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Resonating-valence-bond theory for the square-planar lattice
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The short-range resonating-valence-bond (RVB) wave function with nearest-neighbor (NN) spin
pairings only is investigated as a possible description for the Heisenberg model on a square-planar
lattice. A type of long-range order associated to this RVB Ansatz is identified along with some
qualitative consequences involving lattice distortions, excitations, and their coupling.

I. INTRODUCTION

Heisenberg spin Hamiltonians have long provided a
relatively simple nontrivial example of electron correla-
tion. For the isotropic spin-1 case the Hamiltonians have
been studied in chemistry! under the name of valence-
bond (or VB) models, and there a ‘“‘resonance-theoretic”
correlated VB approach to the wave functions has tradi-
tionally been adopted. The plausibility of the qualitative-
ly different solution techniques of resonating-VB type in
chemistry and Néel-state-based solutions in physics has
been rationalized? as being relevant for the different coor-
dination numbers to which the models are applied in the
two fields. Recently Anderson® has proposed that the
resonating-VB type of solution might be that applicable
to perovskite cuprates, such as La,CuQ,, which become*
high-temperature superconductors when doped. Thence
it seems reasonable to explore such descriptions for this
purpose too.

Here then we deal with the Heisenberg model for the
square-planar lattice. That is

H=23 J;s;s; (1.1)
ij

with s, the spin operator for site k and the J;; = 0 antifer-
romagnetically signed exchange-coupling parameters. At
least when restricted to nearest neighbor (NN) interac-
tions J, there is®> no Néel-state ordering at any positive
temperature, but this might occur in the ground state.
An alternant type of wave function is built from products

of singlet-pair configurations,

c
ICY=T]I[a(i)B)—Bli)a(j)],

(i, j)

(1.2)

where the i and j indices may be chosen to range over dis-
joint A and B sublattices. Simple rules® for the evalua-
tion of matrix elements between such configurations lead
to diagonal elements

(CIH|C)Y=—3J(N/2—nc){CIC) , (1.3)
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where N is the total number of sites (or electrons) and n,
is the number of i,j pairs between other than NN sites.
In contrast, the energy for the usual (normalized) Néel
states is

(Néel|H|Néel)=—1JzN , (1.4)

where z is the lattice’s coordination number. The
lowest-energy singlet spin-pairing configurations |C ) cor-
respond to dimer coverings, with n.=0, and in the chem-
ical literature' are termed Kekulé structures. For the
present (square-planar) lattice with z =4 the Néel state is
of lower energy. However, a resonating-valence-bond
(RVB) ground-state Ansatz constructed from a linear
combination of (smaller n.) configurations |C) would ex-
hibit an enhanced stabilization due to (off-diagonal)
configuration mixing. Still the Néel state can also admix
with additional higher-energy spin configurations to sta-
bilize. If J;; >0 between next-nearest neighbors (NNN)
the problem shifts somewhat: the Néel state is frustrated,
while the RVB state is not. With Jyyn =J NN 74 the ener-
gies of (1.3) and (1.4) are shifted to become equal. In a
similar frustrated circumstance for the NN triangular-
lattice model Anderson and Fazekas’ have argued that
the RVB type of picture is preferred. Similar arguments
have also been made? in a more general context, but with
a focus on benzenoid hydrocarbons, where 2=z <3 and
the case for RVB views is stronger.

To clarify the ideas further it seems worthwhile to in-
vestigate the simplest RVB Ansatz, namely, solely that
with NN spin pairing. Upon understanding such a
zeroth-order RVB Ansatz, the effect of higher-order
corrections and excitations can be better addressed. Here
we focus on the role of the type of long-range order dis-
cussed in a more general context in an accompanying pa-
per.

II. RVB GROUND STATE
AND LONG-RANGE ORDER

The dimer coverings (Kekulé structures) on a square-
planar lattice exhibit a novel type of long-range order,?
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which is distinct from (and likely inconsistent with) the
familiar long-range magnetic ordering of a Néel state.
The present nonmagnetic ordering is illustrated in Fig. 1
on two width w =4 diagonal strips cut from the lattice.
In this figure the vertical dashed lines locate cell boun-
daries where we may count the number of singlet spin
pairs on bonds cut by one of these dashed lines. Thence,
in Fig. 1(a) one sees these numbers are alternately 3 and
w—3=1 along the strip. In Fig. 1(b) one finds another
sequence of numbers: 2 and w —2=2. As proved in the
accompanying paper, any such dimer covering, no matter
how extended further along the strip, exhibits its own
long-range spin-pairing order, identified by a number Q,
of spin pairings crossing a given cell boundary. There is
also a perpendicular direction with a long-range ordering
identified by the number Q, of spin-pairings crossing a
horizontal position line. Evidently, Q, ranges from O to
w, and @, ranges from O up to the length L of the strip.
Because Q, and Q, are long-range order parameters,
configurations of different Q, and Q, should not interact.
Thence, for each pair Q,,Q, we have a NN RVB Ansatz

2,0,
10,0,)= 3 IK), 2.1

K

where the sum is over those dimer coverings (Kekulé
structures) of the given Q’s. The associated energy is

EO(QI’QZ):<Q1QZIH|Q1Q2)/(QIQ2|Q1Q2> . 2.2)
Now with cyclic boundary conditions a primitive transla-
tion carries one position line (of Fig. 1) into an adjacent
one, so that it also carries configurations of class Q, into
those of w—Q,. Likewise, Q, can be carried into
L —Q,. As aconsequence,

EO(QUQz):EO(w_Q], Q,)
=E%Q,,L—Q,)

=E%w—0Q,,L—Q,), (2.3)
and' the energy per site evidently has an extremum at
Q,/w=Q,/L=1. Thence, it is reasonable to introduce

9 1 9 1
81: w B and 82: L 5 (2.4)

so that the energy per site is quadratic in 8, and §,.
There is no cross term 8,8, because 8; and §, transform
as coordinates along the horizontal and vertical direc-
tions, so that §,5, is of improper symmetry. Next the en-
ergy stabilization should tend to be greater, the greater
the number of Kekulé structures (or dimer coverings),
and this is known® to occur at the present extremum.
Thus, we anticipate that this extremum is a minimum.

The energy also varies in an interesting manner with
suitable lattice distortions. Let u; denote the extent to
which every bond in the odd columns of Fig. 1 is con-
tracted and every bond in the even columns is stretched.
Let u, denote a similar distortion alternating with rows.
Now the exchange parameter should vary linearly (to
leading order) with u; and u,,

.«(b)

FIG. 1. Two different dimer coverings on square-planar-
lattice strips. The top and bottom edges may be imagined to be
joined in a cyclic manner; therefore in (a) three and one dimers
alternate crossing the dashed “position” lines. In (b) two dimers
occur at these (now unmarked) positions.

Ty =Jo+J (fu tu,) , (2.5)

where J' >0 and the + or — signs apply depending upon
the location of bond i~j. Thus for a class of Kekulé
structures the Q; double bonds in an odd column and the
w —Q, double bonds in an even column should give sta-
bilizations ~+J'u,Q; and ~—J'u;(w—Q,), respec-
tively. In addition there should be (say Coulombic) terms
giving contributions quadratic in u; and in u,. The
overall energy per site is anticipated to be

ezconst+%§(8%+8%)+§(81ul+82u2)+%K(u% +u?).
(2.6)

The 8,u; terms here are not forbidden by crystal symme-
try. From our preceding arguments, « >0 and §> 0.

Within the approximation restricting H to the space of
Kekulé structures the electronic and displacive modes
couple. If (§,,5,)7(0,0) then Eq. (2.6) implies a distor-
tion to

u=—08,/x . (2.7)

Moreover if {2 > £k, the extremum at §,=8,=u, =u, =0
is a maximum in some skew direction (with no minimum
in the regime of our quadratic approximation), so that a
large distortion would occur. Evidently then for a
square-planar species (such as La,CuO,) there is no
(ground-state) distortion, and one has {?<é&x. Still for
excitations with (8,;,8,)7(0,0) commensurate distortions
should ensue.

III. EXCITATIONS

There are different types of excitations conceivable
from the presently studied (maximally spin-paired)
ground state. Iske and Caspers® have studied local triplet
pair excitations. Also there are excitations involving iso-
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FIG. 2. A dimer covering excepting a single unpaired site.
The number of dimers crossing position lines differs by one on
the two sides of the unpaired site.

lated sites. A combination of two such isolated sites can
lead to triplet pair wave functions, but they presumably
exhibit a short-range repulsion, since such a localized
NN triplet dimer costs +J /2 in energy compared to lo-
calization at greater separations. In addition there is a
delocalization energy that favors (nearly) independent un-
paired sites. Further, the charge-carrying excitations are
presumably such isolated sites with an excess or deficit of
one electron.

An example of a single-site excitation (configuration) is
shown in Fig. 2. Note that on this strip Q; =1 to the left
of this singular site and Q,;=2 for corresponding
columns to the right. In general, there is a shift of the
long-range order quantum numbers by +1 or —1 in
crossing over such an unpaired site. This excitation has
features of a soliton, which would best be described as a
wave packet. There are different zypes of isolated-site
configurations depending on whether Q; and Q, increase
or decrease as one proceeds (from left to right and top to
bottom) across the unpaired site. Since configurations of
each of these different types entail different nonmatching
long-range ordering regions (on at least one side), such
different types of configurations should not admix, and
different types of solitons arise. This type of label is also
seen to be uniquely characterized as the two parity labels
(say 7 and ,) for row and column numbers on which
the unpaired site occurs. A pair of types (s, 7,) and
(—ar;, —,) label soliton and antisoliton, since a pair of
such excitations near one another entail no overall
change in long-range order and so (if they are “neutral”
spinons) can annihilate each other. There is only one
soliton-antisoliton pair, since there is a correlation be-
tween row and column parities, as indicated in Fig. 3. As
a consequence, another way to distinguish soliton and an-
tisoliton is by the ( 4 or B) sublattice of the unpaired site.

On a finite-width w strip, the two phases on either side

FIG. 3. An illustration to show that Q, and Q, change by
one in opposite directions in crossing past an unpaired site.

of a soliton can be degenerate or nondegenerate. If the
phases are nondegenerate then confinement of soliton-
antisoliton pairs is indicated. If degenerate, as for the
strip of Fig. 2, then isolated solitons might occur. On a
very large (w X L) lattice the changes in Q, and Q, in go-
ing across a soliton from one phase to another are very
small compared to w and L, so that 8§, ~1/w and
6,~1/L, and the two phases are very nearly degenerate.
For this case the behavior of these solitons seems to be a
more delicate matter.

A fuller characterization of the soliton excitations in-
volves local deviations,

local
e 1 3.1)
1 2
where Q/°°® is the number of spin pairings crossing a
dashed line (as in Figs. 1 or 2) of orientation i within a lo-
cal length /. In fact, at a “longitudinal” distance, ~/ past
a soliton on the less stabilized side, the defect should also
(in order to avoid too long a boundary between different
phases) presumably have only spread out a ‘“traverse”
distance ~1, so that 8!°°®~1/1, €"°?~1/12, and the ener-
gy contribution from all the sites of the given longitudi-
nal distance past the solution is ~/€'°~1//. Summa-
tion over all the sites up to a given distance thence gives
an energy cost of ~Inl. Therefore, even for the lattice,
two solitons should attract, albeit rather weakly. The lo-
cal u,,u, lattice distortions would slightly enhance the
attraction, while lessening the wave packet dispersion.
This applies even if the solitons are charged, although the
screened repulsion ~e ~% /I in combination with long flat
attraction ~1n/ could lead to a rather weakly bound pair.

local —
5 =

IV. QUALIFICATIONS

The preceding two sections outline a number of quali-
tative features that arise within the (severe) NN RVB pic-
ture. Notably a means for either “spinon” or ‘“holon”
pairing emerged.

There remains the question of the adequacy of the NN
RVB Ansatz. The suggestion of the introduction that the
ground state of the NN model is Néel like is supported by
accurate computations,'® but again RVB Ansitze should
improve with NNN interactions. However, if derived
from the Hubbard Hamiltonian, then Kekulé-structure
destabilizing terms occur for rings of size 4. This essen-
tially is Hiickel’s 4n +2 rule in chemistry, though for
Hiickel’s conjugated-hydrocarbon systems the large ratio
t /U =0.6 of Hubbard-model parameters destabilizes 4n
rings even more so. The work of Rokhsar and Kivelson!!
with regard to their “hard-dimer” model is relevant for
such resonance frustration. A further question remains
as to whether the admittance of longer-range spin pair-
ings is sufficiently extensive to destroy the ordering de-
scribed here. From the accompanying paper it is seen
that it is preserved if the additional VB structures have a
cutoff in the range of their spin pairings. The key con-
cern is the admixture of VB structures with very-long-
range spin pairings.

Another way to stabilize the RVB picture is to dope
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the system, as in forming high-T, superconductors. Even
if the dopant sites were immobile the RVB picture should
be enhanced, since the mean coordination number z,
which appears in (1.4), is reduced. Mobility of the
dopant sites gives further kinetic stabilization and is
termed “asynchronous resonance” by Pauling.!? In the

nondilute regime the relevance of the long-range order
we have discussed might change.
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