)

𝐸𝐼 · 𝐵𝑅

= 
𝐹𝑃

𝐸𝐼+𝐵𝑅
= 𝐹𝐸𝑅𝑂𝐼. 



positive.
2
 We can interpret this figure as the possibility surface that encompasses all the 284 

values that FEROI, EFEROI and IFEROI can take in equation (1): 285 

 286 

 287 

Fig. 2.Graphical representation of Final EROI as a function of EFEROI and IFEROI 288 

Source: our own. 289 

 290 

If equation (1) is seen as an expression of Final EROI as a function of EFEROI and 291 

IFEROI, the possibility surface shows that this function incurs in decreasing returns at 292 

any point: To get any increase in the joint FEROI proportionally greater increases in 293 

either internal or external returns or both are needed. In fact, at any point (x, y), the 294 

directional derivative of the surface in the direction of the gradient is 
x4+y4

(x+y)4
 , which is 295 

strictly smaller than 1 for all points with no null coordinates, and equal to 1 when either 296 

coordinate is 0.
3
 297 

                                                 
2
 In fact, equation (1) can be rewritten as 𝑧 =

𝑥𝑦

𝑥+𝑦
 or equivalently −𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 = 0. In terms of 

matrices, (𝑥 𝑦 𝑧) (
0 −1 2⁄ 1 2⁄

−1 2⁄ 0 1 2⁄

1 2⁄ 1 2⁄ 0
)(
𝑥
𝑦
𝑧
) = 0. The previous symmetric matrix has eigenvalues −1 with 

multiplicity 1, and 1 2⁄  with multiplicity 2. Hence the matrix diagonalizes and equation (1) reduces to 

𝑥2 = (𝑦2 + 𝑧2) 2⁄ , which is the equation of a cone. This cone is trivially centred at point (0,0,0). Vector 

(1,1, −1) is an eigenvector of eigenvalue −1, therefore the axis of the cone has its direction. 

3
 The gradient of the function 𝑓(𝑥, 𝑦) =

𝑥 𝑦

𝑥+𝑦
 is ∇𝑓(𝑥, 𝑦) = (

𝜕𝑓

𝜕𝑥
(𝑥, 𝑦),

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦)) = (

𝑦2

(𝑥+𝑦)2
,

𝑥2

(𝑥+𝑦)2
). 

Therefore, the directional derivative in the direction 𝑣 of the gradient is ∇𝑓(𝑥, 𝑦) ∙ 𝑣 =  
𝑥4+𝑦4

(𝑥+𝑦)4
, or 



For a given FEROI, any increase or decrease of either IFEROI or EFEROI can be 298 

compensated by a decrease or increase of the other, as shown in Fig. 3 where the 299 

contour levels, or isoquants, of this function can be seen: 300 

 301 

 302 

Fig. 3.Isoquants of Final EROI as a function of EFEROI and IFEROI 303 

Source: our own. 304 

 305 

It is easy to show that these curves are hyperbolae.
4
 Therefore, the relation among 306 

the two variations is inversely proportional and the proportional factor depends on the 307 

eccentricity of each isoquant. 308 

As we are interested in the role played by external flows and internal biomass reuses 309 

in the energy performance of farm systems, we can go deeper into this analysis in order 310 

to reveal how variations in EFEROI and IFEROI affect the value of FEROI in terms of 311 

the underlying function that relates Final Produce (FP) with internal (BR) and external 312 

(EI) inputs. For the time being all we can say is that assuming a constant FP, the 313 

                                                                                                                                               

∇𝑓(𝑥, 𝑦) ∙
𝑣

||𝑣||
= √

𝑥4+𝑦4

(𝑥+𝑦)4
 if the normalized version is preferred. For our discussion, both are equivalent, 

as we are interested in comparing their values with 1. 
4
 In fact, they are conic sections in the horizontal direction, which forms an angle with the axis of the 

cone smaller than the one of the generatrix. 



variation of EFEROI (relative to IFEROI) is inversely proportional to that of EI 314 

(relative to BR). Unfortunately, the function –or perhaps ‘functional’ according to 315 

Georgescu-Roegen (1971:236)— relating FP with BR and EI is too complex to be 316 

determined. In agroecosystems any internal or external biophysical flow interacts with a 317 

set of funds which can only bring about a final produce within a limited range of 318 

variation in yields and in a discontinuous manner. What really matters are the emerging 319 

properties arising out of the whole network of synergistic links of flows established 320 

among a myriad of fund components of subsystems working together to attain a joint 321 

outcome—and that is the main focus of agroecology as a science (Altieri, 1989; 322 

Gliessman, 1998; Snapp and Pound, 2008). 323 

An empirical workable way to deal with such a complex issue is to plot in Figs. 2 324 

and 3 the various combinations of EFEROI, IFEROI and FEROI existing in farm 325 

systems, in order to cluster them around characteristic typologies. 326 

 327 

2.4.Optimality analysis of Final EROI according to shifts in  
𝐸𝐼

𝐵𝑅
 ratio 328 

The quadratic surface showing the relationships between FEROI, EFEROI, and 329 

IFEROI can also be used to find out optimal improvement pathways for Final EROI. 330 

Fig. 4 presents the gradient vector at each point that indicates for each pair of values 331 

(EFEROI, IFEROI) the direction to which FEROI can be optimally improved. Besides 332 

optimal directions, the figure also depicts the improving capacity at each point by 333 

means of the length of the gradient vector. 334 



 335 

Fig. 4.Directions and comparative lengths of the potential improvement of Final EROI 336 

by changing the combinations of IFEROI and EFEROI at any point.  337 

Source: our own. 338 

 339 

We can observe that potential improvements are higher if Final EROI is lower, 340 

or/and when the combination of EFEROI and IFEROI is unbalanced—that is, when the 341 

𝐸𝐼

𝐵𝑅
 ratio is far from one. All these vectors led towards points of higher FEROIs with 342 

lower improvement capacities that tend to approach the ones along the diagonal with 343 

higher diminishing returns (where FEROI = 
𝐸𝐹𝐸𝑅𝑂𝐼

2
 = 

𝐼𝐹𝐸𝑅𝑂𝐼

2
, and 

𝐸𝐼

𝐵𝑅
= 1).  344 

We have to keep in mind that, according to equation (1), this optimality analysis is 345 

restricted to shifts in 
𝐸𝐼

𝐵𝑅
 ratios. In spite of its limitations, it allows mapping the 346 

improving capacity of Final EROI in agroecosystems by looking at the optimal 347 

combination of internal and external returns, to then compare the theoretical 348 

possibilities with available empirical data and perform counterfactual historical 349 

interpretations in the past, or design ways to improve energy yields of farm systems at 350 

present. In any case, its actual meaning for a sustainable functioning of agroecosystems 351 



requires a wider multi-dimensional analysis by taking into account not only how the 352 

variation of this ratio affects Final EROI, but also nutrient replenishment of soils and 353 

the landscape patterns able to host greater or lower associated biodiversity. 354 

 355 

2.5.Assessing the role of EI and BR variations in any shift of Final EROI 356 

 Another way to delve into the socioecological changes of farm systems is 357 

disentangling the role played by the internal or external energy returns in any historical 358 

shift experienced by Final EROI. This can be achieved by a decomposition analysis, 359 

considering that FP = h(EI, BR), where h is a function we know exists but the 360 

expression of which remains unknown. As proved in the Appendix, we can obtain the 361 

roles of the corresponding variations of EI and BR in any shift experienced by Final 362 

EROI through the following expressions (2): 363 

Effect of variation in 𝐸𝐼 =
−
𝐹𝑃1+𝐹𝑃2

2
 ∆𝐸𝐼+ 

𝐸𝐼1+ 𝐸𝐼2 + 𝐵𝑅1+𝐵𝑅2
4

 ∆𝐹𝑃

(𝐸𝐼1+𝐵𝑅1)(𝐸𝐼2+𝐵𝑅2)
 and 364 

Effect of variation in 𝐵𝑅 =
−
𝐹𝑃1+𝐹𝑃2

2
 ∆𝐵𝑅+

𝐸𝐼1+ 𝐸𝐼2 + 𝐵𝑅1+𝐵𝑅2
4

 ∆𝐹𝑃

(𝐸𝐼1+𝐵𝑅1)(𝐸𝐼2+𝐵𝑅2)
                                      (2) 365 

 366 

3. Results: Calculating FEROI, EFEROI and IFEROI of the study area 367 

 368 

3.1.Location and features of the Catalan study area in the Vallès County 369 

We have applied this energy modelling (Tello et al., 2015; Galán et al., forthcoming) 370 

to a case study area located some thirty kilometres away from the city of Barcelona 371 

(Catalonia, North-East of Iberia) circa 1860 and in 1999, used as a test bench.
5
 The land 372 

cover change experienced by this cultural landscape can be seen in Fig. 5:  373 

                                                 
5
 It is located in the same study area used in Cussó et al. (2006b), but now we have carried out a 

thoroughly revision using better sources, new accountancy rules and performing a stricter control in order 

to assess that the energy yields were not attained at the expense of soil fertility, deforestation or livestock 

malnutrition. Changes are also related to having accounted four instead of five municipalities, due to lack 
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 387 

 388 

Fig. 5.Location map of the study area in the Barcelona Metropolitan Region (Catalonia, 389 

Iberia) and land covers exiting in the 1860s, 1950s and 2000s  390 

Source: Marull et al. 2015.   391 

 392 

Many traditional organic farm systems, like the ones existing c.1860 in the study 393 

area, had kept complex land-use mosaics as a result of an integrated farming with 394 

livestock husbandry. Conversely, these landscape mosaics have tended to vanish from 395 

the 1960s onwards when industrial farm management has led to increasingly 396 

homogeneous land covers, which became polarized into two main types: Intensive 397 

                                                                                                                                               
of one cadastral map c.1860, when we discovered some relevant mismatches between the land accounts 

given in the official statistics and the surfaces accounted by GIS in these maps. 



monocultures ever more oriented towards animal breeding in feedlots, and woods left 398 

abandoned (Gerard et al., 2010; Parcerisas et al., 2012; Marull et al., 2014)—a process 399 

clearly shown in Fig. 5 when urban areas are set aside.  400 

 401 

3.2.Energy profiles and EROIs of the Catalan study area c.1860 and in 1999 402 

The historical process of agricultural change summarized in Fig. 5 can be taken as a 403 

natural experiment for a comparative analysis of the energy profiles of organic and 404 

industrial farm systems seen at landscape level from their farm-operators (Odum, 1984; 405 

Gliessman, 1998; Tscharntke et al., 2005). Fig. 6 shows in a simplified flowchart the 406 

empirical results obtained by applying our agroecosystem model of energy flows and 407 

loops to these four municipalities in the Vallès County c.1860 and in 1999. 408 

 409 

 410 



 411 

Fig. 6.Main energy flows and loops in the agroecosystems of the Vallès County 412 

(Catalonia, Iberia) c.1860 and in 1999.  413 

Source: Tello et al. 2015. 414 

 415 

The basic territorial, demographic and biophysical dataset used to calculate the flows 416 

of farming energy carriers, and set up the energy balances of Fig. 6, is listed in Table 1: 417 

Agroecosystem Subsystems and Energy Carriers c.1860 1999 units 

Funds 

 Inhabitants in the farming community 7,941 39,189 inhabitants 

 Population density 64 327 inhab./km
2
 

 agricultural active population 2,057 250 AWU
*
 

 Total area 124 120 km
2
 

 Farmland 12,037 9,323 ha 

 Cropland 6,753 2,182 ha 

      vegetables & fruit trees in gardens 166 185 ha 

      irrigated annual crops 156 104 ha 

      rain-fed annual crops 1,620 1,753 ha 

      vineyards 4,310 22 ha 

      olive groves 500 65 ha 

 Pastureland  909 340 ha 

 Woodland & scrub 4,376 6,801 ha 



 Livestock density per unit of farmland 7 241 LU500/km
2
 

Flows of energy carriers 
NPPact Actual Net Primary Production estimated 797,446  788,427 GJ 

UPH Unharvested Phytomass 294,693 561,468 GJ 

     

TP Total Produce 505,707 465,723 GJ 

LP Land Produce 502,753 226,958 GJ 

LP LP—Cropland 309,196 201,912 GJ 

LP LP—Pastureland  13,676 993 GJ 

LP LP—Woodland& scrub 179,881 24,053 GJ 

LBP Livestock-Barnyard Produce 2,954 238,765 GJ 

LBP LBP— Meat, milk and eggs 2,754 183,982  

LBP LBP— Slaughter residues 199 54,783  

     

FP Final Produce 268,542 312,327 GJ 

FP FP—food  21,012 198,279 GJ 

FP FP—grape juice to make wine & olive oil 18,742 1,093 GJ 

FP FP—edible forest products 1,544 0 GJ 

FP FP—fibre (hemp, wool, hides, slaughter by-

products)  

1,399 54,783 GJ 

FP FP—other industrial crops (rape) 0 8,451 GJ 

FP FP—grapevine & olive oil pomaces sold outside 0 1,123 GJ 

FP FP—forest timber 3,741 24,053 GJ 

FP FP—forest firewood 162,032 

FP FP—pruning & vines or trees removed to 

firewood 

38,268 1,616 GJ 

FP FP—other vineyard and olive trees by-products 21,604 0 GJ 

FP FP—animal feed sold outside 0 24,022 GJ 

     

TIC Total Inputs Consumed 261,087 1,395,906 GJ 

BR Biomass Reused 237,165 142,246 GJ 

FBR Farmland Biomass Reused 142,154 12,424 GJ 

FBR FBR—seeds 3,898 2,148 GJ 

FBR FBR—buried biomass 95,689 10,276 GJ 

FBR FBR—biomass burnt & ploughed 

(‘hormigueros’) 

42,567 0 GJ 

LBBR Livestock-Barnyard Biomass Reused 95,011 129,822 GJ 

LBBR LBBR—feed crops 8,449 35,831 GJ 

LBBR LBBR—fodder crops 12,418 32,008 GJ 

LBBR LBBR—crop by-products to animal feeding 47,904 25,476 GJ 

LBBR LBBR—grass 13,676 993 GJ 

LBBR LBBR—other animal feeding from woodland 4,355 0 GJ 

LBBR LBBR—stall bedding 8,209 35,514 GJ 

EI External Inputs 23,922 1,253,660 GJ 

L Labour 3,610 3,176 GJ 

FCI Farming Community Inputs 20,312 0 GJ 

FCI FCI—human garbage and sewage 17,808 0 GJ 

FCI FCI— humanure 2,505 0 GJ 

ASI Agroecosystem Societal Inputs 0 1,250,484 GJ 

FSI Farmland Societal Inputs 0 192,562 GJ 

FSI FSI—machinery  0 163,043 GJ 

FSI FSI—herbicides 0 12,758 GJ 

FSI FSI—chemical fertilizers 0 10,971 GJ 



FSI FSI—seeds bought from outside 0 1,982 GJ 

FSI FSI—water pumping (electricity) 0 3,809 GJ 

LBSI Livestock-Barnyard Societal Inputs 0 1,057,922 GJ 

LBSI LBSI—animal feed & straw bought from outside 0 947,109 GJ 

LBSI LBSI—energy spent in feedlots (fuel & 

electricity) 

0 110,812 GJ 

     
LBS Livestock-Barnyard Services 25,299 36,997 GJ 

LBS LBS—manure 22,313 36,997 GJ 

LBS LBS—draft power 2,986 0 GJ 

     

LBW Livestock-Barnyard Waste 0 256,502 GJ 

FW Farmland Waste 0 11,150 GJ 

Table 1.Biophysiscal Subsystems and Energy flows of farming systems in the Catalan 418 

case study c.1860 and in 1999; *AWU: full-time Agricultural Working Units a year 419 

Source: our own, taken from Tello et al. (2015) and Marco et al. (forthcoming).  420 

 421 

Finally, Table 2 summarizes three different energy returns on different types of 422 

energy inputs invested, FEROI, EFEROI and IFEROI: 423 

EROIs definition  c.1860 1999 

External Final EROI 

(EFEROI) 
 External Final EROI = 

𝐹𝑃

𝐸𝐼
 11.23 0.25 

Internal Final EROI 

(IFEROI) 
 Internal Final EROI = 

𝐹𝑃

𝐵𝑅
   1.13 2.20 

Final EROI  

(FEROI) 
  Final EROI = 

𝐹𝑃

𝐸𝐼+𝐵𝑅
   1.03 0.22 

Table 2.Three different EROIs obtained from Table 2.  424 

Source: our own, taken from Tello et al. (2015) and Marco et al. (forthcoming). 425 

 426 

EFEROI (which is similar to the most common indicator used from an input-output 427 

approach at societal level) and also FEROI (which includes internal biomass reuses as a 428 

relevant cost borne by farm-operators) exhibit greater values in the traditional organic 429 

farm system c.1860 than in the industrial one of 1999. This is not at all strange given the 430 



5.3-fold increase of External Inputs (EI) consumed from 1860 to 1999, while the final 431 

produce obtained only grew 16% in absolute terms (Table 1).  432 

By far the greatest share of this injection of external energy carriers in this case study 433 

was the animal feed imported by industrial feedlots (68% of EI in 1999), to which the 434 

electricity consumed in these feedlots (8%) has to be added, and the energy embodied in 435 

tractors and tilling machinery (12%). Notice that the direct and indirect energy content 436 

of this imported animal feed (947,109 GJ in 1999) exceeds the yearly photosynthetic 437 

NPP that takes place within the study area (788,427 GJ a year). Conversely, a LEIT 438 

strategy explains the higher EFEROI c.1860 (11.23) compared with 1999 (0.25).  439 

While the trends found in EFEROI and FEROI are in line with what is expected 440 

(Schroll, 1994; Dalgaard et al., 2001), the picture changes when the biomass reused is 441 

taken alone as input in IFEROI. In our Catalan example, IFEROI increased from 1.13 442 

c.1860 to 2.20 in 1999. What is the meaning of the opposite directionality of change in 443 

this case? The comparatively lower IFEROI in the former date was a result of the large 444 

investment made in BR, whose disaggregate composition can be seen in Table 3: 445 

 446 

 

Biomass 

Reused 

(BR): 

237,165 GJ 

(100%) 

Farmland Biomass 

Reused (FBR): 

142,154 GJ (60%) 

Seeds: 3,898 GJ (2%) 

Fresh biomass buried into cropland: 95,689 (40%) 

Biomass burnt & buried (‘hormigueros’): 42,567 GJ (18%) 

Livestock-Barnyard 

Biomass Reused 

(LBBR): 

95,011 GJ 

(40%) 

Feed: 8,449 GJ (4%) 

Fodder: 12,418 GJ (5%) 

Crop by-products used to feed livestock: 47,904 GJ (20%)  

Livestock grazing in natural pastures: 13,676 GJ (6%) 

Straw used in stall bedding: 8,209 GJ (3%)  

Other from woodland & scrub: 4,355 GJ (2%) 

Table 3.Disaggregation of biomass reused (BR) flows in the Catalan case study c.1860. 447 

Numbers are in GJ, percentages into parentheses are over total BR flows.  448 

Source: our own, taken from Tello et al. (2015) and Marco et al. (forthcoming). 449 



Conversely, the greater IFEROI of the industrial farming in 1999 was a result not 450 

only of the greater Final Produce but of the comparatively lower effort in the internal 451 

circulation of BR. We will go deeper into this question in the next section. 452 

 453 

3.3.Plotting the EROIs of the study area c.1860 and in 1999 in the possibility 454 

surface 455 

Fig. 7 shows the energy profile of the organic farm system existing in the Vallès 456 

County study area c.1860 compared with the industrial one in 1999. It depicts the data 457 

as points in the conic surface of all the possible values that the relationship of Final 458 

EROI with EFEROI and IFEROI can take: 459 

 460 

 461 

Fig. 7.Plotting Final EROI, EFEROI and IFEROI attained by the farm system of the 462 

Catalan study area c.1860 (in red) and in 1999 (in green) in the possibility surface 463 

Source: our own. 464 

 465 

The two points express in visual terms the different energy profiles adopted by an 466 

organic mixed farming system versus an industrialized agriculture mainly oriented to 467 

supply livestock breeding in feedlots. Circa 1860 the internal energy return was low (the 468 

red point is close to the IFEROI=0 axis) due to the high amounts of BR invested (Table 469 



3). However, this low IFEROI was compensated up to a point by a much higher external 470 

return (the point is located quite some distance away from the EFEROI=0 axis) thanks 471 

to the strategy of saving external inputs which whenever possible were replaced by 472 

biomass reuses. In 1999 EFEROI was extremely low and this was compensated only to 473 

some (minor) extent by reducing the internal flows of BR.  474 

  475 

3.4.Assessing improvement pathways of Final EROI c.1860 and in 1999  476 

 477 

Fig. 8.Gradient vectors for optimal improvements of Final EROI in the Catalan study 478 

area c.1860 (red) and 1999 (green) according to the possibility surface of  
𝐸𝐼

𝐵𝑅
 variation 479 

Source: our own 480 

 481 

In the Vallès case study the ratio 
𝐸𝐼

𝐵𝑅
 was 0.1 c.1860 and 8.8 in 1999. Hence, internal 482 

biomass reuses and external inflows were far from parity in both periods of time, a 483 

situation that offered room for improving Final EROI by changing the underlying 484 

energy fund-flow profiles—as we have seen in section 2.4. The gradient vector c.1860 485 

(red arrow in Fig. 8) indicates that a small increase of IFEROI would have resulted in a 486 

large increase of FEROI, given that the slope of the isoparametric curve representing its 487 



𝐹𝑃

𝐵𝑅
 return is much higher at this point than the slope of the isoparametric curve 488 

representing its 
𝐹𝑃

𝐸𝐼
 return, which is close to zero. This means that the internal return had 489 

a much higher impact because external inputs were then comparatively small. The 490 

opposite is true with the gradient vector of FEROI improvement in 1999. The 491 

underlying meaning of these results will be discussed in section four. 492 

 493 

3.5.The role of EI and BR variations in the shift of Final EROI from1860 to 1999 494 

We have seen that Final EROI shifted from 1.03 c.1860 to 0.22 in 1999 in our 495 

Catalan case study. Now we want to assess the role played by the variation of BR and 496 

EI, and their corresponding partial energy returns in terms of FP, in the following 497 

variation experienced in Final EROI: (
0.22−1.03

1.03
) ×  100 =  −78.64%. 498 

Applying equation (2) we obtain that the variation of −0.80 EROI points (or 499 

−78.64%) experienced between Final EROI1860 and Final EROI1999 is explained by a 500 

sharp increase from EI1860 to EI1999, which is equal to −0.93.
6
 This represents 115.6% of 501 

the total variation. However, the effect driven by the variation of EI was counteracted 502 

by the decrease from BR1860 to BR1999, which is equal to 0.13 and represents −15.6% of 503 

the total decomposed variation. The addition of both opposite effects explains the whole 504 

variation experienced, which is −0.93 + 0.13 = −0.80 FEROI points.  505 

The result reveals that the decrease in Final EROI between 1860 and 1999 was 506 

mainly due to a big increase in EI, coming directly from fossil fuels or indirectly 507 

through feed imports for livestock breeding in feedlots, which caused EFEROI to 508 

decline significantly—recall that EI1999 was 1.6 times larger than the total NPP in the 509 

study area! However, the effect was counteracted to some extent by a parallel reduction 510 

                                                 
6
 Notice that in this kind of decomposition analysis negative or positive results only mean that the 

corresponding partial variation has moved in the same direction, thus reinforcing it, when the sign is the 

same as the variation being decomposed. Inverted signs exert a counterbalancing effect. 



in internal flows of BR and the ensuing increase of IFEROI. Had such a 511 

counterbalancing effect not taken place, the drop in FEROI would have been even 512 

higher. This brings to light an important feature: The grater the change from circularity 513 

to linearity in the energy flows going through an agroecosystem, the more important 514 

this decomposition analysis becomes, as it will be discussed in the following section. 515 

 516 

4. Discussion: Contrasting energy profiles of organic and industrial farm systems  517 

 518 

The broader and cyclical energy analysis of farm systems proposed in this article 519 

enables us to reveal several underlying agroecological features, and some possibilities 520 

for improving sustainable energy throughputs, that are concealed in a simpler linear 521 

input-output accountancy with a single EROI. It also helps us to highlight the 522 

contrasting energy patterns between organic and industrial farm managements in regard 523 

to the renewal of basic funds and services of agroecosystems.    524 

 525 

4.1.Why IFEROI grew from c.1860 to 1999, while EFEROI and FEROI decreased? 526 

At the end of section 3.2 we wondered about the meaning of the opposite 527 

directionality of the change observed from c.1860 to 1999 in IFEROI, compared with 528 

the ones registered in EFEROI and FEROI. The answer requires taking into account the 529 

different meaning of IFEROI in regard with EFEROI, as a result of the looping 530 

character of Biomass Reuse (BR) flows which come from farmland and cycle again back 531 

to it, either directly (e.g. green manure) or indirectly through the bio-conversions that 532 

take place in the barnyard-livestock subsystem (e.g. manure and animal draught power). 533 

Being a flowing loop, the IFEROI rate (
𝐹𝑃

𝐵𝑅
) inevitably acquires a double meaning. We 534 

can interpret it as the partial yield obtained per unit of internal BR spent, or the other 535 



way round: The internal investment made in keeping up the underlying funds of the 536 

agroecosystem per unit of Final Product extracted (
𝐵𝑅

𝐹𝑃
).  537 

Notice that in a context of self-reliance, where EI would be minimal, IFEROI would 538 

become a straightforward measure of sustainable yield given that the reproduction of the 539 

agroecosystem would almost only depend on the proportion of farmland product 540 

detracted from farmers’ consumption and then invested in the renewal of its basic funds. 541 

The role BR plays for a sustainable reproduction of the agroecosystem, and the ensuing 542 

meaning of IFEROI, is kept to a large degree even when EI flow increases in farm 543 

systems far from a local self-reliance. According to this, the higher IFEROI found in 544 

1999 can be interpreted as a result of having given up this investment on the 545 

agroecosystem sustainability, while the lower one c.1860 was a result of the high 546 

reliance on BR flows in a traditional organic farming which tried to sustain the 547 

agroecosystem’s reproduction by closing at local level as much biophysical cycles as 548 

possible. 549 

Therefore, we consider that a high BR investment becomes a hallmark of traditional 550 

organic farm systems which took over higher sustainability costs currently given up by 551 

industrial farm systems (Guzmán and Gonzalez de Molina, 2009; Guzmán et al., 2011; 552 

Giampietro et al., 2013). According to this, the energy efficiency as measured by Final 553 

EROI from a farm-operator viewpoint could be enhanced either by increasing the Final 554 

Produce per unit of the Total Inputs Consumed (TIC) or by reducing the inputs spent 555 

per unit of output. Given that up to a point Biomass Reused (BR) and External Inputs 556 

(EI) can be partially substituted one another –although with relevant impacts in the 557 

underlying agroecological functioning—, there exist three possible farming strategies to 558 

increase Final EROI of a farm system: 1) technically searching for a higher complexity 559 

and organized information in the agroecosystem, in order to obtain greater output per 560 



unit of inputs consumed, whether internal or external, that allows increasing the joint 561 

energy efficiency of FEROI; 2) relying on internal BR and saving as much EI as 562 

possible, in order to reduce the external inputs consumed per unit of output following a 563 

LEIT strategy; and 3) reducing inputs consumed per unit of output through the opposite 564 

strategy of relying on EI and giving up internal BR. It is apparent that there has been a 565 

historical trend towards replacing internal biomass reuses by external inputs throughout 566 

the socioecological transition from traditional organic to industrialized farm systems. 567 

 568 

4.2.On the sustainability role of BR flows and their effect on landscape patterns 569 

We have seen that c.1860 the cultural landscape showed a higher diversity of land 570 

covers than at the end of the 20
th

 century (Fig 5). According to the landscape ecology 571 

metrics accounted in the same study area and periods by Marull et al. (2010, 572 

forthcoming b), the former patchy mosaics might have offered a greater number of 573 

habitats and ecotones than the more homogenous land cover existing at present, leading 574 

to a lesser associated biodiversity and a decrease in regulatory and supporting 575 

ecosystem services. Assuming this as true, could it be related with the abandonment of 576 

an integrated management of cropland, woodland and pasture with animal husbandry? If 577 

so, the decrease of BR in front of EI might be used as a proxy to capture these trends in 578 

the changing energy profiles of farm systems. 579 

We know that, for the moment, this is only a working hypothesis that requires other 580 

models and further evidences to be tested. According to it, higher amounts of biomass 581 

reuses would relate with more heterogeneous and complex landscapes as long as this BR 582 

constitutes a smooth and repeated intermediate disturbance (as opposite to climax 583 

community) that helps to maintain ecological functionality into moderate levels of 584 

ecological disturbance able to enhance farm-associated biodiversity (Tilman, 1994; 585 



Pierce, 2014; Tscharntke et al., 2005, 2012). On the contrary, relying on EI and getting 586 

rid of BR would have led to monocultures and linear chains of animal breeding in 587 

feedlots with more homogeneous land covers, thus reducing landscape complexity and 588 

lessening the number of habitats and species richness. Put it bluntly, an increasing 589 

dependence on external inputs might have gone hand in hand with biodiversity loss 590 

(Giampietro, 1997)—as many fragmentary but widespread evidences are showing, like 591 

the collapse of Europe’s farmland bird populations throughout the last thirty years 592 

(Donald et al., 2001; Inger et al., 2015). What is important here is to make apparent that 593 

our energy modelling of farm systems opens a workable way to study whether this 594 

hypothesis proves to be true or not, by using it as a starting point for a forthcoming 595 

Energy-Landscape Integrated Analysis (Marull et al., 2015 and forthcoming a, b). 596 

 597 

4.3.Scanning the composition of Biomass Reused c.1860 598 

As a very preliminary and indirect evidence of the above hypothetical assumptions, 599 

we can observe the disaggregate composition of the BR flow c.1860. Table 3 reveals 600 

that 58% was vegetal organic matter returned to the soil either fresh or burnt, 2% were 601 

seeds, and 40% was biomass reused in barnyards as feed, fodder, grass and crop by-602 

products eaten by livestock or straw used in stall bedding. The former was directly used 603 

to keep soil biodiversity and fertility, whereas the latter also contributed to soil fertility 604 

through manure, leading to high cropland and farmland diversity. The production of 605 

fodder and feed involved 14% of cropland area, while livestock was feed in pastures as 606 

well (7% of farmland area), or in the grass layers below open forests and other 607 

uncultivated land, thus helping to maintain agroforest mosaics—as long as there was 608 

neither overgrazing nor deforestation. Besides these direct contributions to belowground 609 

associated biodiversity and aboveground diversity of vegetal land cover there were 610 



others indirect, such as crop rotations, stubble grazing or fallow weed grazing, which 611 

required keeping vegetal hedgerows that in turn enhanced the mosaic pattern in arable 612 

land (see Fig. 2). 613 

By comparing Tables 1 and 3 we can observe that c.1860 this BR flows entailed a 614 

relevant share of the whole biophysical turnover taking place in the agroecosystem: 615 

237,165 GJ a year, equivalent to 30% of the actual NPP photosynthesized in the study 616 

area at that time. Driving this loop entailed a great cost for the farm-operators, either in 617 

energy or land terms (Guzmán and Gonzalez de Molina, 2009). 40% of this BR was 618 

devoted to livestock feeding and bedding in barnyards, and in order to minimize 619 

somewhat this high cost peasants had to keep a tightly integration of animal husbandry 620 

with cropland and uncultivated land management through a mixed farming. The key 621 

point here is that it was precisely this integrated land-use management, required to 622 

compensate for the high energy and land cost of livestock bioconversion, what led them 623 

to organize and maintain complex landscape mosaics (Krausmann, 2004; Cussó et al., 624 

2006a,b; Marull et al., 2010, 2015). 625 

Indeed, a significant amount of energy was lost in this livestock bioconversion: 626 

92,057 GJ a year, resulting of subtracting 2,954 GJ of Livestock-Barnyard Produce to 627 

the 95,011 GJ spent as animal feed, fodder, pasture and stall bedding. This means a 3% 628 

of energy return in the feed-food conversion into the Livestock-Barnyard subsystem. 629 

Yet, when the Livestock-Barnyard Services obtained as manure and draught power are 630 

added, we get a 30% energy return to the entire livestock bioconversion. Put in another 631 

way, this means that the overall energy yield of a multiple use of livestock in traditional 632 

mixed farming was comparable to the current efficiencies attained by internal 633 

combustion engines, and much higher than the actual 8-9% energy efficiency of motor 634 



vehicles when the embodied energy required by their manufacturing, maintenance and 635 

delivery processes are taken into account (Ayres et al., 2009:124-125). 636 

These are important results that emphasize the multipurpose character of the 637 

traditional organic ways of keeping animal husbandry integrated in a mixed farming. 638 

Crop by-products reused to feed domestic animals amounted to 47,904 GJ a year, 55% 639 

of the whole livestock intake, whereas rough grazing in pastureland and woods covered 640 

21% (18,031 GJ), thus reducing the need to grow feed and fodder in cropland to only 641 

24% (20,867 GJ). So, using pastures and reusing by-products had helped to lessen to 642 

some extent the competition between animal feed and human food in cropland 643 

allocation. All these features make apparent how important these BR flows had been in 644 

past organic farm systems, and raises the question about the role that giving up them has 645 

entailed not only for the energy profiles and throughputs of industrial agriculture, but of 646 

current landscape patterns and agroecological processes as well.   647 

Although accounting for the energy flows that link different land uses one another 648 

can only hint that an integrated mixed farming with livestock husbandry translates into 649 

more heterogeneous land cover, it helps to raise an important issue which has not yet 650 

been studied as it deserves. Farmers transform natural ecosystems into agroecosystems 651 

through the biophysical energy flows driven by their labour. Given that these energy 652 

flows are spatially distributed following an intended pattern, according to the know-how 653 

of farmers, we can understand cultural landscapes as an ‘imprint’ they carry out in a 654 

land matrix. In other words, cultural landscapes can be studied as the spatial imprint of a 655 

socio-metabolic profile of energy flows taking place in agroecosystems. This is the 656 

rationale behind our forthcoming Energy-Landscape Integrated Analysis (Tello et al., 657 

2006; Marull et al., 2010).  658 



This approach fits with a basic assumption adopted in Landscape Ecology, according 659 

to which there is a relationship between spatial patterns and ecological processes where 660 

biodiversity is sustained (Turner, 1989; Lindenmayer and Fisher, 2006). Building on 661 

this, our socio-metabolic approach to the energy profiles of farm systems opens a bridge 662 

between agroecology (Gliessman, 1998; Guzmán and González de Molina, 2015) and 663 

landscape ecology (Forman, 1995) that may allow testing these hypothesis in future.  664 

 665 

4.4.How could Final EROI have been improved c.1860? A counterfactual discussion 666 

We have seen in the results shown in section 3.3 that, due to the strong effort devoted 667 

to increase BR so as to minimize EI following a LEIT strategy, the optimal direction to 668 

increase FEROI would have required a drastic increase in IFEROI. In turn, this could 669 

have been achieved either by increasing FP per unit of BR through technical 670 

improvements, or getting the 
𝐸𝐼

𝐵𝑅
 ratio greater than the 0.1 that existed c.1860, or both.  671 

The first strategy would have entailed achieving further improvements in the integrated 672 

land-use management with animal husbandry, e.g. by increasing livestock breeding and 673 

thus having more available manure per unit of land, or by reducing losses in manure 674 

heaps and other livestock-barnyard services.  675 

To what extent can this strategy be considered feasible in the Catalan Vallès County 676 

c.1860? We know that this highly intensive farm system heavily relied on BR. In order 677 

to keep up soil fertility, farmers had to feed livestock by growing fodder crops and 678 

reusing a large fraction of agricultural by-products, sowing green manures, and burning 679 

or burying some amount of forest and scrub biomass on cropland (Cussó et al., 2006a, 680 

2006b; Garrabou et al., 2010; Tello et al., 2012). Land-use intensification, mainly 681 

driven by vine-growing specialization (Badia-Miró and Tello, 2014), seems to have 682 

increased agroecological stress leading this preindustrial farm system towards lower 683 



energy returns—albeit nearly to one (Galán et al., forthcoming; Marco et al., 684 

forthcoming). Perhaps a lower population density and land-use intensity would have 685 

also helped to get higher IFEROI and Final EROI, thanks to a reversal of the well-686 

known sequence towards a growing farming activity on the available land that up to a 687 

point gives way to diminishing returns (Boserup, 2005; Fischer-Kowalski et al., 2014). 688 

However, adopting more extensive land uses would have entailed a more unequal land 689 

distribution and forcing the unemployed rural population to emigrate (Badia-Miró and 690 

Tello, 2014). 691 

The second strategy consisted in increasing the 
𝐸𝐼

𝐵𝑅
 ratio by reducing the amount of 692 

BR or increasing EI per unit of final product obtained, while keeping high land-use 693 

intensity. In practice, this would have meant either a greater consumption of industrial 694 

fertilizers (that is, increasing EI) or a reduction of organic soil fertilization (that is, 695 

decreasing BR) by mining soils. Whereas the first option considered would rely on 696 

improving agroecological management, and the second would entail expelling labourers 697 

and smallholders from the land, the latter would led to agroecological unsustainable 698 

paths.
7
 The dilemma illustrates the difficult choices many past organic farm systems 699 

faced just before the onset of agricultural industrialization, when the pressure to 700 

increase output arising from local population density and urban markets grew. This 701 

issue deserves a comparative analysis about the trade-offs and limits between land-use 702 

intensity and sustainability of farm systems (Erb 2012; Krausmann et al. 2012; 703 

Tscharntke et al. 2012; Haberl, 2014). 704 

 705 

                                                 
7
 In our first energy balance of the whole Vallès County we get a Final EROI of 1.41 c.1870 (Cussó et al, 

2006a). Then, in the five municipalities of our study area we obtained 1.67 c.1860 (Cussó et al, 2006b). 

After a better assessment of the fertilizing methods applied (Olarieta et al., 2011; Tello et al., 2012), it 

dropped to 1.23 (Tello and Galán, 2013). Now we have obtained a Final EROI c.1860 of 1.03. It seems 

likely that the actual energy yields of this highly intensive organic agriculture led to some degree of soil 

mining and deforestation (Galán, 2015). 



4.5.Plotting the energy profiles of organic and industrial farm systems in the 706 

possibility surface 707 

We have seen in the above section 3.5. how getting rid of BR had played a role, 708 

though smaller than the huge increase of EI together with a moderate rise in FP, in the 709 

shift experienced by the energy profile of the industrial farm system in 1999 towards 710 

higher IFEROI combined with much lower EFEROI and FEROI. We have also 711 

discussed that the LEIT strategy of the organic farm system c.1860 fits well with an 712 

agroecological approach for sustainable agriculture at present (Gliessman 1998; Tripp 713 

2008). This is so because in a low-input agriculture, where the harvested flow of 714 

biomass remains not that far from the range of natural turnover, farm activities interfere 715 

only to a limited extent with the system of controls regulating matter and energy flows 716 

in ecosystems (Giampietro 1997:158).  717 

The opposite strategy adopted by industrialized farm systems of the studied area, 718 

based on ever greater external inputs strongly linked to livestock breeding in feedlots, 719 

has led to increasingly unsustainable scenarios—e.g., the reduction of organic matter 720 

content of soils, over-fertilization and polluting emissions of the intensive cropping 721 

performed in flat soils, and the biodiversity loss ensuing the vanishing of complex 722 

landscape mosaics as a result of forest encroachment in abandoned steeper lands (Otero 723 

et al., 2015). 724 

Gathering more data on FEROI, IFEROI and EFEROI from a broad range of farming 725 

systems in different regions and periods of time would allow plotting their energy 726 

profiles into three-dimensional graphs like our Fig. 7. Then cross-section and historical 727 

analysis can be done, in order to test whether organic and industrialized farm systems 728 

tend to appear in similar regions of this possibility surface, which would reveal different 729 

energy profiles of agroecosystems. It would also allow identifying the historical paths 730 



followed when farm systems evolved from one profile to another. And, finally, it would 731 

help to test whether or not organic and industrial farm systems tend to cluster in a 732 

specific pair of opposite ‘attractor situations’. By these we mean a set of links 733 

established between socioeconomic drivers (e.g. the structure of relative prices of 734 

factors and goods in the markets reinforced by the prevailing landownership or 735 

institutional settings), and the energy profiles and functioning of agroecosystems, that 736 

become more likely than others. Societies can overcome these attractor situations by 737 

moving to other energy profiles and performances, but only by changing the underlying 738 

set of linkages between agroecological functioning and socioeconomic drivers. 739 

The existence of such attractor situations has been suggested by Giampietro (1997). 740 

Once industrial agricultural systems start relying on external inputs coming from fossil 741 

fuels in search of greater labour and land productivity, they also tend to engage in 742 

monocultures and proportionally reduce internal biomass reuses. This entails a 743 

reduction in agroecosystem complexity that undermines the regulatory and supporting 744 

services provided by farm-associated biodiversity. This in turn requires replacing them 745 

by other artificial controls, such as pesticides and mechanical work that increase again 746 

the amount of external inputs. This feedback drives the energy profile of industrialized 747 

farm systems towards a high-input combination of lower EFEROIs only partially 748 

compensated by higher IFEROIs, giving way to a big loss in Final EROIs—as seen in 749 

our Catalan example. All this sounds very familiar to anyone aware of the challenges 750 

and opportunities that agriculture now faces worldwide. Through clustering statistics 751 

applied to our decomposition analysis of agricultural energy profiles we can test 752 

whether this working hypothesis is true or not. 753 

 754 

 755 



5. Concluding remarks and further research 756 

 757 

We presented a method to perform energy analysis of farm systems from a farm-758 

operator standpoint at landscape level that aims to capture how the energy flows driven 759 

by farming affect some agroecological funds that provide vital ecosystem services, such 760 

as soil fertility and farm-associated biodiversity. This approach does not call into 761 

question other forms of accounting for energy balances of agricultural systems 762 

addressed from other perspectives and with other system boundaries, but aims to 763 

supplement them. Each site-specific entryway gives rise to different energy accounts 764 

because of the multidimensional and multi-scalar character of the sociometabolic 765 

interaction of human societies with nature. Not only the actors located in different 766 

places perceive the energy flowing differently, the system as such actually has different 767 

energy performance in each of them (Giampietro, 2004). Far for having to choose a 768 

right one and discard the others as wrong, we need to combine all of them in a multi-769 

scalar integrated analysis like the one offered by the MuSIASEM school (Giampietro et 770 

al., 2009, 2013). 771 

A main point of our farm-operator energy analysis at landscape level is to highlight 772 

the cyclical character and the agroecological role performed by the energy flows of 773 

biomass reused, which we consider an investment in keeping up the underlying funds. 774 

This assumption leads us to use several EROIs instead of a single one, and also to relate 775 

one another in order to draw more complex energy profiles of farm systems. The results 776 

will be used in a forthcoming Energy-Landscape Integrated Analysis addressed to 777 

observe how energy throughputs affect biodiversity maintenance in agroecosystems 778 

(Marull et al., 2015 and forthcoming a, b). In the meantime we adopt as a working 779 

hypothesis that a relevant proportion of biomass reused is a hallmark of organic farm 780 



systems, which tend to spare external inputs by closing their internal cycles in a way 781 

that helps to enhance soil fertility and the associated biodiversity of agroecosystems— 782 

together with leaving a relevant share of unharvested phytomass at the mercy of other 783 

non-domesticated species (Guzmán and González de Molina, 2015). 784 

The decomposition analysis performed of Final EROI (FEROI) into internal 785 

(IFEROI) and external (EFEROI) returns allows analysing these energy profiles within 786 

a range of possible improvement scenarios, in order to disentangle their respective role 787 

in any shift experienced by these energy throughputs. We deem that this approach 788 

becomes a very revealing tool in order to conceive better agricultural farm 789 

managements, public policies and consumer preferences in a world that faces a 790 

worrying crossroads for food security arising from decreasing EROI in oil extraction 791 

and climate change (Mulder and Hagens, 2008; Hall et al., 2009; Hall, 2011; Deng and 792 

Tynan, 2011; Kessides and Wade, 2011; Pracha and Volk, 2011; Manno, 2011; Arizpe 793 

et al., 2011; Murphy et al., 2011; Scheidel and Sorman, 2012; Giampietro et al., 2012, 794 

2013). It can also be used to gain a better understanding of the sociometabolic transition 795 

from past traditional organic to industrial farm systems, and to acquire useful 796 

knowledge for developing more sustainable agricultures in future (Fischer-Kowalski 797 

and Haberl, 2007; Smil, 2010; González de Molina and Toledo, 2014). 798 

 799 

Appendix: Assessing the effect of the corresponding variation in EI and BR on any 800 

shift experienced in Final EROI through the partial derivatives at any point of 801 

equation (1) 802 

 803 

In order to study the effect of variations of EI and BR in Final EROI, we consider the 804 

following function:  805 



        ℝ2      →         ℝ3           → ℝ

(𝐸𝐼, 𝐵𝑅)    ↦ (𝐸𝐼, 𝐵𝑅, 𝐹𝑃)   ↦ 𝐹𝑖𝑛𝑎𝑙 𝐸𝑅𝑂𝐼 =
𝐹𝑃

𝐸𝐼 + 𝐵𝑅

 

Using a simpler notation for the variables, the situation is written: 806 

   ℝ2      →      ℝ3       → ℝ

(𝑥, 𝑦)    ↦ (𝑥, 𝑦, 𝑧)   ↦ 𝑤 =
z

𝑥 + 𝑦
 

where x = External Inputs, y = Biomass Reused, z = Final Produce, and w = Final 807 

EROI. 808 

According to the chain rule, we know that 809 

𝜕𝑤

𝜕𝑥
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑥
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑥
+
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑥
 =

𝜕𝑤

𝜕𝑥
+ 0 +

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑥
  =

−𝑧

(𝑥+𝑦)2
+

1

𝑥+𝑦

𝜕𝑧

𝜕𝑥
  =

−𝑧+(𝑥+𝑦)
𝜕𝑧

𝜕𝑥

(𝑥+𝑦)2
. 810 

Analogously, 811 

𝜕𝑤

𝜕𝑦
 =

−𝑧+(𝑥+𝑦)
𝜕𝑧

𝜕𝑥

(𝑥+𝑦)2
. 812 

Consequently, the effects of x and y on the variation of w are: 813 

Effect of 𝑥 =
−𝑧 + (𝑥 + 𝑦)

𝜕𝑧
𝜕𝑥

(𝑥 + 𝑦)2
∆𝑥,                   Effect of 𝑦 =

−𝑧 + (𝑥 + 𝑦)
𝜕𝑧
𝜕𝑦

(𝑥 + 𝑦)2
∆𝑦. 

Since the function FP = h(EI, BR) is unknown, we need to estimate the value of the 814 

partial derivatives of z with respect to x and y. The only approximation possible, from 815 

the available data, is trivial: 816 

𝜕𝑧

𝜕𝑥
≈

∆𝑧

∆𝑥
,
𝜕𝑧

𝜕𝑦
≈

∆𝑧

∆𝑦 
. 817 

Then, given two situations 𝑠1 = (𝑥1, 𝑦1, 𝑧1, 𝑤1) and 𝑠2 = (𝑥2, 𝑦2, 𝑧2, 𝑤1), we get: 818 

∆𝑤 = 𝑤2 −𝑤1 =
𝑧2

𝑥2 + 𝑦2
−

𝑧1
𝑥1 + 𝑦1

= 
𝑧2(𝑥1 + 𝑦1) − 𝑧1(𝑥2 + 𝑦2)

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)
= 

=
𝑧2𝑥1 + 𝑧2𝑦1 − 𝑧1𝑥2 − 𝑧1𝑦2

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)
= 



=

{
 
 

 
 𝑧2𝑥1 + (−𝑧2𝑥2 + 𝑧2𝑥2) + 𝑧2𝑦1 + (−𝑧2𝑦2 + 𝑧2𝑦2) − 𝑧1𝑥2 − 𝑧1𝑦2

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)

𝑧2𝑥1 + (−𝑧1𝑥1 + 𝑧1𝑥1) + 𝑧2𝑦1 + (−𝑧1𝑦1 + 𝑧1𝑦1) − 𝑧1𝑥2 − 𝑧1𝑦2
(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)

 

   =

{
 
 

 
 (𝑧2𝑥1 − 𝑧2𝑥2) + (𝑧2𝑦1 − 𝑧2𝑦2) + (𝑧2𝑥2 − 𝑧1𝑥2) + (𝑧2𝑦2 − 𝑧1𝑦2)

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)

(𝑧1𝑥1 − 𝑧1𝑥2) + (𝑧1𝑦1 − 𝑧1𝑦2) + (𝑧2𝑥1 − 𝑧1𝑥1) + (𝑧2𝑦1 − 𝑧1𝑦1)

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)

 

   =

{
 
 

 
 −𝑧2(∆𝑥 + ∆𝑦) + (𝑥2 + 𝑦2)∆𝑧

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)
= 𝐴

−𝑧1(∆𝑥 + ∆𝑦) + (𝑥1 + 𝑦1)∆𝑧

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)
= 𝐵

 

We can hence write: 819 

 ∆𝑤 =  
1

2
 𝐴 +

1

2
 𝐵 =

−
𝑧1 + 𝑧2
2

(∆𝑥 + ∆𝑦) +
𝑥1 + 𝑥2 + 𝑦1 + 𝑦2

2  ∆𝑧

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)
= 

   =
−
𝑧1 + 𝑧2
2 +

𝑥1 + 𝑥2 + 𝑦1 + 𝑦2
4

∆𝑧
∆𝑥

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)
∆𝑥 + 

−
𝑧1 + 𝑧2
2

+
𝑥1 + 𝑥2 + 𝑦1 + 𝑦2

4
∆𝑧
∆𝑦

(𝑥1 + 𝑦1)(𝑥2 + 𝑦2)
∆𝑦  

Therefore, the effects of x and y on the variation of w are: 820 

Effect of 𝑥 =
−
𝑧1+𝑧2
2

 ∆𝑥+
𝑥1+𝑥2+𝑦1+𝑦2

4
 ∆𝑧

(𝑥1+𝑦1)(𝑥2+𝑦2)
 and 821 

Effect of 𝑦 =
−
𝑧1+𝑧2
2

 ∆𝑦+
𝑥1+𝑥2+𝑦1+𝑦2

4
 ∆𝑧

(𝑥1+𝑦1)(𝑥2+𝑦2)
. 822 

That is, 823 

Effect of variation in 𝐸𝐼 =
−
𝐹𝑃1+𝐹𝑃2

2
 ∆𝐸𝐼+ 

𝐸𝐼1+ 𝐸𝐼2 + 𝐵𝑅1+𝐵𝑅2
4

 ∆𝐹𝑃

(𝐸𝐼1+𝐵𝑅1)(𝐸𝐼2+𝐵𝑅2)
 and 824 

Effect of variation in 𝐵𝑅 =
−
𝐹𝑃1+𝐹𝑃2

2
 ∆𝐵𝑅+

𝐸𝐼1+ 𝐸𝐼2 + 𝐵𝑅1+𝐵𝑅2
4

 ∆𝐹𝑃

(𝐸𝐼1+𝐵𝑅1)(𝐸𝐼2+𝐵𝑅2)
                                       825 
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