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regulated in obese individuals. This review explores the physiological functions and molecular actions of
bioactive lipids biosynthesized in adipose tissue including sphingolipids and phospholipids, and in
particular fatty acids derived from phospholipids of the cell membrane. Special emphasis is given to
polyunsaturated fatty acids of the omega-6 and omega-3 families and their conversion to bioactive lipid
Adipose tissue mediators through the cyclooxygenase and lipoxygenase pathways. The participation of omega-3-
Lipid mediators derived lipid autacoids in the resolution of adipose tissue inflammation and in the prevention of
Omega-6 and omega-3 fatty acids obesity-associated hepatic complications is also thoroughly discussed.
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1. Introduction

White adipose tissue is now well recognized as a highly active
metabolic tissue and an important endocrine organ that plays a
major role in balancing the homeostasis of our body. Unfortunately,
this balance is lost in obese individuals in whom the excessive
expansion of adipose tissue gives rise to a chronic state of “low-
grade” inflammation. This unresolved inflammation of adipose
tissue in obesity is deleterious and leads to many pathological
sequelae including insulin resistance and type 2 diabetes, hyper-
tension, dyslipidemia and non-alcoholic fatty liver disease (NAFLD).

Bioactive lipids play a major role in the inflammatory process.
Among the different lipid mediators, polyunsaturated fatty acids
and especially the essential omega-6 arachidonic acid are the
prime precursors for the biosynthesis of inflammatory mediators,
generically known as eicosanoids (from the Greek
eicosa = twenty; for 20-carbon fatty acid derivatives). Arachidonic
acid is primarily found esterified in the 2-acyl position of phos-
pholipids in all mammalian cell membranes. The intracellular
levels of unesterified arachidonic acid are remarkably low and in
its free form this fatty acid is readily available as a substrate for the
intracellular biosynthesis of eicosanoids. With the exception of
lipoxins, the majority of eicosanoids have pro-inflammatory
properties. In contrast, another family of essential poly-
unsaturated fatty acids, the omega-3 family, is linked to the
biosynthesis of lipid mediators with anti-inflammatory properties.
Among the different lipid mediators generated from the omega-3
fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA), resolvins, protectins and maresins have attracted much
attention in recent years because they act as 'braking signals' of
the persistent vicious cycle leading to unremitting inflammation.
An important aspect of these endogenous omega-3-derived lipid
autacoids is their critical role in the dynamic resolution of tissue
inflammation.

The aim of this review is to highlight the role of bioactive lipids
as key protagonists of the intracellular and intercellular commu-
nication networks in white adipose tissue (WAT). Special emphasis
is placed on the novel opportunities offered by omega-3-derived
lipid mediators to prevent the “low-grade” state of mild inflam-
mation present in adipose tissue of obese individuals. This review
also covers different aspects of adipose tissue physiology and
pathophysiology, including the metabolic consequences of adipose
tissue expansion in obese subjects, the structural and storage lipid
composition of adipose tissue and a detailed enumeration of the
principal and most common bioactive lipids present in adipose
tissue and their biosynthesis and actions on adipocytes and other
insulin-sensitive cells.

2. Expansion of adipose tissue in obesity: metabolic
consequences

WAT is an anatomical term for loose connective tissue
composed of adipocytes or fat cells. Adipocytes are nucleated cells
comprising a characteristic unilocular lipid droplet mainly

composed of triglycerides (TAG) and cholesterol esters, which
occupy most of the cell, and a thin rim of cytoplasm displaced to the
periphery (Redinger, 2009). The physical adaptability and the
storage capacity of adipocytes are key components of their func-
tion. Indeed, during times in which energy intake is higher than the
metabolic demand, adipocytes can expand nearly 1000-fold in
volume and 10-fold in diameter in order to store the excess of fuel
as TAG (Redinger, 2009). In contrast, in periods of food restriction or
in periods demanding more energy expenditure, adipose tissue
serves, via lipolysis, as the major source of energy. Under starving
conditions, lipolysis is an essential mechanism whereby rate-
limiting enzymes such as hormone-sensitive lipase (HSL) and
monoacylglycerol lipase (MAGL) catalyze the hydrolysis of TAG to
release free fatty acids (FFA) into the circulation (Carmen and
Victor, 2006). Circulating FFA are subsequently taken up via the
fatty acid binding protein (FABP) and fatty acid translocase (FAT/
CD36) by metabolically active and insulin-sensitive tissues (pri-
marily skeletal muscle and liver). These tissues use FFA as sub-
strates for the generation of the high-energy nucleotide adenosine
triphosphate (ATP) (Redinger, 2009).

The expansion of WAT occurring in obese individuals leads to
prevailing high levels of hypoxia and chronic inflammation in this
tissue. This inflammation is described as “metainflammation” and
is characterized by a “low-grade”, “long-term” inflammatory res
ponse triggered by nutrients and metabolic surplus (Hotamis
ligil, 2006). It involves the rise in pro-inflammatory cytokines (i.e.
tumor necrosis factor-o. (TNF-a.), interleukin (IL)-6, IL-1, monocyte
chemoattractant protein-1 (MCP-1)) and adipokines (i.e. leptin and
resistin) (Ouchi et al, 2011). In parallel, a reduction in anti-
inflammatory and insulin-sensitizing adipokine adiponectin sig-
nals the onset of metabolic dysfunction in obese individuals (Ouchi
et al., 2011). Among the metabolic consequences of this persistent
state of inflammation insulin resistance leading to type-2 diabetes
and hepatic steatosis leading to NAFLD are the most clinically
relevant (Hotamisligil, 2006; Ouchi et al., 2011).

2.1. Insulin resistance and type 2 diabetes

Insulin resistance is one of the most important sequelae of
obesity. Insulin resistance is defined as a reduced response of target
tissues, such as the skeletal muscle, liver, and adipose tissue, to
insulin, compared with subjects with normal glucose tolerance
without a family history of diabetes (DeFronzo and Tripathy, 2009).
Although skeletal muscle is the predominant site of insulin-
mediated glucose uptake in the postprandial state, adipose tissue
plays a major role in the development of peripheral insulin resis-
tance. In fact, in obese subjects, the degree of insulin resistance is
directly correlated with the serum levels of pro-inflammatory
adipokines (i.e. TNFa, IL-6, and MCP-1) (Ouchi et al., 2011; de
Luca and Olefsky, 2008). In parallel to the heightened secretion of
inflammatory adipokines, there is an activation of the c-jun-N-
terminal kinase (JNK) and inhibitor of k kinase (IKK) pathways and
their downstream signaling cascades by stress sensors through
classical receptor-mediated mechanisms (Shoelson et al., 2006).
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JNK and IKK activation in turn induces insulin resistance by dis-
rupting tyrosine phosphorylation of insulin receptor substrate-1
(IRS-1), a protein that connects the insulin receptor to the phos-
phoinositide 3-kinase (PI3K) signaling cascade (DeFronzo and
Tripathy, 2009). In addition, the increased release of FFA by obese
adipose tissue is a major determinant of impaired insulin-
stimulated glucose uptake into muscle (Ebbert and Jensen, 2013).

2.2. Hepatic steatosis and NAFLD

Dysregulated adipose tissue function also has negative conse-
quences in the liver. In fact, adipose tissue and the liver have im-
mediate access to a vast network of blood vessels that implicate
direct connection between these two organs. This connection is
exemplified by the observation that NAFLD is one of the major
metabolic consequences of obesity (Angulo, 2002; Sanyal, 2005).
NAFLD is a condition ranging from simple accumulation of TAG in
the cytoplasm of hepatocytes (steatosis or fatty liver) to steatosis
combined with inflammation (steatohepatitis or NASH) (Angulo,
2002; Sanyal, 2005). Although generally asymptomatic, hepatic
steatosis is no longer regarded as a neutral bystander, but rather as
a pre-morbid condition that increases the vulnerability of this or-
gan to progress to steatohepatitis and to more severe forms of liver
damage (Angulo, 2002; Sanyal, 2005). Indeed, steatotic livers are
more susceptible to the tissue-damaging effects of oxidative stress
and inflammatory mediators, and transition to steatohepatitis
represents a critical step in the progression to hepatic fibrosis and
cirrhosis (Angulo, 2002; Sanyal, 2005). Although the exact mech-
anisms linking adipose tissue dysfunction and NAFLD have not
been completely delineated, the exacerbated secretion of FFA and
pro-inflammatory and insulin resistant adipokines (TNFa and IL-6)
accompanied by reduced release of adiponectin by adipose tissue
has a direct impact on liver cells (Angulo, 2002; Sanyal, 2005).
Moreover, altered hepatic insulin sensitivity is a driving force for
impaired hepatic FFA oxidation and de novo lipogenesis, which also
contribute to the development of NAFLD (Tilg and Moschen, 2008).

3. Composition of adipose tissue in structural and storage
lipids

The lipid composition of adipose tissue is strongly dependent on
the diet. Differences in adipose tissue composition reported be-
tween racial groups, infant vs. adult and gender rapidly disappear
when a diet of similar fatty acid composition is consumed
(Damsgaard et al., 2013; Field et al., 1985). This section describes
the lipid composition of fat cells categorized as structural lipids (i.e.
lipids located within the cell membranes) or storage lipids (located
within the unilocular lipid droplet).

3.1. Cell membranes

As with any other type of cell in the body, adipocytes are bound
by a plasma membrane composed of carbohydrates, proteins and
especially lipids. The carbohydrates in the cell membranes appear
on the outside bound to lipids (glycolipids, such as cerebrosides and
gangliosides) or to proteins (glycoproteins) forming the glycocalix
that provides adhesion properties to the cell and participates in
lymphocyte homing (Dejana et al.,, 1994; Ekyalongo et al., 2015).
Apart from their structural and biophysical membrane functions,
membrane lipids bound to carbohydrates have no bioactive effects
on the cell, and therefore are not discussed in this review. Proteins
are the second most abundant component of the cell after lipids.
They can be transmembrane proteins with an extracellular part
that interacts with the extracellular environment and an intracel-
lular domain interacting with signal transducers or with cytosolic

proteins in the cytoplasmic layer of the membrane (Harvey Lodish
et al., 2000). There are also proteins that temporally interact with
the membrane, including phospholipases (PL) A1 and A2 (PLA1 and
PLA2) that release fatty acids in the SN1 and SN2 positions from the
phospholipids; PLC, which releases diacylglycerol (DAG) from
phospholipids; and sphingomyelinase (SMase), which hydrolyzes
sphingomyelin to ceramide (see Section 4) (Balsinde and Dennis,
1997).

Phospholipids are the most abundant lipid components of the
cell membrane. Phospholipids are amphipathic molecules con-
taining both hydrophilic and hydrophobic moieties. For example,
phosphoglycerides or glycerophospholipids are composed of a
glycerol backbone with two fatty acids esterified to the SN1 and
SN2 positions, and a phosphate group bound to the third hydroxyl
group. This phosphate group is esterified to another hydroxyl group
on another hydrophilic compound, such as choline, ethanolamine,
serine or inositol, forming different phospholipids with unique
properties (Balsinde et al, 1997). The fatty acids in glycer-
ophospholipids can be saturated or unsaturated, and within these
either mono or polyunsaturated, or a combination of both. Phos-
pholipids are the most important precursors of fatty acids released
intracellularly upon the action of PLA1 and PLA2. FFAs within the
cytoplasm are toxic and are rapidly converted into biologically
active lipid mediators by lipoxygenases and cyclooxygenases. The
different derivatives and biological actions of these lipid mediators
are extensively discussed in Section 4 of this review. On the other
hand, sphingolipids such as sphingomyelin are formed by ceramide
and phosphocoline or phosphoethanolamine that lacks the glycerol
backbone. In this case, lipids are bound to a single sugar residue or
to an oligosaccharide forming cerebrosides or gangliosides,
respectively (Kolter et al., 1999). SMase activity hydrolyzes sphin-
gomyelin into ceramide, sphingosine and phosphorylcoline (See
Section 4.6 for more details). Finally, sterols are also lipid compo-
nents of the cell membranes. Sterols are composed of a four-ring
hydrocarbon structure with different groups at the two ends of
the structure (Cantafora and Blotta, 1996). The most common sterol
is cholesterol, which has a hydroxyl substituent on one end of the
ring and a six-carbon tail with two methyl groups at positions 1 and
5 in the other. Membrane cholesterol may exert some biological
activity since this lipid can post-translationally modify hedgehog
signaling (Alcedo and Noll, 1997; Beckers et al., 2007).

3.2. Lipid droplets

Lipid droplets (LD) (also called lipid bodies, oil bodies or adi-
posomes) are considered a bona fide organelle present in almost all
vertebrate cells, some plant cells and several yeasts and pro-
karyotes (Waltermann and Steinbuchel, 2005; Murphy, 2001). LD
are composed of a hydrophobic core, mainly consisting of neutral
lipids such as TAG and cholesterol esters surrounded by a phos-
pholipid monolayer (as opposed to the normal bilayer of the other
organelles) (Fujimoto and Parton, 2011). The hydrophilic phosphate
group of phospholipids faces the aqueous cytoplasmic space,
whereas the hydrophobic acylic tails are towards the inner part of
the LD in contact with lipids accumulated in its core (Thiam et al.,
2013). Several proteins are associated with LD, giving structural
stability to its phospholipid monolayer. These proteins are impli-
cated with lipid metabolism and signaling (Brasaemle, 2007).
Interestingly, some proteins that are normally associated with the
cytoplasm have been identified to be located in the LD core; but
how their structure or function remains active in such a hydro-
phobic environment is unclear (Robenek et al., 2005). The major
role of LD is the storage of lipids and cholesterol for energy pur-
poses and for the formation and renewal of membranes (Thiam
et al,, 2013). LD can also participate in the inflammatory response
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and are potentially involved in the pathogenesis of metabolic dis-
orders such as obesity and atherosclerosis (Greenberg et al., 2011;
Bozza and Viola, 2010; Krahmer et al., 2013).

The most widely accepted model of LD formation establishes the
cellular origin in the endoplasmic reticulum (ER), where the en-
zymes catalyzing the end-steps of neutral lipid biosynthesis are
located (Murphy, 2001; Buhman et al., 2001; Martin and Parton,
2006; Robenek et al., 2004). In the ER, nascent neutral lipids
accumulate in the leaflets of the ER membrane forming a protu-
berance at the outer leaflet of the membrane that closes forming
the LD surrounded by a phospholipid monolayer serving as an
emulsifying agent (Thiam et al., 2013). Although the exact mecha-
nisms are not yet clear, it is likely that several proteins contribute to
the stabilization and release of the nascent LD. Among them, it has
been proposed that members of the perilipin family (or PAT family)
including perilipin, adipophilin and TIP47 control LD lipolysis and
stabilization. Perilipin 1 (Plin1) was the first member of the PAT
family described and is the best characterized. Upon formation,
Plin1 is recruited to LD where it has a half-life exceeding 70 h under
basal non-lipolytic conditions (Kovsan et al., 2007). Plin1 activates
fat-specific protein 27 (Fsp27, or CIDEC) which promotes droplet
fusion, emptying small LD into large droplets (Gong et al., 2011).
Another protein of the PAT family that is present in the nascent LD
after budding is TIP47 (or perilipin 3) (Wolins et al., 2005, 2003),
which is recruited to the nascent LD on the ER surface when cells
are incubated with fatty acids (Skinner et al., 2009). As the droplet
starts growing, it migrates from the ER to the center of the adipo-
cyte gradually losing TIP47 content while gaining adipophilin
(Wolins et al., 2005). Adipophilin (or perilipin 2) is only stable while
in contact with the LD, and it is rapidly degraded by the proteasome
in the cytoplasm (Gross et al., 2006; Masuda et al., 2006; Xu et al.,
2005). As the LD grows further, perilipin 1 replaces the other pro-
teins in such a way that the mature adipocyte unilocular LD is
coated almost exclusively by perilipin 1 (Wolins et al., 2005).

In the cell, LD store TAG and cholesteryl esters, which are hy-
drolyzed when cholesterol or fatty acid levels are depleted.
Cholesterol is released for the production of steroid hormones and
for renewal of the cellular membrane (Hu et al., 2010). On the other
hand, fatty acids serve either as scaffolds of the membrane phos-
pholipids, for energy production through B-oxidation or for the
biosynthesis of bioactive lipid mediators. HSL is the first and best
characterized enzyme involved in TAG hydrolysis (lipolysis) (Holm
et al,, 1988). HSL is highly expressed in adipocytes and exerts hy-
drolytic activity over TAG, diacylglycerol (DAG) and cholesteryl and
retinol esters (Fredrikson et al., 1981; Pittman et al., 1975; Wei et al.,
1997). For decades HSL was thought to be the major adipocyte
lipase until some studies unexpectedly revealed that HSL null mice
retain TAG lipase activity with accumulation of DAG, suggesting
that other lipases are implicated in TAG lipolysis (Haemmerle et al.,
2002; Osuga et al., 2000; Wang et al., 2001). This controversy was
solved when adipose TAG lipase (ATGL) was later identified
(Jenkins et al., 2004; Zimmermann et al., 2004). ATGL hydrolyzes
TAG to DAG releasing a FFA, whereas HSL hydrolyzes DAG to
monoacylglycerol (MAG) again releasing another fatty acid. Finally,
another enzyme acting downstream and designated MAG lipase
converts MAG into a fatty acid and glycerol (Yang et al., 2010). Plin1
and PKA appear at the center of this process regulating the activity
of both HSL and ATGL either directly or indirectly. PKA-mediated
phosphorylation of HSL induces the docking of HSL to the LD
monolayer in close association with Plin1, thus favoring lipolysis
(Sztalryd et al., 2003; Granneman et al., 2007). Under basal con-
ditions, Plin1 is associated with CGI-58 on the LD surface, and when
Plin1 is phosphorylated by PKA, CGI-58 is released and can interact
with ATGL, thereby increasing its activity (Lass et al., 2006). Fsp27
also plays a double role in the regulation of ATGL activity: in the LD

it inhibits lipolysis by binding to ATGL (Grahn et al., 2014), whereas
in the nucleus it potentiates Ergl-negative regulation of the ATGL
promoter (Singh et al., 2014).

The increased release of FFA from LD by TAG lipolysis in obese
adipose tissue contributes to a great extent to the development of
insulin resistance. For example, a reduction in Plin1 expression is
associated with an increased rate of lipolysis that promotes sys-
temic insulin resistance (Greenberg et al.,, 2011). In this regard,
adipocytes from Plin1-null mice have an increased rate of lipolysis,
and despite these mice being leaner than wild-type mice, they
develop insulin resistance with aging (Tansey et al, 2001;
Martinez-Botas et al., 2000). In humans, three individuals car-
rying a missense heterozygous mutation in the Plin1 gene (PLINT)
showed partial lipodystrophy, with loss of adipose tissue, along
with insulin-resistant diabetes, hypertriglyceridemia and hepatic
steatosis (Gandotra et al., 2011).

In addition to Plin1, knockdown of FSP27 expression increases
the rate of basal lipolysis, an effect that is reversed by over-
expressing FSP27 (Puri et al., 2007; Keller et al., 2008; Liu et al.,
2009; Nordstrom et al., 2005; Ranjit et al., 2011; Kim et al,
2008a). Moreover, FSP27-null mice have a similar phenotype to
that of Plin1-null mice, having reduced fat mass and increased
lipolysis (Nishino et al., 2008). In humans, a homozygous nonsense
mutation in FSP27 has been reported in a patient with lipodys-
trophy, insulin-resistant diabetes, hypertriglyceridemia, and he-
patic steatosis. Another two proteins (seipin and caveolin-1) related
to LD biology are involved in the development of lipodystrophy.
Mutations in the seipin gene reduce TAG storage capacity in adi-
pocytes, with a nearly complete absence of adipose tissue and with
insulin resistance, diabetes, hypertriglyceridemia and hepatic
steatosis (Magre et al., 2001). Similar features have been reported in
a patient with a homozygous nonsense mutation in the gene coding
for caveolin-1, which is part of the LD proteome (Kim et al., 2008b).

It has been proposed that LD have a role in the production of
inflammatory and anti-inflammatory lipid mediators (Bozza and
Viola, 2010; Dichlberger et al., 2013). In this regard, the number
of LD has been shown to increase during the interaction of mac-
rophages with pathogens, such as parasites (Melo et al.,, 2003),
bacteria (Peyron et al., 2008; Daniel et al., 2011; Cardona et al.,
2000; Tanigawa et al., 2008; Cao et al., 2007) and viruses (Barba
et al, 1997; Samsa et al., 2009). Moreover, during infection, LD
are mobilized into phagosomes, so the pathogen can use them as
energy sources and for increased production of inflammatory
mediators.

4. Bioactive lipids: biosynthesis and actions on WAT

Bioactive lipid mediators have been increasingly recognized as
important endogenous regulators of key cellular processes. Fig. 1
illustrates a schematic representation of the most commonly
described lipid mediators generated by adipocytes. The majority of
these bioactive mediators originate from the cleavage of lipid
constituents of cellular membranes under the activity of PLs, in
particular PLA1 and PLA2, which release fatty acids from phos-
pholipids, and PLC, which generates DAG from membrane phos-
pholipids. In the free form, fatty acids are toxic in the cytosol, and
are therefore readily converted into a number of lipid mediators,
including omega-6 and omega-3 derivatives, fatty acid hydroxyl
fatty acids (FAFH), nitroalkenes and endocannabinoids (Fig. 1). On
the other hand, sphingolipids found in animal cell membranes are
converted by the enzyme SMase into ceramide, which is subse-
quently hydrolyzed by ceramidase into a sphingosine molecule plus
a FFA. Both ceramide and sphingosine are phosphorylated into
ceramide 1-phosphate or sphingosine 1-phosphate, respectively
(Fig. 1). In addition to cell membrane-derived lipids, TAG stored in
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Fig. 1. Representative bioactive lipid mediators in adipocytes. Most of the bioactive lipids endogenously generated by adipocytes are primarily derived from cell membrane
phospholipids and sphingolipids and secondarily from neutral lipids stored inside monolocular lipid droplets. Fatty acids (FAs), especially omega-6 and omega-3 polyunsaturated
FAs, released from membrane phospholipids by phospholipase (PL) A1 and 2 (PLA1 and PLA2) are readily transformed by cyclooxygenases, lipoxygenases and cytochrome P450
epoxygenases into a broad spectrum of omega-6 and omega-3 derivatives. FA modifications also occur in the cytoplasm including nitrations (nitrated FAs or nitroalkenes), es-
terifications (fatty acid-hydroxy fatty acids, FAHFA), or ethanolamide additions (endocannabinoids). In the cell membrane, sphingomyelin is a substrate for sphingomyelinase
(SMase), releasing ceramide to the cytoplasm. Ceramide can be phosphorylated into ceramide 1-phosphate or enzymatically hydrolyzed releasing a fatty acid and sphingosine
(which can be phosphorylated to sphingosine 1-phosphate). In the cell membrane, PLC also hydrolyzes phospholipids to release diacylglycerol (DAG) that participates in different
signaling pathways. FAs are also released from triacylglycerides (TAG) in perilipin 1a (PLIN1a)-coated lipid droplets. In the lipid droplet monolayer, adipose triclyceride lipase (ATGL)
converts TAG into DAG by losing a FA. DAG is subsequently hydrolyzed by phosphorylated hormone-sensitive lipase (pHSL) to monoacylglycerol (MAG) releasing another FA. MAG is

finally hydrolyzed into a third FA and glycerol by the actions of monoacylglycerol lipase (MGL).

the unilocular LD of adipocytes can release FFA into the cytosol by
the concerted activities of ATGL, HSL and MGL present in the
phospholipid monolayer coating the LD (Fig. 1).

4.1. Polyunsaturated fatty acid (PUFA)-derived lipid mediators

PUFAs cannot be synthesized de novo by mammalian cells and
are therefore termed as “essential” because they must be ob-
tained in adequate amounts from the diet (Lopez-Vicario et al.,
2015a; Simopoulos, 1999). PUFAs are of utmost importance for
mammalian cellular processes as they are the precursors of most
cell-signaling molecules bearing a lipid structure, that is, lipid
mediators. Indeed, PUFAs are unique fatty acids in the sense that
they have multiple double bonds with a low dissociation energy
rendering them very reactive to become easily oxidized to
hydroperoxy and hydroxy derivatives (Lopez-Vicario et al,
2015a). There are two families of PUFAs depending on the car-
bon position of the first double bond from the methyl end (omega
end): omega-6 and omega-3. In general terms, lipid mediators
derived from omega-6-PUFA exert inflammatory, atherogenic and
prothrombotic effects whereas those derived from omega-3-
PUFA are anti-inflammatory and pro-resolving. Given that the
current Western diet is very high in omega-6 and the ratio of
omega-6/omega-3 PUFAs has risen to up to 20-30:1
(Simopoulos, 1999), pro-inflammatory and pro-thrombotic ei-
cosanoids generated from omega-6 fatty acids are produced in
larger quantities than those derived from omega-3 fatty acids
(Lopez-Vicario et al., 2015a; Schmitz and Ecker, 2008). This ex-
plains why dietary changes characterized by a lower

consumption of omega-3-PUFA and modern agriculture (animals
fed on diets rich in omega-6s) are believed to be the origin of the
higher incidence of thrombotic, inflammatory and carbohydrate
and lipid disorders in our society (Schror, 1990; Bagga et al.,
2003; Calder, 2006). The biosynthetic and signaling pathways
and the cellular actions of lipid mediators derived from essential
omega-6 and omega-3 fatty acids are described in detail in the
following paragraphs.

4.1.1. Omega-6-derived lipid mediators

Arachidonic acid, an essential omega-6 PUFA, is the precursor of
the biosynthesis of eicosanoids (Astudillo et al., 2012). There are
two classical routes of eicosanoid biosynthesis in mammals: the
cyclooxygenase (COX) pathway that results in the formation of
prostaglandins (PGs) and thromboxane (TX); and the lipoxygenase
(LOX) pathway that catalyzes the formation of leukotrienes (LTs)
and hydroxyeicosatetraenoic acids (HETEs) (Fig. 2) (Samuelsson
et al.,, 1987; Romano and Claria, 2003). Apart from the COX and
LOX pathways, arachidonic acid can also be converted into bio-
logical active mediators by cytochrome P-450 (CYP) epoxygenases
(Fig. 2) (Spector and Norris, 2007). CYP epoxygenases are the so-
called third branch of arachidonic acid metabolism and add oxy-
gen across one of the four double bonds of this PUFA to generate
three-membered ethers known as epoxyeicosatrienoic acids (EETs)
(Spector and Norris, 2007). These epoxides act in an autocrine and
paracrine fashion regulating vascular tone, inflammation, hyper-
algesia and organ and tissue regeneration (Zeldin, 2001; Panigrahy
et al., 2013). Finally, the eicosanoid family includes the lipoxins
(LXs), a unique class of potent bioactive lipid mediators resulting
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Fig. 2. Schematic diagram summarizing the biosynthesis of eicosanoids derived from the omega-6 polyunsaturated fatty acid arachidonic acid. Upon activation of phospholipase A,
arachidonic acid is released from membrane phospholipids and converted into biologically active eicosanoids through the cyclooxygenase and lipoxygenase pathways. The
cyclooxygenase pathway comprises two isoforms (cyclooxygenase-1 and -2) that convert arachidonic acid into prostaglandin (PG) D,, PGE,, PGF,, PGl and thromboxane (TX) A,. On
the other hand, the lipoxygenase pathway comprises three different dioxygenases (5-, 12- and 15-lipoxygenases) that catalyze the oxygenation of the 5-, 12- or 15-carbon atoms of
arachidonic acid resulting in the formation of the respective hydroxyeicosatetraenoic acids (i.e. 5-, 12- and 15-HETEs). 5-lipoxygenase also gives rise to the unstable allylic epoxide
leukotriene (LT) A4, which is either hydrolyzed to LTB4 or converted into LTC4/LTD4/LTE,. During cell—cell interactions, mechanisms involving transcellular routes can transform 15-
HETE into lipoxin (LX) A4 and LXBy4, which, contrary to PGs and LTs, are potent endogenous anti-inflammatory eicosanoids. A so-called third branch of arachidonic acid metabolism
is represented by the CYP450 epoxygenases, which convert this fatty acid into epoxyeicosatrienoic acids (EETs).

from the interaction between individual LOXs and, in the presence
of aspirin, between COX-LOX interactions (Fig. 2) (Samuelsson et al.,
1987).

4.1.1.1. The COX pathway. COX, the key enzyme in the biosynthesis
of PGs, has two different isoforms: COX-1, which is constitutively
expressed, and COX-2, which is inducible (Kujubu et al., 1991; Xie
et al., 1991). Both COX isoforms convert arachidonic acid into
PGG; and subsequently into PGH,, which is finally converted by
specific terminal synthases into PGs of the D», E3, F» and I, series as
well as into TXA; (Chandrasekharan and Simmons, 2004). Both PGI,
and TXA; have a very short half-life and are rapidly hydrolyzed to
the inactive compounds 6-keto-PGF;, and TXB,, respectively. PGD,
is also readily dehydrated to the cyclopentenone PGs of the ], series
(PGJ, and 15-deoxy-A'214_PGJ, (15d-PGJ,)) (Chandrasekharan and
Simmons, 2004). COX products act as autocrine or paracrine hor-
mones, maintaining homeostasis within their cells of origin or in
neighboring cells in the tissue. These eicosanoids bind to at least
ten types and subtypes of prostanoid receptors belonging to the
family of the seven transmembrane G protein-coupled receptors.
Four of the receptor subtypes bind PGE; (EP1, EP2, EP3 and EP4),
two bind PGD; (DP1 and DP2), two bind TXA, (TP« and TPf) and the
rest are single receptors for PGF,, and PGI, (FP and IP, respectively)
(Breyer et al., 2001).

4.1.1.2. The LOX pathway. There are three major LOXs in humans: 5-
, 12- and 15-LOX. 5-LOX converts arachidonic acid into 5(S)-

hydroxyeicosatetraenoic acid (5(S)-HETE) and LTs whereas 12- and
15-LOXs generate the corresponding 12- and 15-HETEs, respec-
tively (Fig. 2). The best characterized and most relevant LOX is
arachidonate 5-LOX. Arachidonate 5-LOX is a 674-amino acid pro-
tein, which upon cellular activation translocates to the nuclear
envelope where it interacts with five lipoxygenase-activating pro-
tein (FLAP), an 18 kDa resident integral protein which functions as a
transfer protein facilitating the binding of arachidonic acid to 5-LOX
(Dixon et al., 1990). In the nuclear envelope, 5-LO transforms
arachidonic acid into 5(S)-HpETE, which is subsequently reduced to
either 5(S)-HETE or converted to the highly unstable allylic epoxide
LTA4 (Rouzer et al., 1986). Once formed, LTAy is rapidly transformed
to either LTB4 by LTA4 hydrolase or to LTC4 by LTC4 synthase
(Radmark et al., 1984). LTC4 is subsequently deaminated into LTD4
and LTE4 (Fig. 2). These 5-LOX products bind G-protein coupled
receptors (GPCRs), in particular B-LT; and B-LT; receptors for LTB4
and Cys-LT; and Cys-LT; for LTC4 and LTD4 (Back et al., 2014).

On the other hand, 15-LOX exists in two isoforms: 15-LOX-1 and
15-LOX-2, which transform arachidonic acid into 15(S)-HETE (Kuhn
et al,, 2015). 12/15-LOX is the murine ortholog of human 15-LOX-1
(Kuhn et al., 2015). The physiologic role of 15-LOX is dependent on
the context in which it is expressed, but this pathway is essential for
the formation of products able to antagonize and properly resolve
inflammatory responses (see Section 4.1.3). Regarding 12-LOX, this
enzyme exists in three isoforms designated after the cells in which
they were first identified: platelet-type, which metabolizes arach-
idonic acid into 12(S)-HETE; leukocyte-type, which converts
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arachidonic acid or linoleic acid into 12(S)-HETE and also small
quantities of 15(S)-HETE; and epithelial- or epidermis-type, that
catalyzes the synthesis of both 12(S)- and 15(S)-HETE from arach-
idonic acid (Kuhn et al., 2015; Cole et al., 2013).

The interaction between individual LOX gives rise to the for-
mation of lipoxins (LXs) by transcellular biosynthesis, eicosanoids
that exert potent anti-inflammatory and immunoresolving actions
in mammalian cells (Chiang et al., 2005). Three routes of trans-
cellular LX biosynthesis have been described. The first route is
initiated by the release of the epoxide intermediate LTA4 formed by
5-LOX in activated leukocytes, which is then converted by platelet
12-LOX to LXA4 and LXB4 (Serhan and Sheppard, 1990). The second
route takes place mainly in tissues in which endothelial and
epithelial cells expressing 15-LOX can interact with 5-LOX-con-
taining leukocytes (Chiang et al., 2005). Finally, a third major route
of LX biosynthesis initiated by aspirin has been described (Claria
and Serhan, 1995). Aspirin acetylates COX-2 and switches its cata-
lytic activity from a PG synthase to a 15-LOX in such a way that PG
biosynthesis is inhibited and arachidonic acid is instead trans-
formed to 15(R)-HETE (Claria and Serhan, 1995). 15(R)-HETE is
subsequently transformed by activated leukocytes possessing 5-
LOX to a new series of carbon-15 epimers of LXs that carry their
15 alcohol in the R configuration (15-epi-LXs) (Claria and Serhan,
1995). The formation of these lipid mediators is specific for
aspirin treatment, and the term aspirin-triggered LXs, abbreviated
as AT-LXs, has been coined for these compounds (Claria and Serhan,
1995).

4.1.2. Biosynthesis and actions of omega-6-derived lipid mediators
in WAT

The ability of WAT to generate bioactive lipid mediators was first
described in the late 1960s when Shaw and Ramwell identified a
group of hydroxyl C20 carboxylic acids, later identified as PGs
derived from the oxygenation of arachidonic acid by COX in rat
epipidymal fat pads (Shaw and Ramwell, 1968). Among the
different COX-derived products, PGE; was recognized as one of the
most abundant PGs in WAT. This finding was consistent with
studies pointing to PGE; as a negative regulator of hormone-
stimulated lipolysis (Steinberg et al., 1963). Along these lines, pre-
incubation of adipocytes with COX inhibitors has been reported
to enhance lipolysis (Chatzipanteli et al., 1992). Given that the
lipolytic actions of catecholamines are mediated by cAMP, which in
turn activates HSL, the anti-lipolytic actions of PGE, are likely
associated with the modulation of adipocyte cAMP levels (Kather
et al., 1985). PGE; has also been shown to suppress 3T3-L1 adipo-
cyte differentiation by binding to EP4 and eliciting an increase in
intracellular cAMP levels in preadipocytes (Tsuboi et al., 2004).
Recently, we gathered data supporting a coordinated negative
regulation between PGE, and PPARy (Garcia-Alonso et al., 2013).
Indeed, mice deficient in PPARy showed increased expression of
COX-2 and mPGES-1 and augmented PGE, levels, whereas the
addition of exogenous PGE; suppressed PPARY expression (Garcia-
Alonso et al., 2013). Opposite effects were seen after the inhibition
of endogenous PGE; biosynthesis with a selective mPGES-1 inhib-
itor (Garcia-Alonso et al., 2013). Of note, PGE; diverted pre-
adipocyte differentiation to beige/brite mature adipocytes
accompanied by up-regulation of UCP1, whereas a selective phar-
macological mPGES-1 inhibitor and a siRNA directed against
mPGES-1 resulted in the reduction of browning markers (i.e. UCP1,
CIDEA and PGC-1a) and browning determination factors (i.e.
PRDM16) in preadipocytes (Garcia-Alonso et al., 2013).

In addition to PGE,, it has been postulated that another COX-
derived product, 15-deoxy-A!*“-prostaglandin J, (15d-PGJ),
plays a relevant role in adipose tissue by regulation of the adipo-
genic process. 15d-PGJ, is a cyclopentenone metabolite produced

by dehydration of PGD; (Bell-Parikh et al., 2003). The predominant
enzymatic source of 15d-PGJ, formation in vivo is COX-2, and unlike
other PGs, no specific membrane receptor has been identified for
this lipid mediator (Forman et al., 1995). Instead, 15d-PG]J, exerts its
anti-inflammatory and adipogenic actions through binding and
activation of the nuclear receptor PPARy (Forman et al., 1995).
Exposure of human adipocytes to 15d-PG]Jy, inhibits the secretion of
pro-inflammatory adipokines and stimulates the production of
macrophage inhibitory cytokine-1, a protective adipokine, by adi-
pose tissue (Ding et al., 2009). In addition, a significant down-
regulation in the expression and secretion of the pro-
inflammatory adipokine leptin has been reported in adipocytes
exposed to exogenous 15d-PG]J, (Sinha et al., 1999). Importantly,
15d-PG]J, stimulates adipogenesis (Sinha et al., 1999) and also exerts
proadipogenic actions in fibroblasts, although in this case lym-
phocytes are the source of this cyclopentenone PG (Feldon et al.,
2006). Surprisingly, an impaired adipogenic program has been
identified in 3T3-L1 cells with stable transfection of PGD synthase
and appreciably higher levels of endogenous PGD,-derived me-
tabolites, suggesting a complex regulatory interaction between
PPARY and pro-adipogenic lipid mediators (Hossain et al., 2012).

Apart from COX products, WAT also has the ability to produce
and release LOX products, especially LTB4, which apparently is the
predominant LOX metabolite in this tissue (Horrillo et al., 2010). In
this regard, WAT expresses all the enzymes necessary for the for-
mation of 5-LOX products (5-LOX, FLAP, LTA4 hydrolase, and LTCy4
synthase), as well as all the receptors involved in LT signaling (BLT-
1, BLT-2, CysLT1, and CysLT2) (Horrillo et al., 2010). LTB4 has been
identified as an inflammatory factor in WAT, and FLAP over-
expression and excessive generation of 5-LOX products is a com-
mon finding in WAT of obese patients and animals with insulin
resistance (Horrillo et al.,, 2010; Li et al., 2015; Pardo et al., 2015).
Moreover, a direct relationship has been reported between LTB4
and enhanced release of inflammatory adipokines (i.e. MCP-1 and
IL-6) in obese WAT (Horrillo et al., 2010). Consistent with this
finding, mice deficient in the LTB4 receptor BLT-1 show reduced
monocyte recruitment to hypertrophied adipose tissue, whereas
inhibition of the 5-LOX pathway with a selective FLAP inhibitor or
genetic deletion of the BLT-1 receptor alleviates adipose tissue
inflammation and insulin resistance in obesity (Horrillo et al., 2010;
Spite et al., 2011).

4.1.3. Omega-3-derived lipid mediators

EPA and DHA are the archetypal omega-3-PUFAs that are sub-
strates of the same COX and LOX pathways described previously for
omega-6-PUFA. However, in the case of EPA and DHA, they are
converted into potent anti-inflammatory and pro-resolving medi-
ators, generically known as specialized pro-resolving mediators
(SPM). This family includes a number of functionally distinct me-
diators such as resolvins, protectins and maresins (Serhan, 2014;
Serhan and Chiang, 2013). These novel bioactive lipid mediators
are further classified as either resolvins of the E-series if the
biosynthesis is initiated from EPA or resolvins of the D-series if they
are generated from DHA (Serhan et al., 2000). Protectins and
maresins are also biosynthesized from DHA (Serhan et al., 2006,
2009). A schematic diagram of DHA and EPA-derived lipid media-
tors is shown in Fig. 3. The biosynthesis of omega-3-derived lipid
mediators and their role in the metabolic syndrome and related
liver disease have been described in detail in a recent review by our
group (Lopez-Vicario et al., 2015a).

4.14. Biological actions of omega-3-derived lipid mediators in WAT
Human and mouse WAT express all the enzymes necessary for

the biosynthesis of resolvins, protectins and maresins derived from

omega-3 PUFAs, as well as all the receptors necessary for their
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Fig. 3. Schematic diagram summarizing the biosynthesis of lipid mediators from the omega-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid.
Eicosapentaenoic acid is converted by aspirin-acetylated cyclooxygenase-2 (COX-2) into 18R-HEPE (not shown), which is subsequently transformed by 5-lipoxygenase (5-LOX) into
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including 18S-RvE1 and 18S-RvVE2 derived from eicosapentaenoic acid, have also been identified. In addition, CYP epoxygenases convert eicosapentaenoic acid into a predominant
epoxide form, 17,18-epoxyeicosatetraenoic acid (17,18-EEQ). On the other hand, docosahexaenoic acid is converted into 17-HDHA (not shown) by 15-LOX, which is subsequently
transformed by 5-LOX into the D-series resolvins (i.e. RvD1, RvD2, RvD3, RvD4, RvD5 and RvD6). 15-LOX-derived 17-HDHA can also be converted into a dihydroxy-containing
derivative termed protectin D1 (PD1). In macrophages, lipoxygenation of docosahexaenoic acid by 12-LOX gives rise to maresins (MaR1 and MaR2). Alternatively, CYP450 epox-
ygenases can convert docosahexaenoic acid into a predominant epoxide derivative, 19,20-epoxydocosapentaenoic acid (19,20-EDP). Finally, docosahexaenoic acid can be metab-
olized by aspirin-acetylated COX-2 and 5-LOX into the so-called aspirin-triggered (AT)-resolvins.

signaling (reviewed in (Spite et al., 2014)). In the setting of obesity,
prevailing data support an unbalanced formation of these omega-
3-derived lipid mediators in obese WAT. Indeed, a deficit in tissue
SPM levels (RvD1, PD1 and 17-HDHA) has been characterized in
inflamed visceral and subcutaneous fat compartments from obese
ob/ob and obese/diabetic db/db mice (Gonzalez-Periz et al., 2009;
Claria et al,, 2012; Neuhofer et al,, 2013). In humans, a deficit in
PD1 and its precursor 17S-HDHA has been reported in subcutane-
ous fat from patients with peripheral vascular disease in whom the
inflammatory status in adipose tissue is remarkably exacerbated
compared with healthy subcutaneous fat (Claria et al., 2013).
Moreover, LC-MS/MS-based metabolo-lipidomic analyses of fat
from selected human anatomic locations have identified unique
signature profiles in the content of bioactive lipids (Claria et al.,
2013). Importantly, these analyses demonstrated a heterogeneous
capacity for SPM biosynthesis among different adipose tissue de-
pots, with higher activation of resolution circuits in perivascular fat
compared with subcutaneous fat (Claria et al., 2013). This is rele-
vant for vascular pathologies, with perivascular adipose tissue
playing an emerging role in vascular biology homeostasis because
of its tissue mass and anatomic proximity surrounding systemic
vessels.

The compromised capacity to produce local SPM in obese tissues
with a heightened pro-inflammatory phenotype could be the
consequence of a structural deficiency in the tissue content of
omega-3-PUFAs as established substrates for SPM biosynthesis.
Indeed, there is evidence that SPM are generated in humans taking
omega-3 dietary supplements and that SPM levels are increased
above those produced normally in transgenic fat-1 mice (Hudert
et al., 2006). This is consistent with the observation that trans-
genic restoration of omega-3 fatty acids in fat-1 mice with high-fat
diet (HFD)-induced obesity reversed their inefficient resolution
capacity and produced anti-inflammatory and pro-resolution ac-
tions in adipose tissue (Lopez-Vicario et al., 2015b; White et al.,
2010). Alternatively, the loss of SPM in obesity may reflect accel-
erated tissue SPM conversion and clearance to inactive further

metabolites because 15-PG-dehydrogenase/eicosanoid oxidore-
ductase, the key enzyme in SPM inactivation, is markedly up-
regulated in obese adipose tissue (Claria et al., 2012). In this tis-
sue, omega-3-derived SPM are readily converted metabolically into
oxo-resolvin products, some of which are biologically inactive
(Claria et al., 2012). In addition, sEH, the enzyme that catalyzes the
rapid hydrolysis of omega-6 and omega-3 epoxides by converting
them into inactive or less active diols is invariably over-expressed
in HFD-induced obese mice (Lopez-Vicario et al., 2015b). Collec-
tively, these findings are consistent with the notion that unresolved
chronic inflammation in obese adipose tissue is the result of an
inappropriate SPM resolution-capacity allowing the inflammatory
response to proceed without controlled checkpoints.

The use of synthetic SPM in different in vivo, ex vivo, and in vitro
studies has provided clues of the role of SPM in adipose tissue
homeostasis. In this regard, the administration of nanogram
amounts of RvD1 to obese/diabetic db/db mice improves glucose
tolerance, decreases fasting blood glucose, and increases insulin-
stimulated Akt phosphorylation in adipose tissue (Hellmann
et al., 2011). This SPM also reduces the formation of macrophage-
containing crown-like structures in adipose tissue (Hellmann
et al, 2011). Similarly, intraperitoneal injection (nanogram
amounts) of RVE1 to obese ob/ob mice confers significant insulin-
sensitizing effects by mechanisms related to the AMPK-
adiponectin axis and the induction of GLUT-4 and IRS-1 expres-
sion (Gonzalez-Periz et al., 2009). In addition, 17S-HDHA treatment
(intraperitoneal injection of nanogram doses) reduces adipose tis-
sue expression of inflammatory cytokines (MCP-1, TNFa, IL-6 and
osteopontin), increases adiponectin expression and improves
glucose tolerance in parallel with insulin sensitivity in obese/dia-
betic db/db mice (Neuhofer et al., 2013). Similar beneficial actions in
adipose tissue physiology have been described for LXA4 in an
experimental model of adipose tissue inflammation associated
with aging (Borgeson et al., 2012). Ex vivo, in fat explants, both RvD1
and RvD2 rescue the impaired phenotype of obese adipose tissue
by enhancing the expression and secretion of adiponectin in
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parallel with decreasing the secretion of pro-inflammatory adipo-
kines/cytokines including leptin, TNFa, IL-6 and IL-1f (Claria et al.,
2012). In vitro, nanomolar concentrations of RvD1 stimulate
macrophage nonphlogistic phagocytosis, a critical process in the
resolution of inflammation, and enhance the phagocytic activity of
macrophages isolated from the adipose tissue stromal vascular cell
fraction (Titos et al., 2011). In human monocyte-adipocyte co-in-
cubations, both RvD1 and RvD2 reduce MCP-1 and LTB4-stimulated
monocyte adhesion to adipocytes as well as monocyte transadipose
migration, which are critical for the recruitment of monocytes/
macrophages into the inflamed adipose tissue (Claria et al., 2012).
In line with SPM-protective actions against excessive macro-
phage recruitment, RvD1 skews polarization of adipose tissue
macrophages from a classical activation inflammatory profile
(M1 phenotype) toward an alternative anti-inflammatory M2-
like state (Titos et al., 2011). This phenotypic switch is charac-
terized by a reduction of secreted pro-inflammatory adipokines,
such as TNFa and IL-6 accompanied by an up-regulation of a
complete panel of M2 markers including IL-10, CD206, RELM-a.
and Ym1 (Titos et al., 2011). In addition, RvD1 remarkably in-
creases arginase-1 expression, a well-established M2 marker,
while attenuating IFNy/LPS-induced Th1 cytokine secretion
(Titos et al., 2011). Of particular interest, changes in the expres-
sion of M1/M2 markers appear to be confined to the adipose
tissue stromal vascular fraction, which is highly populated by
macrophages (Titos et al., 2011). These results are in agreement
with those reported by Hellmann et al. (2011), who showed the
ability of RvD1 to improve insulin resistance in obese-diabetic
mice by reducing macrophage F4/807CD11c™ cell accumulation
and increasing the percentage of F4/807 cells expressing the M2
marker Mgl-1 in adipose tissue. The switch of recruited macro-
phages toward a M2 phenotype is interpreted as anti-
inflammatory and pro-resolving (Olefsky and Glass, 2010). Of
particular interest is the fact that when leukocytes exit the
inflamed site or exudate, they traverse perinodal adipose tissue
en route to local lymph nodes (Schwab et al., 2007). Excessive and
persistent inflammation during this lipo-passage or failure of
leukocytes to reach the lymphatics and hence, getting stuck
while activated within adipose, can lead to adipose inflammation
that may contribute to the metabolic syndrome. Finally, in a
recent study, we used fat-1 mice as an optimal model of omega-3
tissue enrichment, in which the stabilization of the CYP-derived
19,20-EDP epoxide by a sEH inhibitor down-regulated obesity-
induced ER stress and autophagy in adipose tissue (Lopez-Vicario
et al., 2015b). Since inhibition of autophagic function in adipose
tissue is related to reduced fat mass and improved insulin
sensitivity (Singh et al., 2009), these findings can be regarded as
beneficial in terms of lipid homeostasis and metabolic control.
Apart from adipose tissue, SPM also exert beneficial roles in
other insulin-sensitive tissues such as the liver. Indeed, hepato-
cytes from transgenic fat-1 mice, which have increased levels of
resolvins, and wild-type hepatocytes incubated with nanomolar
concentrations of RvD1, show a reduction in neutral lipid accu-
mulation (steatosis) as well as inflammation (Lopez-Vicario et al.,
2015b, 2014). In addition, PD1 and 17S-HDHA are able to atten-
uate DNA damage and oxidative stress in hepatocytes and reduce
TNFo. release in macrophages (Gonzalez-Periz et al., 2006),
whereas LXA4 and AT-LXA4 efficiently block IL-8 secretion by
hepatocytes (Planaguma et al., 2002). Moreover, in precision-cut
liver slices, an ex vivo model that overrides the influence of
extrahepatic circulating factors, Rius and collaborators have
demonstrated that RvD1 reduces hypoxia-induced mRNA and
protein expression for inflammatory genes including COX-2, IL-
1B, IL-6 and CCR7 (Rius et al., 2014). Of interest, the anti-
inflammatory actions of RvD1 were completely absent in tissue

slices in which macrophages were depleted with chlodronate li-
posomes (Rius et al., 2014), a finding that highlights the critical
role of macrophages in the resolution phase of inflammatory
response. Finally, the DHA derived 19,20-EDP epoxide was shown
to restore autophagy in hepatocytes with the subsequent reduc-
tion of ER stress in these liver cells (Lopez-Vicario et al., 2015b). In
summary, these findings highlight the potential of small bioactive
lipid mediators to not only modulate lipid homeostasis and
inflammation in insulin sensitive tissues, but also to serve as
templates for the exploitation of cellular housekeeping processes
(i.e. autophagy) in therapeutic interventions against obesity-
related hepatic co-morbidities.

4.2. DAG

Diacylglycerol (DAG) biosynthesis is initiated from glycerol-3-
phosphate generated by glycolysis in the cytoplasm of liver or ad-
ipose tissue cells (Li et al., 2010). Glycerol-3-phosphate is acylated
with acyl-CoA to form lysophosphatidic acid (LPA), which is again
acylated to give phosphatidic acid (PA). Subsequently, PA de-
phosphorylation forms DAG (Li et al., 2010). DAG is the precursor
of TAG which is generated by another acylation catalyzed by
diglyceride acyltransferase. This synthetic pathway can be reversed,
and by the action of lipases (ATGL or HSL) TAG is hydrolyzed to DAG.
Moreover, phospholipase C (PLC) can directly release DAG from
phospholipids, by a hydrolytical reaction between the phosphate
and the glycerol backbone (Gresset et al., 2012). All these reactions
give rise to the 1,2 or the 2,3 DAG isoform; however, in some edible
oils DAG can be found as a minor constituent in its 1,3 isoform,
which is produced during high temperature, manufacturing pro-
cesses (Flickinger and Matsuo, 2003). PLC can generate DAG from
phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. This re-
action releases inositol triphosphate (IP3) to the cytosol (Gresset
et al., 2012), which stimulates calcium release. On the other hand,
DAG is hydrophobic and remains in the membrane, acting as a
signal messenger for activation of protein kinase C (PKC), and fa-
cilitates its translocation to the cellular membrane. DAG-mediated
PKC activation in adipocytes through B-adrenergic receptors, in
turn, increases glycogenolysis and gluconeogenesis (Lafontan et al.,
1997).

Compared with TAG oils, dietary DAG oils suppress postprandial
hypertriglyceridemia and decrease body fat mass (Nagao et al.,
2000; Yamamoto et al., 2006). In animal studies this anti-obesity
effect was attributed to an increase in B-oxidation of fatty acids,
major energy expenditure and suppression of TAG synthesis (Meng
et al., 2004; Kimura et al., 2006; Murase et al., 2001). DAG enriched
structural lipids containing conjugated linoleic acid and capric acid
(a medium chain fatty acid, MCFA) given in the diet to Spra-
gue—Dawley rats, lowered the concentration of plasma TAG and
decreased fat pads, simultaneously enhancing lipoprotein lipase
activity (Kim et al., 2006). On the other hand, dietary supplemen-
tation with a-linoleic acid-rich DAG induced the up-regulation of -
oxidation of fatty acids, resulting in reduced body weight and fatty
liver (Murase et al., 2002, 2005). For further information on this
class of lipids see reference (Finck and Hall, 2015).

4.3. Endocannabinoids

The endocannabinoid system is involved in the regulation of
WAT metabolism, energy homeostasis and appetite. The two clas-
sical endocannabinoids are anandamide (AEA) and 2-
arachidonoglycerol (2-AG), both derived from the omega-6-PUFA
arachidonic acid (sn-1 and sn-2 positions for AEA and 2-AG,
respectively) (Bab et al., 2009). Three routes for AEA synthesis have
been described. The major route is by arachidonic acid cleavage
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from phosphatidylethanolamine and involves an acyltransferase
and a specific phospholipase D (Fezza et al., 2005). The second
route includes the action of phospholipase C and the formation of a
phosphorylated intermediate that is then hydrolyzed by a phos-
phatase to form AEA. A third route involving arachidonic acid and
ethanolamine condensation pathway has been described. The
enzyme fatty acid amide hydrolase is a reversible enzyme that
normally cleaves AEA to AA and ethanolamine, but it can also
catalyze the AA and ethanolamide condensation into AEA. Three
pathways have been described for 2-AG synthesis. It can be syn-
thesized from phosphatidylinositol hydrolysis by phospholipase A
that yields lysophosphatidylinositol, that is further hydrolyzed by
phospholipase C to produce 2-AG. A second pathway involves
phospholipase C action generating DAG with AA in its composition,
which is further hydrolyzed by DAG lipase releasing 2-AG. The third
pathway for 2-AG formation is catalyzed by a monoacylglycerol
kinase acting over 2-arachidonoyl lysophosphatidic acid forming 2-
AG (Sugiura et al., 1995).

Endocannabinoids exert their functions by binding to two
cannabinoid receptors: CB-1 and CB-2 (Nogueiras et al., 2009).
Apart from regulating appetite, and thus food intake, endocanna-
binoids participate in the control of lipid and glucose metabolism,
and its dysregulation in obesity contributes to fat accumulation and
associated metabolic disorders (Bluher et al.,, 2006; Di Marzo,
2008). Circulating levels of 2-AG are increased in obese compared
to lean individuals (Bluher et al., 2006; Cote et al., 2007), and their
levels are correlated with BMI and intra-abdominal adiposity (Cote
et al., 2007; Cable et al., 2011). The expression of the CB-1 receptor
is also correlated with BMI and the metabolic syndrome (Sarzani
et al., 2009). Overall the endocannabinoid system is dysregultaed
in peripheral tissues in obesity, altering lipid and glucose meta-
bolism (Pagano et al.,, 2007; You et al., 2011; Izzo et al., 2009). In
visceral adipose tissue there is greater mRNA expression of CB-1
than in subcutaneous adipose tissue (Bluher et al., 2006). More-
over, in obese individuals, 2-AG, CB-1 and MGL are up-regulated in
abdominal adipose tissue, whereas their expression is down-
regulated in gluteal adipose tissue (Pagano et al., 2007; You et al.,
2011). Collectively, current evidence indicates that the endo-
cannabinoid system is dysregulated in obesity and greatly in-
fluences the storage of energy in different adipose tissue depots. For
further information on endocannabinoids see reference (Silvestri
and Di Marzo, 2013).

4.4. Nitroalkenes of fatty acids

Nitro fatty acids are formed by nitration of unsaturated fatty
acids. For this process, the formation of *NO, during gastric acidi-
fication or in the presence of nitric oxide (*NO) and nitrite (NO, ") is
necessary (Bonacci et al., 2012). The nitration of PUFAs results in the
formation of electrophilic fatty acid nitroalkene derivatives (NO2-
FA) with biological properties including nitro-oleic acid (NO2-
OA), nitro-linoleic acid (NO2-LA) and nitro-conjugated linoleic
acid (NO2-CLA). NO2—FAs have been detected in plasma and urine
from healthy subjects at nano-to micromolar concentrations (Baker
et al., 2005; Khoo and Freeman, 2010; Schopfer et al., 2011). Tran-
scriptional responses to NO2—FAs account for a broader array of
signaling events than fatty acid derivatives generated by enzymatic
oxygenation (Rudolph and Freeman, 2009; Kansanen et al., 2009).
This is due to the pleiotropic effects of the Michael addition reac-
tion by which the electrophilic NO2—FAs can react with the
nucleophilic center of a protein (for example a cysteine or histidine
residue) that regulates their structure, function and subcellular
distribution (Schopfer et al., 2010).

NO2—0As display anti-inflammatory properties in vitro and
in vivo. Indeed, NO2—0As limit LPS-induced inflammation and

multi-organ dysfunction and have a reduced expression of MCP-1,
intercellular adhesion molecule-1, vascular cell adhesion
molecule-1, xanthine oxidase, inducible NO synthase and COX-2
(Wang et al.,, 2010a; Kelley et al., 2008). NO2—FAs have been re-
ported to inhibit NF-kB-regulated gene expression, as a conse-
quence of adduction of a cysteine in the p65 subunit (Cui et al.,
2006). NO2—FAs also mediate the adduction of a cysteine residue
in Keap1, an Nrf2 regulatory protein, activating Nrf2-dependent
phase 2 gene expression, thereby protecting the cells against
oxidative damage and inflammation (Kansanen et al., 2009).
NO2—FAs can regulate glucose and lipid metabolism by binding to
PPARY (Li et al., 2008; Schopfer et al., 2005). Recently, NO,—FAs
were reported to inactivate the 5-LOX enzyme, resulting in a lower
production of inflammatory eicosanoids (Awwad et al., 2014). More
recently, Kelley et al. have reported that NO,—FAs improve glucose
tolerance and reduce the expression of inflammatory cytokines and
circulating leptin levels while increasing adiponectin in a HFD
model of obesity (Kelley et al., 2014). In a previous study, Wang and
collaborators administered NO,-OA to obese Zucker rats to reduce
body weight, TAG and FFA levels, and TBARS and proteinuria (Wang
et al., 2010b). For further information on this class of lipids see
reference (Rubbo, 2013; Narala et al., 2014).

4.5. Fatty acid-hidroxy fatty acids (FAHFA)

A new class of fatty acid derivatives designated as FAHFA has
recently been identified by Yore et al. (2014). In WAT, these lipid
mediators are synthesized in response to carbohydrate-responsive
element-binding protein (ChREBP) and released to the blood,
enhancing insulin secretion and glucose uptake (Yore et al., 2014).
These authors identified FAHFA in adipose tissue of AG40X mice, a
transgenic model of Glut-4 over-expression, using an untargeted
mass spectrometry lipidomic approach. Among the 16 species of
FAHFA identified, palmitic acid-hydroxy stearic acid (PAHSA) was
the most up-regulated. Eight isomers of this branched fatty acid
(depending on the carbon position of the ester) were detected,
among which the most relevant were 5- and 9-PAHSA (Yore et al.,
2014). In this study, PAHSA levels were reduced in mice and
humans with obesity and insulin resistance, and oral administra-
tion of 5- and 9-PAHSA was able to enhance glucose tolerance
(Yore et al.,, 2014). Additionally, PAHSA increased Glp-1 secretion
in intestinal enteroendocrine cells and enhanced pancreatic in-
sulin secretion. Apart from these metabolic effects, PAHSA
exhibited anti-inflammatory properties (Yore et al., 2014). Appar-
ently, PAHSA exert all the above-described biological activities by
binding to the long-chain fatty acid receptor GPR120 (Yore et al.,
2014). Nonetheless, it remains unclear whether FAHFA biosyn-
thesis is limited to adipocytes or it is produced in other tissues as
well.

4.6. Sphingolipids

Sphingolipids contain a backbone of sphingosine and other
aliphatic amino alcohols. Sphingolipids play different roles in the
cell as structural lipids of the cell membrane by forming a stable
and chemically resistant outer protective layer as well as in cell
recognition and intracellular signaling. Ceramide is released from
the hydrolysis of sphingomyelin (located in the cell membrane),
which in turn can be converted to sphingosine and sphingosine-1-
phosphate (S1P) (Fig. 1). Both ceramide and S1P are involved in
different signaling cascades that participate in proliferation, dif-
ferentiation, senescence, stress response, necrosis, apoptosis,
autophagy, and inflammation.

Apart from the mentioned hydrolytic formation of ceramide
from sphingomyelin by the action of acid or neutral SMases
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(Hannun and Obeid, 2008), ceramide can be biosynthesised de
novo. In this case, ceramide biosynthesis is initiated by the
condensation of serine and palmityl CoA by serine palmitoyl-
transferase, and subsequent actions of 3-ketosphinganine reduc-
tase, ceramide synthase and dihydroceramide desaturase. Alkaline
or acid ceramidase deacetylates ceramide to generate sphingosine,
and sphingosine kinase phosphorylates sphingosine to S1P. Simi-
larly, ceramide kinase phosphorylates ceramide to ceramide 1
phosphate (C1P) (Sugiura et al., 2002). The availability of free fatty
acids and inflammatory cytokines increases ceramide synthesis
(Samad et al., 2006; Schilling et al., 2013), suggesting that ceramide
metabolism may be altered in obesity. In obese rodents and
humans ceramide is elevated in the liver, the hypothalamus and
skeletal muscle (Adams et al., 2004; Holland et al., 2007). In leptin-
deficient ob/ob mice, total sphingomyelin and ceramide levels in
adipose tissue are reduced, whereas circulating levels of sphingo-
myelin, ceramide, sphingosine and S1P are increased in plasma,
since ceramide secretion by adipose tissue is increased (Samad
et al,, 2006). In addition, the inflammatory status associated with
obesity overlaps with ceramide production. TNF-o. administration
to mice results in an up-regulation of ceramide synthetic enzymes
in adipose tissue, thus increasing ceramide production (Samad
et al., 2006).

Adiponectin, the levels of which are generally reduced in obesity
and diabetes (Liu et al., 2007), is linked to sphingolipid metabolism.
The receptors for adiponectin contain ceramidase activity, thereby
reducing ceramide levels (Holland et al.,, 2011), an activity that
depends on adiponectin levels and binding to the receptors. This
ceramidase activity leads to the release of a fatty acid and sphin-
gosine that can be phosphorylated to S1P which has anti-apoptotic
and anti-diabetic effects. S1P is released and through S1P receptors
elevates intracellular calcium and activates AMPK, which partici-
pates in FA oxidation (Fang and Sweeney, 2006; Matsuzawa, 2010),
thus alleviating lipotoxicity and reducing metabolic dysregulation.
Moreover, adiponectin transgenic mice have better insulin toler-
ance under a HFD (Luo et al., 2010).

Obesity is associated with insulin resistance and type 2 diabetes.
Ceramide appears to be elevated in these conditions, correlating
positively with the degree of insulin resistance (Haus et al., 2009).
In vitro, ceramide and sphingosine can inhibit insulin signaling by
inhibiting Akt and AMPK (Hajduch et al., 2001; Liu et al., 2004;
Summers, 2006). In vivo, the administration of myoricin, a serine
palmitoyltransferase inhibitor, results in an improvement in insulin
resistance in different disease models due to the inhibition of de
novo ceramide biosynthesis (Holland et al., 2007). Heterozygous
deficiency of dihydroceramide desaturase, another protein of the
ceramide synthetic pathway, results in improved insulin sensitivity,
and protection against dexamethasone-induced insulin-resistance
(Holland et al., 2007). In 3T3-L1 adipocytes, ceramide blocks the
phosphorylation of Akt and IRS-1 (Summers et al., 1998; Chavez
et al., 2003); activates protein phosphatase 2A and PKC; and in-
hibits Akt translocation to the membrane (Powell et al., 2003,
2004). In NAFLD patients, ceramide biosynthesis and levels are
also significantly increased (Kolak et al., 2007). Moreover, in ob/ob
mice hepatic ceramide levels correlated with the degree of steatosis
(Kolak et al., 2007). For further information on this class of lipids
see reference (Hla and Dannenberg, 2012; Larsen and Tennagels,
2014).

4.7. Short- and medium-chain fatty acids

Short-chain fatty acids (SCFA) and MCFA are not generated
within adipose tissue and are generally derived from fiber
fermentation in the colon. These fatty acids enter the blood
directly through the portal vein during lipid digestion, as opposed

to long chain fatty acids which require proper absorption into the
blood circulation (Papamandjaris et al, 1998). An important
feature of SCFA and MCFA is that they remarkably differ in the
number of carbons. In this regard, MCFA contain 8-10 carbon
atoms, as in caprylic (C8:0) and capric (C10:0), whereas SCFA
contain less than 8 carbons in their structure. Relevant members
of the SCFA are formic acid, acetic acid, propionic acid, butyric acid
and valeric acid, among others. Among these, butyric acid is the
best known for its biological functions. Butyric acid is a substrate
for growth and regeneration of cells in the large intestine; it has
anti-cancer properties in colon cancer, probably enhancing
apoptosis of tumoral cells, and more importantly for the purpose
of this review, it increases thermogenesis, energy expenditure and
contributes to the reduction of body weight and other factors
present in the metabolic syndrome (Goncalves and Martel, 2013;
Liu et al., 2011; Xue et al., 2009).

5. Concluding remarks

Much progress has been made in identifying some of the
triggers of adipose tissue inflammation in obesity. Among the
factors that are involved in this uncontrolled “low-grade” in-
flammatory response, lipid mediators play a pivotal role. Indeed,
a number of lipid mediators derived from membrane phospho-
lipids, including PUFA derivatives, are emerging as key regulators
of adipose tissue homeostasis. Any strategy targeting mediators
of inflammation such as omega-6 derivatives (i.e. PGs and LTs)
and sphingolipids (i.e. LPA, S1P and ceramide) would be benefi-
cial in reducing obesity-associated comorbidities. Another strat-
egy to combat inflammation in adipose tissue is based on
fostering the endogenous production of anti-inflammatory and
pro-resolving mediators derived from omega-3 fatty acids, such
as resolvins, protectins and maresins. Alternatively, the exoge-
nous administration of stable analogs of this novel functional set
of lipid autacoids would promote the timely resolution of
inflamed tissues.

Interestingly, other fatty acid-derived molecules have come
into focus in the last few years, giving us more tools to regulate
obesity-related metabolic diseases. For example, nitroalkene
derivatives such as nitro-oleic acid have been reported to exert
pleiotropic effects, which overall reduce the inflammatory state
and improve glucose tolerance. Another example is the recently
identified fatty acid hydroxy fatty acids described by Yore et al.
in adipose tissue. These authors have reported some metabolic
effects of these novel lipids, such as enhanced glucose tolerance,
and anti-inflammatory actions. Nonetheless, more studies are
needed to demonstrate their potential. However, not only have
these novel lipids opened and expanded new avenues in the
field of lipid mediators, but they have also encouraged the
search for new therapeutic molecules, thereby providing more
options for the pharmacological regulation of obesity related
diseases.

In summary, the current review provides up-to-date insight on
the wide variety of lipid mediators present in mammalian cells,
with special emphasis on the role of these bioactive lipids in the
regulation of adipose tissue homeostasis.
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