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Abstract

In many important settings, subjects can show significant heterogeneity in response to a stimu-

lus or “treatment”. For instance, a treatment that works for the overall population might be highly

ineffective, or even harmful, for a subgroup of subjects with specific characteristics. Similarly, a

new treatment may not be better than an existing treatment in the overall population, but there

is likely a subgroup of subjects who would benefit from it. The notion that “one size may not

fit all” is becoming increasingly recognized in a wide variety of fields, ranging from economics to

medicine. This has drawn significant attention to personalize the choice of treatment, so it is

optimal for each individual. An optimal personalized treatment is the one that maximizes the

probability of a desirable outcome. We call the task of learning the optimal personalized treatment

personalized treatment learning. From the statistical learning perspective, this problem imposes

some challenges, primarily because the optimal treatment is unknown on a given training set. A

number of statistical methods have been proposed recently to tackle this problem. However, to

the best of our knowledge, there has been no attempt so far to provide a comprehensive view of

these methods and to benchmark their performance. The purpose of this paper is twofold: i) to

describe seven recently proposed methods for personalized treatment learning and compare their

performance on an extensive numerical study, and ii) to propose a novel method labeled causal

conditional inference trees and its natural extension to causal conditional inference forests. The

results show that our new proposed method often outperforms the alternatives on the numerical

settings described in this article. We also illustrate an application of the proposed method using

data from a large Canadian insurer for the purpose of selecting the best targets for cross-selling an

insurance product.
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1. Introduction

In the past two decades, the rapid advances in data collection and storage technology have

created vast quantities of data. The field of statistics was revolutionized from the development of

algorithmic and data models (Brieman, 2001) in response to new challenging problems coming from

science and industry, mostly resulting from the increasing size and complexity in the data structures.

In this context, the concept of learning from data (Abu-Mostafa et al., 2012) has emerged as the

task of extracting “implicit, previously unknown, and potentially useful information from data”

(Frawley, 1991). A usual distinction is made between supervised and unsupervised learning. In

the former, the objective is to predict the value of a response variable based on a collection of

observable covariates. In the later, there is no response variable to “supervise” the learning process,

and the objective is to find structures and patterns among the covariates.

In many important settings, the values of some covariates are not only observable, but they can

be chosen at the discretion of a decision maker (Žliobaitė and Pechenizkiy, 2010). For instance, a

doctor can choose the medical treatment for a patient among a set of alternatives, a company can

decide the type of marketing intervention activity (direct mail, phone call, email, etc.) to make an

offer to a client, a bank can decide the credit limit amount to offer to a client on a credit card. In all

these examples, the objective is not necessarily to predict a response variable with high accuracy,

but to select the optimal action or “treatment” for each subject based on his or her individual

characteristics1. Optimal is understood here as the treatment that maximizes the probability of

a desirable outcome. We call the task of learning the optimal personalized treatment personalized

treatment learning.

A key challenge with personalized treatment learning is that the quantity we are trying to

predict (i.e., the optimal personalized treatment) is unknown on a given training data set. As

∗Corresponding author. Tel. : +1 905 606 1175; Fax: +1 905 286 4756
Email addresses: leo.guelman@rbc.com (Leo Guelman), mguillen@ub.edu (Montserrat Guillén),

amperez@ub.edu (Ana M. Pérez-Maŕın)
1Domain knowledge can play an important role in the preliminary determination of the relevant subject charac-

teristics to select the optimal treatment (Sinha and Zhao, 2008).
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each subject can only be exposed to a single treatment, the value of the response under alternative

treatments is unobserved; a problem also known as the fundamental problem of causal inference

(Holland, 1986). This aspect makes this problem unique within the discipline of learning from

data.

The underlying motivation for personalized treatment learning is that subjects can show sig-

nificant heterogeneity in response to treatments, so making an accurate treatment choice for each

subject becomes essential. For instance, a new treatment may not be better than an existing treat-

ment in the overall population, but it might be beneficial/harmful for a subgroup of subjects. The

idea that “one size may not fit all” has been increasingly recognized in a variety of disciplines, rang-

ing from economics to medicine. Alemi et al. (2009) argue that improved statistical methods are

needed for personalized treatments and proposed an adapted version of the K -Nearest-Neighbor

(KNN) classifier (Cover and Hart, 1967). Imai and Ratkovic (2012) proposed a method that adapts

the support vector machine classifier (Vapnik, 1995) and then apply it to a widely known dataset

pertaining to the National Supported Work program (LaLonde, 1986; Dehejia and Wahba, 1999)

to identify the characteristics of workers who greatly benefit from (or are negatively affected by) a

job training program. Tian et al. (2012) proposed a method designed to deal with high dimensional

covariates and they use it to identify breast cancer patients who may or may not benefit from a

specific treatment based on the individual patient’s gene expression profile. Liang et al. (2006)

describe a web-based intervention support system to provide tailored interventions to individual

patients with chronic diseases. Xu et al. (2008) proposed a Bayesian network model that inte-

grates with other components to better support personalized mobile advertising applications. In

the context of insurance, Guelman et al. (2012, 2013) proposed a method based on an adapted

version of random forests to identify policyholders who are positively/negatively impacted from a

client retention program. Also, Guelman and Guillén (2014) describe a framework to determine

the optimal rate change (i.e., playing the role of the treatment) for each individual policyholder

for the purpose of maximizing the overall expected profitability of an insurance portfolio.

In addition to the methods discussed above, other methods have been proposed in the literature,

mostly in the context of clinical trials and direct marketing (Su et al., 2009; Qian and Murphy,
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2011; Zhao et al., 2012; Jaśkowski and Jaroszewicz, 2012; Larsen, 2009; Radcliffe and Surry, 2011;

Rubin and Waterman, 2006; Tang et al., 2013). However, to the best of our knowledge, there has

been no attempt so far to provide a comprehensive view of the methods and to benchmark their

performance. The purpose of this paper is twofold. First, to describe seven recently proposed

methods for personalized treatment learning and compare their performance on synthetic data.

While other methods beyond those covered in this article have been proposed, we believe the

ones described here provide a good representation of the current state of methods designed for

personalized treatment learning. Second, to propose a novel method labeled causal conditional

inference trees and its natural extension to causal conditional inference forests.

This paper is organized as follows. Section 2 defines the scope of the personalized treatment

learning problem. Section 3 follows with a detailed description of seven existing methods to tackle

this problem. In Section 4, we discuss our new proposed method. In Section 5, we provide the finite

sample performance of all methods under an extensive simulation study. The results show that

our new proposed method often outperforms the alternatives on the numerical settings described

in this article. Finally, in Section 6 we describe an empirical application of the proposed method,

using data from a major Canadian insurer, to determine which Auto insurance policyholders are

more likely to be positively stimulated to buy a Home policy as a result of a marketing cross-sell

intervention activity.

2. Problem formulation

We postulate the personalized treatment learning problem in the context of Rubin’s model of

causality (Rubin, 1974, 1977, 1978, 2005). Under this model, we conceptualize the learning problem

in terms of the potential outcomes under treatment alternatives, only one of which is observed for

each subject. The causal effect of a treatment on a subject is defined in terms of the difference

between an observed outcome and its counterfactual. The notation introduced below will be used

throughout the paper.

In the following, we use upper case letters to denote random variables and lower case letters

to denote values of the random variables. Assume that a sample of subjects is randomly assigned
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to two treatment arms, denoted by A, A ∈ {0, 1}, also referred as control and treatment states,

respectively. Let Y (a) ∈ {0, 1} denote a binary potential outcome of a subject if assigned to

treatment A = a, a = {0, 1}. The observed outcome is Y = AY (1) + (1− A)Y (0). Throughout

this paper we assume a value of Y = 1 is more desirable than Y = 0. Each subject is characterized

by a p-dimensional vector of baseline covariates X = (X1, . . . , Xp)
>. We assume the data consists

of L independent and identically distributed realizations of (Y,A,X), {(Y`, A`,X`), ` = 1, . . . , L}.

Under the assumption of randomization, treatment assignment A ignores its possible impact on

the outcomes Y (0) and Y (1), and hence they are independent – i.e., using the notation of Dawid

(1979), {Y`(0), Y`(1) ⊥ A`}. In this context, the average treatment effect (ATE) can be estimated

by

τ = E[Y`(1)− Y`(0)]

= E[Y`|A` = 1]− E[Y`|A` = 0]. (1)

In observational studies, subjects assigned to different treatment conditions are not exchange-

able and thus direct comparisons can be misleading (Rosenbaum and Rubin, 1983).

In many circumstances, subjects can show significant heterogeneity in response to treatments,

in which case the ATE is of limited value. The problem addressed in this paper is the identification

of subgroups of subjects for which the treatment is most beneficial (or most harmful) within the

context of experimental data. As discussed by Holland and Rubin (1988), the most granular

level of causal inference is the individual treatment effect (ITE), defined by Y`(1)− Y`(0) for each

subject ` = {1, . . . , L}. However, this is an unobserved quantity, as a subject is never observed

simultaneously in both treatment states. The best approximation to the ITE that is possible to

obtain in practice is the subpopulation treatment effect (STE), which is defined for a subject with

individual covariate profile X` = x by
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τ(x) = E[Y`(1)− Y`(0)|X` = x]

= E[Y`|X` = x, A` = 1]− E[Y`|X` = x, A` = 0]. (2)

Understanding the precise nature of the STE variability can be extremely valuable to personalize

the choice of treatment, so that it is most appropriate for each individual. Henceforth in this

paper, we use the term personalized treatment effect (PTE) to refer to the subpopulation treatment

effect (2).

A personalized treatment rule H is a map from the space of baseline covariates X to the space

of treatments A, H(X) : Rp → {0, 1}. An optimal treatment rule is the one that maximizes the

expected outcome if the personalized treatment rule is implemented for the whole population2,

i.e., E[Y (H(X))]. A straightforward calculation gives the optimal personalized treatment rule

H∗ = argmaxHE[Y (H(X))] for a subject with covariates X` = x as H∗ = 1 if τ(x) > 0, and

H∗ = 0 otherwise. In many situations, the alternative treatments have unequal costs, in which

case the decision rule can simply be replaced by H∗ = 1 if τ(x) > c, and H∗ = 0 otherwise, for

some constant probability threshold c.

3. Models for personalized treatment learning

In this section, we describe seven of the most prominent methods discussed in the literature to

estimate personalized treatment effects (PTE).

3.1. Indirect estimation methods

We discuss below three indirect methods for estimating personalized treatment effects. We

labeled these methods “indirect” as they propose a systematic 2-stage procedure to estimate the

PTE. In the first stage, they attempt to achieve high accuracy in predicting the outcome Y condi-

2Notice that since Y is binary, this expectation has a probabilistic interpretation. That is, E[Y (H(X))] =

Prob
(
Y (H(X)) = 1

)
.
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tional on the covariates X and treatment A. In the second stage, they subtract the predicted value

of Y under each treatment to obtain a PTE estimate.

The first method is the difference score method discussed by Larsen (2009). The most intuitive

approach to estimate personalized treatment effects is to fit two independent models for the response

Y, one based on the treated subjects, E[Y |X, A = 1], and one based on the control subjects,

E[Y |X, A = 0]. An estimate of the PTE for a subject with covariate X` = x is then obtained by

subtracting the estimated value of the response from the two models. Any conventional statistical

or algorithmic binary classification method may serve to fit the models.

Alternatively, a second method in the same spirit is the interaction approach proposed by Lo

(2002). This method consists in fitting a single model to the response on the main effects and adding

interaction terms between each covariate X = (X1, . . . , Xp)
> and the treatment indicator A. If

the model is fitted using standard logistic regression, the estimated parameters of the interaction

terms measure the additional effect of each covariate due to treatment. An estimate of the PTE for

a subject with covariates X` = x is obtained by subtracting the predicted probabilities by setting,

in turn, A` = 1 and A` = 0 in the fitted model.

The interaction method represents an improvement over the difference score method in that

it provides a formal means of performing significance tests of the interaction parameters between

the treatment and the covariates. However, it suffers from overfitting problems when including

all interaction effects with a high dimensional covariate space Zhao and Zeng (2012). Although,

overfitting may be prevented by using LASSO logistic regression (Tibshirani, 1996) for variable

selection and shrinkage, this method places the same LASSO constraints over main and treatment

heterogeneity parameters. This may be problematic as the variability in the response attributable

to the interaction effects is usually a small fraction of the variability in the response attributable to

the main effects. To address this problem, a third method proposed by Imai and Ratkovic (2012),

called L2-SVM , is an adapted version of the support vector machine (SVM) classifier (Vapnik,

1995). The SVM can be expressed as a penalization method (Hastie et al., 2009, p. 426) and this

can be adapted to include separate LASSO constraints over the main and treatment heterogeneity

parameters. Specifically, let Y ∗` = 2Y` − 1 ∈ {−1, 1} and consider the following optimization
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problem

min
(α,θ)

L∑
`=1

∣∣1− Y ∗` (µ+ α>X` + θ>X`A`)
∣∣2
+

+ λX

p∑
j=1

|αj |+ λXA

p∑
j=1

|θj | (3)

where λX and λXA are pre-specified separate LASSO penalties for the main effect parameters α

and treatment heterogeneity parameters θ, respectively, |x|+ ≡ max(x, 0) is the hinge-loss (Wahba,

2002), and µ is a constant term.

After model (3) is estimated, a PTE estimate can be obtained as follows. Let R̂` = µ̂+ α̂>X`+

θ̂>X`A` and R̂∗` denote the predicted value R̂` truncated at positive and negative one. The PTE is

estimated as the difference in the truncated values of the predicted response under each treatment

condition. That is,

τ̂(x) = 1/2
[
(R̂`|X = x`, A` = 1)− (R̂`|X = x`, A` = 0)

]
. (4)

A key problem with the indirect estimation methods is the mismatch between the target variable

they attempt to estimate and the target variable defined in (2). For instance, even when any of

the indirect estimation methods are correctly specified to predict Y` conditional on covariates

X` = x and treatment A, it is not guaranteed that these models can accurately predict Y`(1) −

Y`(0) conditional on the same covariates. This is because these methods emphasize the prediction

accuracy on the response, not the accuracy in estimating the change in the response caused by the

treatment at the subject level.

3.2. Modified covariate method

This method, proposed by Tian et al. (2012), consists in modifying the covariates in a sim-

ple way, and then fitting an appropriate regression model using the modified covariates. A key

advantage of this approach is that it avoids having to directly model the main effects.

Specifically, this method involves performing the following steps: i) transform the treatment

indicator as A∗` = 2A` − 1 ∈ {−1, 1}, ii) transform each covariate in X` as Z` = X∗`A
∗
`/2, where

X∗ is the centered version of X, and iii) fit a regression model to predict the outcome variable Y

on the modified covariates Z. For instance, using a logistic regression model, estimate
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P (Y = 1|X, A) =
exp(γ>Z)

1 + exp(γ>Z)
. (5)

Under the very general assumption that P (A∗ = 1) = P (A∗ = −1) = 1/2, a surrogate to the

personalized treatment effect for a subject with covariates X` = x is given by

τ̂(x) =
exp(γ̂>x/2)− 1

exp(γ̂>x/2) + 1
. (6)

To see that (6) is an appropriate estimate, we must consider the maximum likelihood estimator

of model (5). It is easy to see (Tian et al., 2012) that the minimizer of E{Y f(X)A∗ − log(1 +

exp(f(X)A∗))}, with f(X) = γ>X∗/2, is given by

f∗(x) = log
{1 + τ(x)

1− τ(x)

}
, (7)

where τ(x) is the personalized treatment effect defined in (2). Therefore, (6) may serve as an

estimate of the PTE.

In case the dimension of X, p, is high, appropriate variable selection procedures can directly be

applied to the modified data. For instance, an L1 -regularized logistic regression (Hastie et al., 2009,

p. 125) can be estimated by minimizing 1
L

∑L
`=1−{Y`γ>Z` − log(1 + exp(γ>Z`)) + λ0

∑p
j=1 |γj |},

where λ0 is a pre-specified LASSO penalty.

In the derivation above, the assumption of equal probability of treatments is used. This may

be perceived as very restrictive as this assumption is unlikely to hold in practice. However, various

resampling methods from the machine learning literature (Weiss and Provost, 2003; Estabrooks et

al., 2004; Chawla, 2005) could be used for the purpose of balancing treatments.

3.3. Modified outcome method

The modified outcome method was proposed by Jaśkowski and Jaroszewicz (2012). It consists

in first defining a new outcome variable W such that
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W` =


1 if A` = 1 and Y` = 1

1 if A` = 0 and Y` = 0

0 otherwise,

and then fitting a binary regression model to W on the baseline covariates X. Recall that we

assumed that a value of Y = 1 is more desirable that Y = 0, thus we can intuitively think of

W = 1 as the event of obtaining a potential outcome under treatment which is at least as good as

the observed outcome. The probability of this event is given by

P (W` = 1|X` = x) = P (W` = 1|X` = x, A` = 1)P (A` = 1|X` = x) +

P (W` = 1|X` = x, A` = 0)P (A` = 0|X` = x)

= P (Y` = 1|X` = x, A` = 1)P (A` = 1|X` = x) +

P (Y` = 0|X` = x, A` = 0)P (A` = 0|X` = x)

= P (Y` = 1|X` = x, A` = 1)P (A` = 1) +

P (Y` = 0|X` = x, A` = 0)P (A` = 0),

where the last equality follows from the randomization assumption. Now, making the same as-

sumption as in the modified covariate method that P (A = 1) = P (A = 0) = 1/2 we obtain

τ(x) = P (Y` = 1|A` = 1,X` = x)− P (Y` = 1|A` = 0,X` = x)

= 2P (W` = 1|X` = x)− 1.

Hence, if for instance a logistic regression model is used to estimate
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P (W = 1|X, A) =
exp(β>X)

1 + exp(β>X)
, (8)

then

τ̂(x) = 2
exp(β̂>X)

1 + exp(β̂>X)
− 1 (9)

can be used as a surrogate to the PTE.

In the Appendix, we show that the maximum likelihood estimator (MLE) of the working models

(8) and (5) are equivalent and so they produce similar PTE estimates.

3.4. Causal K-nearest neighbor (CKNN)

A simple non-parametric method briefly discussed by Alemi et al. (2009) and also by Su et al.

(2012) to estimate personalized treatment effects is to use a modified version of the K -Nearest-

Neighbor (KNN) classifier (Cover and Hart, 1967).

The basic idea of the CKNN algorithm is that to estimate the personalized treatment effect

for a target subject, we may wish to weight the evidence of subjects similar to the target more

heavily. Consider a subject with covariates X` = x and a neighborhood of x, Sk(x), represented

by a sphere centered at x containing precisely K subjects, independently of their outcome Y and

treatment type A. An estimate of the PTE is given by

τ̂(x) =

∑
`:x`∈Sk(x) Y`A`∑
`:x`∈Sk(x)A`

−
∑

`:x`∈Sk(x) Y`(1−A`)∑
`:x`∈Sk(x)(1−A`)

. (10)

The CKNN approach proposed in (10) assigns an equal weight of 1 to each of the K subjects

within the neighbor Sk(x) and 0 weight to all other subjects. Alternatively, it is common to use

kernel smoothing methods to assign weights that die off smoothly with the distance ||x` − x|| for

all subjects ` = {1, . . . , L}. Also, notice that (10) is defined if at least one control and one treated

subject are in the neighbor of x (K ≥ 2).

A severe limitation of this method is that the entire training data have to be stored to score

new subjects, leading to expensive computations for large data sets.
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3.5. Uplift random forests

Tree-based models represent an intuitive approach to estimate (2), as appropriate split criteria

can be designed to partition the input space into subgroups with heterogeneous treatment effects.

Uplift random forests is a tree-based method proposed by Guelman et al. (2013) to estimate

personalized treatment effects. Algorithm 1 shows the details. In short, an ensemble of B trees

are grown, each built on a fraction ν of the training data3 (which includes both treatment and

control records). The sampling, motivated by Friedman (2002), incorporates randomness as an

integral part of the fitting procedure. This not only reduces the correlation between the trees in

the sequence, but also reduces the computing time by the same fraction ν. A typical value for

ν can be 1/2, although for large data, it can be substantially smaller. The tree-growing process

involves selecting n ≤ p covariates at random as candidates for splitting. This adds an additional

layer of randomness, which further reduces the correlation between trees, and hence reduces the

variance of the ensemble. The split rule is based on a measure of distributional divergence, as

defined in Rzepakowski and Jaroszewicz (2012), also discussed below. The individual trees are

grown to maximal depth (i.e., no pruning is done). The estimated personalized treatment effect is

obtained by averaging the predictions of the individual trees in the ensemble.

As the fundamental idea is to maximize the distance in the class distributions of the response Y

between treatment and control groups, it is sensible to construct a split criteria by borrowing the

concept of distributional divergence from information theory. In particular, if we let P{Y (1)} and

P{Y (0)} be the class probability distributions over the response variable Y for the treatment and

control, respectively, then Kullback–Leibler distance (KL) or Relative Entropy (Cover and Thomas,

1991, p. 9) between the two distributions is given by

KL
(
P{Y (1)}||P{Y (0)}

)
=

∑
Y (A)∈{0,1}

P{Y (1)} log
P{Y (1)}
P{Y (0)}

, (11)

where the logarithm is to base two. The Kullback–Leibler distance is always nonnegative and

3In the standard random forest algorithm, bootstrap samples of the training data are drawn before fitting each
tree. Our motivation for sampling a fraction of the data instead, was to reduce computational time on large data
sets.
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is zero if and only if P{Y (1)} = P{Y (0)}. Since the KL distance is non-symmetric, it is not a

true distance measure. However, it is frequently useful to think of KL as a measure of divergence

between distributions.

For any node, suppose there is a candidate split Ω which divides it into two child nodes, nL and

nR, denoting the left and right node respectively. Further let L be the total number of subjects in

the parent node and suppose LnL and LnR represent the number of subjects that go into nL and

nR, respectively. Conditional on a split Ω, distributional divergence can be expressed as the KL

distance, weighted by the proportion of subjects in each node

KL
(
P{Y (1)}||P{Y (0)}|Ω

)
=

1

L

∑
i∈{nL,nR}

LiKL
(
P{Y (1)|i}||P{Y (0)|i}

)
. (12)

Now, define KLgain as the increase in the KL distance from a split Ω, relative to the KL

distance in the parent node

KLgain(Ω) = KL
(
P{Y (1)}||P{Y (0)}|Ω

)
−KL

(
P{Y (1)}||P{Y (0)}

)
. (13)

The final splitting rule adds a normalization factor to (13). This factor attempts to penalize

splits with unbalanced proportions of subjects associated with each child node, as well as splits

that result in unbalanced treatment/control proportion in each child node (since such splits are

not independent of the group assignment). The final split criterion is then given by

KLratio(Ω) =
KLgain(Ω)

KLnorm(Ω)
(14)

where

KLnorm(Ω) = H
(L(1)

L
,
L(0)

L

)
KL

(
P{Ω(1)}||P{Ω(0)}

)
+

L(1)

L
H
(
P{Ω(1)}

)
+
L(0)

L
H
(
P{Ω(0)}

)
. (15)

L(A) in (15) denotes the number of subjects in treatment A ∈ {0, 1}, P{Ω(A)} represents the
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probability distribution over the split outcomes {nL, nR} for subjects with treatment A, and H(.) is

the entropy function, defined by H(P{Ω(A)}) = −P{Ω(A) = nL}log(P{Ω(A) = nL})−P{Ω(A) =

nR}log(P{Ω(A) = nR}) and H(L(1)
L , L(0)

L ) = −L(1)
L log(L(1)

L )− L(0)
L log(L(0)

L ).

The last two terms in (15) penalize splits with a large number of outcomes, by means of the

sum of entropies of the split outcomes in treatment and control groups weighted by the proportion

of training cases in each group. The first term penalizes uneven splits, which is measured by the

divergence in the distribution of the split outcomes between the groups. This term is multiplied

by the entropy of the proportion of instances in treatment and control groups. This is to explicitly

impose a smaller penalty when there is not enough data in one of these groups.

A problem with the KLratio is that extremely low values of the KLnorm may favor splits despite

their low KLgain. To avoid this, the KLratio criterion selects splits that maximize the KLratio,

subject to the constraint that the KLgain must be at least as great as the average KLgain over all

splits considered.

Algorithm 1 Uplift random forest

1: for b = 1 to B do
2: Sample a fraction ν of the training observations L without replacement
3: Grow an uplift decision tree UTb to the sampled data:
4: for each terminal node do
5: repeat
6: Select n covariates at random from the p covariates
7: Select the best variable/split-point among the n covariates based on KLratio
8: Split the node into two branches
9: until a minimum node size lmin is reached

10: end for
11: end for
12: Output the ensemble of uplift trees UTb; b = {1, . . . , B}
13: The predicted personalized treatment effect for a new data point x, is obtained by averaging

the predictions of the individual trees in the ensemble: τ̂(x) = 1
B

∑B
b=1 UTb(x)

4. Causal conditional inference trees

We propose here a tree-based method to estimate personalized treatment effects, with important

enhancements over the uplift random forest algorithm. There are two fundamental aspects in which

uplift random forests could be significantly improved: overfitting and the selection bias towards
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covariates with many possible splits. The development of the framework introduced here to tackle

these issues was motivated by the unbiased recursive partitioning method proposed by Hothorn et

al. (2006).

With regards to overfitting, recall that the individual trees in the forest are grown to maximal

depth. While this helps to reduce bias, there is the familiar tradeoff with variance. In the context of

personalized treatment effects, the overfitting problem is exacerbated as, generally, the variability

in the response from the treatment heterogeneity effects is small relative to the variability in

the response from the main effects. If the fitted model is not able to distinguish well between

the relative strength of these two effects, that may easily translate into overfitting problems. In

conventional decision trees (Brieman et al., 1984; Quinlan, 1993), overfitting is solved by a pruning

procedure. This consists in traversing the tree bottom up and testing for each (non-terminal)

node, whether collapsing the subtree rooted at that node with a single leaf would improve the

model’s generalization performance. Tree-based methods proposed in the literature to estimate

personalized treatment effects (Rzepakowski and Jaroszewicz, 2012; Su et al., 2012; Radcliffe and

Surry, 2011) use some sort of pruning. However, the pruning procedures used by these methods

are all ad hoc and lack a theoretical foundation.

Besides the overfitting problem, the second concern is the biased variable selection towards

covariates with many possible splits or missing values. This problem is also present in conventional

decision trees, such as CART (Brieman et al., 1984) and C4.5 (Quinlan, 1993), and results from

the maximization of the split criterion over all possible splits simultaneously (Kass, 1980; Brieman

et al., 1984, p. 42).

Following the framework proposed by Hothorn et al. (2006), we improved considerably the gen-

eralization performance of the uplift random forest method by solving both the overfitting and the

biased variable selection problems. The key to the solution is the separation between the variable

selection and the splitting procedure, coupled with a statistically motivated and computational ef-

ficient stopping criteria based on the theory of permutation tests developed by Strasser and Weber

(1999).

The pseudocode of the proposed algorithm is shown in Algorithm 2. The most relevant aspects
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to discuss are steps 7-12. Specifically, for each terminal node in the tree we test the global null

hypothesis of no interaction effect between the treatment A and any of the n covariates selected

at random from the set of p covariates. The global hypothesis of no interaction is formulated

in terms of n partial hypotheses Hj
0 : E[W |Xj ] = E[W ], j = {1, . . . , n}, with the global null

hypothesis H0 = ∩nj=1 H
j
0 , where W is defined as in the modified outcome method discussed in

Section 3.3. Thus, a conditional independence test of W and Xj has a causal interpretation for the

treatment effect for subjects with baseline covariate Xj . Multiplicity in testing can be handled via

Bonferroni-adjusted P values or alternative adjustment procedures (Wright, 1992; Shaffer, 1995;

Benjamini and Hochberg, 1995). When we are not able to reject H0 at a prespecified significance

level α, we stop the splitting process at that node. Otherwise, we select the j∗th covariate Xj∗

with the smallest adjusted P value. The algorithm then induces a partition Ω∗ of the covariate

Xj∗ in two disjoint sets M⊂ Xj∗ and Xj∗ \ M based on the split criterion discussed below. This

statistical approach prevents overfitting, without requiring any form of pruning or cross-validation.

One approach to measure the independence between W and Xj would be to use a classical

statistical test, such as a Pearson’s chi-squared. However, the assumed distribution from these

tests is only a valid approximation to the actual distribution in the large-sample case, and this

does not likely hold near the leaves of the decision tree. Instead, we measure independence based

on the theoretical framework of permutation tests, which is admissible for arbitrary sample sizes.

Strasser and Weber (1999) developed a comprehensive theory based on a general functional form of

multivariate linear statistics appropriate for arbitrary independence problems. Specifically, to test

the null hypothesis of independence between W and Xj , j = {1, . . . , n}, we use linear statistics of

the form

Tj = vec

(
L∑
`=1

g(Xj`)h(W`, (W1, . . . ,WL))>

)
∈ Rujv×1 (16)

where g : Xj → Ruj×1 is a transformation of the covariate Xj and h : W → Rv×1 is called

the influence function. The “vec” operator transforms the uj × v matrix into a ujv × 1 column

vector. The distribution of Tj under the null hypothesis can be obtained by fixing Xj1, . . . , XjL

and conditioning on all possible permutations S of the responses W1, . . . ,WL. A univariate test
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statistic c is then obtained by standardizing Tj ∈ Rujv×1 based on its conditional expectations

µj ∈ Rujv×1 and covariance Σj ∈ Rujv×ujv, as derived by Strasser and Weber (1999). A common

choice is the maximum of the absolute values of the standardized linear statistic

cmax(T , µ,Σ) = max
T − µ

diag(Σ)1/2
, (17)

or a quadratic form

cquad(T , µ,Σ) = (T − µ)Σ+(T − µ)>, (18)

where Σ+ is the Moore-Penrose inverse of Σ. Many well-known classical tests (e.g., Pearson’s

chi-squared, Cochran-Mantel-Haenszel, Wilcoxon-Mann-Whitney) can be formulated from (16) by

choosing the appropriate transformation g, influence function h and test statistic c to map the

linear statistic T into the real line. This sheds light on the extension of the proposed method to

response variables measured in arbitrary scales and multi-category or continuos treatment settings.

In step 11 of Algorithm 2, we select the covariate Xj∗ with smallest adjusted P value. The P

value Pj is given by the number of permutations s ∈ S of the data with corresponding test statistic

exceeding the observed test statistic t ∈ Rujv×1. That is,

Pj = P (c(Tj , µj ,Σj) ≥ c(tj , µj ,Σj)|S).

For moderate to large samples sizes, it might not be possible to obtain the exact distribution

(calculated exhaustively) of the test statistic. However, we can approximate the exact distribution

by computing the test statistic from a random sample of the set of all permutations S. In addition,

Strasser and Weber (1999) showed that the asymptotic distribution of the test statistic given by

(17) tends to multivariate normal with parameters µ and Σ as L → ∞. The test statistic (18)

follows an asymptotic chi-squared distribution with degrees of freedom given by the rank of Σ.

Therefore, asymptotic P values can be computed for these test statistics.

Once we select the covariate Xj∗ to split, we next use a split criteria which explicitly attempts
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to find subgroups with heterogeneous treatment effects. Specifically, we use the following measure

proposed by Su et al. (2009), also implemented later by Radcliffe and Surry (2011) for assessing

the personalized treatment effect from a split Ω

G2(Ω) =
(L− 4){(ȲnL(1)− ȲnL(0))− (ȲnR(1)− ȲnR(0))}2

σ̂2{1/LnL(1) + 1/LnL(0) + 1/LnR(1) + 1/LnR(0)}
(19)

where nL and nR denotes the left and right child nodes, respectively, Li∈{nL,nR}(A) denotes the

number of observations in child node i exposed to treatment A ∈ {0, 1}, and

Ȳi∈{nL,nR}(1) =

∑
∀`∈i Y`A`∑
∀`∈iA`

, (20)

Ȳi∈{nL,nR}(0) =

∑
∀`∈i Y`(1−A`)∑
∀`∈i(1−A`)

, (21)

σ̂2 =
∑

A∈{0,1}

∑
i∈{nL,nR}

Li(A)Ȳi(A)(1− Ȳi(A)). (22)

The best split is given by G2(Ω∗) = maxΩG
2(Ω) – i.e., the split that maximizes the criterion G2(Ω)

among all permissible splits. It can easily be seen (Su et al., 2009), that the split criteria given

in (19) is equivalent to a chi-squared test for testing the interaction effect between the treatment

and the covariate Xj∗ dichotomized at the value given by the split Ω.
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Algorithm 2 Causal conditional inference forests

1: for b = 1 to B do
2: Draw a sample with replacement from the training observations L such that P(A=1) =

P(A=0) = 1/2
3: Grow a conditional causal inference tree CCITb to the sampled data:
4: for each terminal node do
5: repeat
6: Select n covariates at random from the p covariates
7: Test the global null hypothesis of no interaction effect between the treatment A and

any of the n covariates (i.e., H0 = ∩nj=1H
j
0 , where Hj

0 : E[W |Xj ] = E[W ]) at a level of
significance α based on a permutation test

8: if the null hypothesis H0 cannot be rejected then
9: Stop

10: else
11: Select the j∗th covariate Xj∗ with the strongest interaction effect (i.e., the one with

the smallest adjusted P value)
12: Choose a partition Ω∗ of the covariate Xj∗ in two disjoint setsM⊂ Xj∗ and Xj∗ \ M

based on the G2(Ω) split criterion
13: end if
14: until a minimum node size lmin is reached
15: end for
16: end for
17: Output the ensemble of causal conditional inference trees CCITb; b = {1, . . . , B}
18: The predicted personalized treatment effect for a new data point x, is obtained by averaging

the predictions of the individual trees in the ensemble: τ̂(x) = 1
B

∑B
b=1CCITb(x)

5. Simulation studies

In this section, we conduct a numerical study for the purpose of assessing the finite sample

performance of the analytical methods introduced in Sections 3 and 4. Most of these methods

require specialized software for implementation. We developed a software package in R named up-

lift (Guelman, 2014), which implements a variety of algorithms for building and testing personal-

ized treatment learning models. Currently, the following methods are implemented: Uplift random

forests (upliftRF), Causal conditional inference forests (ccif), Causal K-nearest neighbor (cknn),

Modified covariate method (mcm) and Modified outcome method (mom). uplift is available from

the Comprehensive R Archive Network at: http://www.cran.r-project.org/package=uplift.

We also used the package FindIt, which implements the L2-SVM method (l2svm), developed by

the authors of the method (Imai and Ratkovic, 2012). Finally, the Difference score (dsm) and

19

http://www.cran.r-project.org/package=uplift


Interaction (int) methods can be implemented straightforwardly using readily available software.

Our simulation framework is based on the one described in Tian et al. (2012), but with a few

modifications. We evaluate the performance of the aforementioned methods in eight simulation

settings, by varying i) the relative strength of the main effects relative to the treatment hetero-

geneity effects, ii) the degree of correlation among the covariates, and iii) the noise levels in the

response.

We generated L independent binary samples from the regression model

Y = I

([ p∑
j=1

ηjXj +

p∑
j=1

δjXjA
∗
j + ε

]
≥ 0

)
, (23)

where the covariates (X1, . . . , Xp) follow a mean zero multivariate normal distribution with co-

variance matrix (1 − ρ)Ip + ρ1>1, A∗` = 2A` − 1 ∈ {−1, 1} was generated with equal proba-

bility at random, and ε ∼ N(0, σ2
0). We let L = 200, p = 20, and (δ1, δ2, δ3, δ4, δ5, . . . , δp) =

(1/2,−1/2, 1/2,−1/2, 0, . . . , 0).

Table 1 shows the simulation scenarios. The first four scenarios model a situation in which

the variability in the response from the main effects is twice as big as that from the treatment

heterogeneity effects, whereas in the last four scenarios the variability in the response from the

main effects is four times as big as that from the treatment heterogeneity effects. Each of these

scenarios were tested under none and moderate correlation among the covariates (ρ = 0 and

ρ = 0.5), and two levels of noise (σ0 =
√

2 and σ0 = 2
√

2).
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Table 1: Simulation scenarios

Scenario ηj ρ σ0

1 (−1)(j+1)I(3 ≤ j ≤ 10)/2 0
√

2

2 (−1)(j+1)I(3 ≤ j ≤ 10)/2 0 2
√

2

3 (−1)(j+1)I(3 ≤ j ≤ 10)/2 0.5
√

2

4 (−1)(j+1)I(3 ≤ j ≤ 10)/2 0.5 2
√

2

5 (−1)(j+1)I(3 ≤ j ≤ 10) 0
√

2

6 (−1)(j+1)I(3 ≤ j ≤ 10) 0 2
√

2

7 (−1)(j+1)I(3 ≤ j ≤ 10) 0.5
√

2

8 (−1)(j+1)I(3 ≤ j ≤ 10) 0.5 2
√

2

Note. This table displays the numerical settings consid-
ered in the simulations. Each scenario is parameterized
by the strength of the main effects, ηj , the correlation
among the covariates, ρ, and the magnitude of the noise,
σ0.

The key benefit of simulations in the context of personalized treatment effects is that the

“true” treatment effect is known for each subject, a value which is not observed in empirical data.

The performance of the analytical methods was measured using the Spearman’s rank correlation

coefficient between the estimated treatment effect τ̂(X) derived from each model, and the “true”

treatment effect

τ(X) = E[Y (1)− Y (0)|X]

= P

(
p∑
j=1

(ηj + δj)Xj ≤ ε

)
− P

(
p∑
j=1

(ηj − δj)Xj ≤ ε

)

= F

(
p∑
j=1

(ηj + δj)Xj

)
− F

(
p∑
j=1

(ηj − δj)Xj

)
, (24)

in an independently generated test set with a sample size of 10000. In (24), F denotes the cumu-

lative distribution function of a normal random variable with mean zero and variance σ2
0.

Variable selection for the mcm, mom, dsm and int methods was performed using the LASSO via

a 10-fold cross-validation procedure. Based on this selection method, we found cases where the

LASSO could not select any non-zero covariate based on cross-validation. Similarly to Tian et al.
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(2012), in those cases we simply forced the correlation coefficient to be zero in the test set since

the method did not find anything informative. For this reason, we alternatively fit these methods

based on random forests (Breiman, 2001) using its default settings4. We refer to these methods

based on random forest fits as mcm-RF, mom-RF, dsm-RF and int-RF. The optimal values for the

LASSO penalties in (3) for the l2svm method, and the value of K in (10) for the ccif method,

were also selected via 10-fold cross-validation. Lastly, the methods upliftRF and ccif were fitted

using their default settings5.

The results over a 100 repetitions of the simulation for the first and last four simulation scenarios

are shown in Figures 1 and 2, respectively. These figures illustrate the boxplots of the Spearman’s

rank correlation coefficient between τ̂(X) and τ(X). The boxplots within each simulation scenario

are shown in increasing order of performance based on the average correlation. The ccif method

performed either the best or next to the best in all eight scenarios.

6. An insurance cross-sell application

In this section, we apply the new proposed method to an insurance marketing application. The

data used for this analysis is based on a direct mail campaign implemented by a large Canadian

insurer between June 2012 and May 2013. The objective of the campaign was to drive more business

from the existing portfolio of Auto Insurance clients by cross-selling them a Home Insurance policy

with the company. The regular savings via the multi-product discount was prominently featured

and positioned as the key element in the offer to the clients. In addition to the direct mail, clients

were also contacted over the phone to further motivate them to initiate a Home policy quote. A

randomized control group was also included as part of the campaign design, consisting of clients who

4Specifically, we fitted the models using B = 500 trees and n =
√
p as the number of variables randomly sampled

as candidates at each split.
5In both cases we used B = 500 trees and n = p/3 as the number of variables randomly sampled as candidates at

each split. For ccif we set the P value = 0.05.
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Figure 1: Boxplots of the Spearman’s rank correlation coefficient between the estimated treatment
effect τ̂(X) and the “true” treatment effect τ(X) for all methods. The plots illustrate the results
for the 1-4 simulation scenarios, which model a situation with “stronger” treatment heterogeneity
effects, under none and moderate correlation among the covariates (ρ = 0 and ρ = 0.5) and two
levels of noise (σ0 =

√
2 and σ0 = 2

√
2). The boxplots within each simulation scenario are shown

in decreasing order of performance based on the average correlation.
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Figure 2: Boxplots of the Spearman’s rank correlation coefficient between the estimated treatment
effect τ̂(X) and the “true” treatment effect τ(X) for all methods. The plots illustrate the results
for the 5-8 simulation scenarios, which model a situation with “weaker” treatment heterogeneity
effects, under none and moderate correlation among the covariates (ρ = 0 and ρ = 0.5) and two
levels of noise (σ0 =

√
2 and σ0 = 2

√
2). The boxplots within each simulation scenario are shown

in decreasing order of performance based on the average correlation.
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were not mailed or called. The response variable is determined by whether the client purchased

the Home policy between the mail date and 3 months thereafter. In addition to the response,

the dataset contains approximately 50 covariates related to the Auto policy, including driver and

vehicle characteristics and general policy information.

Table 2 shows the cross-sell rates by group. The average treatment effect of 0.34% (2.55% -

2.21%) is not statistically significant with a P value of 0.23 based on a chi-squared test. However,

as discussed above, the average treatment effect would be of limited value if policyholders show

significantly heterogeneity in response to the marketing intervention activity. Our objective is to

estimate the personalized treatment effect and use it to construct an optimal treatment rule for the

Auto Insurance portfolio – i.e., the policyholder-treatment assignment that maximizes the expected

profits from the campaign.

Table 2: Cross-sell rates by group

Treatment Control

Purchased Home policy = N 30,184 3,322
Purchased Home policy = Y 789 75
Cross-sell rate 2.55% 2.21%

Note. This table displays the cross-sell rate for the treat-
ment and control groups. The average treatment effect is
0.34% (2.55% - 2.21%), which is not statistically signifi-
cant (P value = 0.23).

To objectively examine the performance of the proposed method, we randomly split the data

into training and validation sets in a 70/30 ratio. A preliminary analysis showed that model

performance is not highly sensitive to the values of its tuning parameters (i.e., number of trees

B and number of variables n randomly sampled as candidates at each split), as long as they are

specified within a reasonable range. Thus, we fitted a causal conditional inference forest (ccif) to

the training data using its default parameter values. Specifically, in Algorithm 2, we used B = 500,

n = 16, and a P value = 0.05 as the level of significance α. We next ranked policyholders in the

validation data set based on their estimated personalized treatment effect (from high to low), and

grouped them into deciles. We then computed the actual average treatment effect within each

decile (defined as the difference in cross-sell rates between the treatment and control groups).
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Figure 3 shows the boxplots of the actual average treatment effect for each decile based on 100

random training/validation data partitions. The results show that clients with higher estimated

personalized treatment effect were, on average, positively influenced to buy as a result of the

marketing intervention activity. Also, notice there is a subgroup of clients whose purchase behaviour

was negatively impacted by the campaign. Negative reactions to sales attempts has been recognized

in the literature (Günes et al., 2010; Kamura, 2008; Byers and So, 2007) and may happen for a

variety of reasons. For instance, the marketing activity may trigger a decision to shop for better

multi-product rates among other insurers. Moreover, if the client currently owns a Home policy

with another insurer, she may decide to switch the Auto policy to that insurer instead. We found

evidence of higher Auto policy cancellation rates at the higher deciles. In addition, some clients

may perceive the call as intrusive and likely be annoyed by it, generating a negative reaction.

In the context of insurance, it is not only important to consider the personalized treatment

effect from the cross-sell activity, but the risk profile of the targeted clients (Thuring et al., 2012;

Kaishev et al., 2013; Englund et al., 2009). After taking into account the expected life-time-value

of a Home policy6 and the fixed and variable expenses from the campaign, we determined the

expected profitability from targeting each decile. Based on these considerations, Figure 3 shows

that only clients in deciles 1-3 have positive expected profits from the marketing activity and should

be targeted. The incremental profits from clients in deciles 4-7 is outweighed by the incremental

costs, and so the company should avoid targeting these clients. Clients in deciles 8-10 have negative

reactions to the campaign and clearly should not be targeted either.

7. Conclusions

The estimation of personalized treatment effects is becoming increasingly important in many

scientific disciplines and policy making. As subjects can show significant heterogeneity in response

to treatments, making an optimal treatment choice at the individual subject level is essential. An

6The expected life-time-value (LTV) of a Home policy in decile i = {1, . . . , 10} is given by LTVi = [P̄i − L̂Ci −
EXP i]

∑5
t=1 Prob(Sit)r

t, where P̄ is the average policy premium, L̂C is the predicted insurance losses per policy-
year, EXP captures the fixed and variable expenses for servicing the policy, Prob(Sit) is the probability that a
policyholder in decile i = {1, . . . , 10} will survive with the Home product beyond year t = {1, . . . , 5}, and rt is the
interest discount factor.
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Figure 3: Boxplots of the actual average treatment effect for each decile based on 100 random train-
ing/validation data splits. The first (tenth) decile represents the 10% of clients with highest (lowest)
predicted personalized treatment effect. Clients with higher estimated personalized treatment effect
were, on average, positively influenced to buy as a result of the marketing intervention activity.
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optimal personalized treatment is the one that maximizes the probability of a desirable outcome.

We call the task of learning the optimal personalized treatment personalized treatment learning.

From the statistical learning perspective, estimating personalized treatment effects imposes

some key challenges, primarily because the optimal treatment is unknown on a given training set.

In this paper, we discussed seven of the most prominent methods proposed in the literature to

tackle this problem, and proposed a new approach called causal conditional inference trees. Our

method recursively partitions the input space into subgroups with heterogeneous treatment effects.

Motivated by the unbiased recursive partitioning method proposed by Hothorn et al. (2006), the

key ingredient of our tree-based method is the separation between the variable selection and the

splitting procedure, coupled with a statistically motivated and computational efficient stopping

criteria based on the theory of permutation tests developed by Strasser and Weber (1999). This

statistical approach prevents overfitting, without requiring any form of pruning or cross-validation.

It also avoids selection bias towards covariates with many possible splits. Performance results

measured on synthetic data show that our proposed method often outperforms the alternatives on

the numerical settings described in this article.

We have also discussed an application of the proposed method in the context of insurance

marketing for the purpose of selecting the best targets for cross-selling an insurance product. Our

method was able to identify the policyholders who were positively/negatively motivated to buy as

a result of the marketing intervention activity. Based on marketing costs considerations, we next

derived the policyholder-treatment assignment that maximizes the expected profitability from the

campaign.

We would also like to acknowledge the limitations of this work. First, we have only considered

the case of binary treatments. It would be worthwhile to examine the extent to which the methods

discussed in this article can be extended to multi-category or continuos treatment settings. Second,

in many situations the interest may be to estimate the personalized treatment effect when the inter-

vention is not applied on a randomized basis, but we think there are major background variables

that influence which treatment is received. Thus, it would be relevant to consider personalized

treatment learning models in the context of observational data. Finally, we have only consider
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the case of personalized treatments in a single-decision setup. In dynamic treatment regimes, the

treatment type is repeatedly adjusted according to an ongoing individual response (Murphy, 2005).

In this context, the goal is to optimize a set of time-varying personalized treatments for the purpose

of maximizing the probability of a long-term desirable outcome.
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Appendix

Proposition 1. Maximum likelihood estimates of personalized treatment effects from the Modified

Covariate and Modified Outcome methods are equivalent.

Proof. From the modified outcome method, we have under the logistic model for binary response

E{l(W, g(X))|X, A = 1} = E(W |X = x, A = 1)g(X)− log(1 + eg(X)),

and

E{l(W, g(X))|X, A = 0} = E(W |X = x, A = 0)g(X)− log(1 + eg(X)),

where g(X) = β>X.

Thus,
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L(g) = E{l(W, g(X))}

= EX

[1

2
EW {l(W, g(X))|X, A = 1}+

1

2
EW {l(W, g(X))|X, A = 0}

]
= EX

[1

2
{E(Y |X, A = 1)g(X)− log(1 + eg(X))} +

1

2
{(1− E(Y |X, A = 0))g(X)− log(1 + eg(X))}

]
=

1

2
EX

[
τ(X)g(X) + g(X)− 2log(1 + eg(X))

]
,

where τ(X) = E[Y |X = x, A = 1]− E[Y |X = x, A = 0].

Therefore,

∂L
∂g

=
1

2
EX

[
τ(X) + 1− 2

eg(X)

(1 + eg(X))

]
.

Thus,

g∗(x) = log
{1 + τ(x)

1− τ(x)

}
,

or equivalently,

τ(x) =
eg

∗(x) − 1

eg∗(x) + 1
.

That is, the loss minimizer of L(g), g∗(x), is equal to f∗(x) in (7), which is the loss minimizer of

E{Y f(X)A− log(1 + exp(f(X)A))} from the modified covariate method.
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