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Distortions of polyacene polymers are studied within a many-body valence-bond framework using a
powerful transfer-matrix technique for the valence-bond (or Heisenberg) model of the system. The com-
putations suggest that the ground-state geometry is either totally symmetric or possibly exhibits a slight
(A, or B, symmetry) bond-alternation distortion. The lowest-energy (nonsymmetric, in-plane) distor-
tions are the 4, and B, modes, which, within our approximations, are degenerate.

1. INTRODUCTION

The conductivity of polyacetylene and even supercon-
ductivity of several quasi-one-dimensional systems has
stimulated extensive investigations on the electrical prop-
erties of one-dimensional (1D) systems. Theory for -
electron networks has most commonly been approached
via the Hiickel crystalline-orbital (CO) model, which, for
polymeric systems with translational symmetry, is also
termed the simple tight-binding band-theoretic model
with interactions limited to nearest neighbors. In such
1D systems this theory has been much developed with
the recognition that novel Peierls distortions should often
occur. Further, if there are such degenerate distortions,
the possibility of solitonic excitations arises.

Since polyacene (Fig. 1) is one of the simpler polymers
after polyacetylene, the possibility of Peierls distortions
for this system has already been considered several times
in terms of the simple Hiickel CO model or slight exten-
sions thereof. Indeed, within this model the undistorted
species with equal numbers of 7 electrons and 7 centers
exhibits a zero band gap, as noted by Coulson,
McWeeny,” and Moffitt.> Thence, Salem and Longuet-
Higgins* and Kimura et al.® found the species to be
stable against one distortion involving bond alternation in
both the top and the bottom boundary chains of the poly-
mer, while Boon® and others’"!° found it to distort
(presumably quadratically) in another mode. However,
Kivelson and Chapman,” and BoZovié, 12 argue for a true
Peierls distortion of a different symmetry. Still oth-
ers'3-1¢ investigated the effects of correlation (from a CO
view), finding that it introduces a band gap even in the
symmetric case, thereby precluding a true Peierls distor-
tion.

FIG. 1. Five cells of the polyacene chain.
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Our purpose is to study polyacene from the limit of
strong correlation. In this case, the model space reduces
to one electron occupancy per site and applicable
effective Hamiltonians are of the Heisenberg type, such
as in general derived, e.g., in Refs. 17 or 18, and for the
present type of conjugated hydrocarbon case derived,
e.g., in Refs. 19-22.

In fact, isotropic Heisenberg models had already been
applied successfully in chemistry to 7 electrons of carbon
atoms in conjugated networks under the name of the
(Pauling-Wheland) valence-bond (VB) model (see, e.g.,
Refs. 23-25). There are a range of molecular structures
for which many-body treatments have been made only
relatively infrequently, though there has been a revival of
interest recently, as indicated in Ref. 26. Nevertheless,
only qualitative VB consideration seems to have been pre-
viously paid"?7?® to the polyacene polymer.

Now the question arises as to which if any of the novel
features found for the Hiickel model, and related self-
consistent-field (SCF) treatments, might also occur for
the VB (or Heisenberg) model for polymer systems. Evi-
dently the theoretical tools available to address the ques-
tions devolve to what occurs within various approxima-
tions. Indeed, within the simplest approximation (of
counting Kekulé structures) there appear® to be qualita-
tive correspondences to what is predicted from the simple
Hiickel CO model, and in a more quantitative manner
correspondences have been found*® for the polyacetylenic
VB model. Here it is natural to address the question of
Peierls distortions for the polyacene polymer of Fig. 1.

For such VB (isotropic spin-1) Heisenberg models with
antiferromagnetically-signed exchange-coupling parame-
ters, the ground-state solution is generally a nontrivial
problem. Configuration-interaction techniques have been
pushed®! so that systems of about twice the size of those
treated two decades ago are solvable for the ground state
and a few lower-lying states. This limits systems to about
26 sites with computer effort increasing exponentially fast
with system size. Further, these solutions are somewhat
decoupled from conceptual insight.

Hence many-body studies, especially for the Heisen-
berg models of larger w-network systems, are of
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relevance. Exact Bethe- Ansatz results,> though long
studied, seem to be limited to linear chains. Even the in-
teresting problem of bond alternation in the linear chain
has not been treated via this approach. Thus more gen-
erally applicable approximate approaches are of
relevance.

There are several types of many-body cluster-expanded
wave-function Ansatze based upon a Néel-state zeroth-
order picture. Kasteleyn®® and Huse and Elser** have
developed one such Néel-state-based Ansatz. Others®>~®
have independently made a modified Ansatz wherein pair
correlations above a perfect Néel state are limited to
nearest neighbors. This Ansatz surpasses that of
Kasteleyn in accuracy for the linear chain, and in has
been extended® by embedding in a systematic cluster-
expansion hierarchy.

With the advent of high-temperature superconductors,
Anderson*’ suggested the relevance of resonating-VB
descriptions, and intense worldwide activity on the idea
has ensued. Hundreds of papers have appeared, though
often they are either of a general nature, sometimes over-
lapping with much of the earlier work already cited, or
are tightly focused on mixed-valence perovskite struc-
tures rather than benzenoid ones.

Since polyacene is a bipartite system (with equal num-
bers of sites in the two parts), it has*' a singlet ground
state. A type of “resonating-VB” cluster-expansion An-
satz*»* is an alternative approach to explore. The sim-
plest form of this Ansatz limited to nearest-neighbor pair-
ing is essentially that of Pauling and Wheland’s “‘reso-
nance theory,”?* as applied to 7 networks of conjugated
hydrocarbons, but also applied in physics to the triangu-
lar lattice by Anderson and Fazekas.** Further, for the
usual structures of these conjugated 7 networks, it turns
out that this simplest resonating-VB Ansatz yields*’ ener-
gies more accurate than the corresponding Néel-state en-
ergies. Higher-order Ansatze in this scheme have been
studied® for infinite linear chains. In terms of the VB ap-
proach only qualitative discussions*® have been presented
concerning the possibility of symmetry-lowering distor-
tion and solitonic excitations.

Here we pursue a more complete VB description. Both
the Néel-state-based and resonating-VB cluster-expansion
Ansatze are applied to the VB model for polyacene. Sec-
tion II describes the model and the conceivable distor-
tions. Sections III and IV present the Ansatze to be used.
Section V develops the matrix element formulas for the
two types of wave functions. Section VI presents our nu-
merical results (including the effects of elastic distortion)
and discussion.

II. POLYACENE MODELS

The polyacene polymer should exhibit some deviation
from a perfect chain of regular hexagons (since the sym-
metry of the overall chain does not require it). If a devia-
tion occurs that lowers the chain’s symmetry, then
different symmetry-equivalent distorted ground states
may arise. Especially for the extended chain, these
different ground states correspond to different (thermo-
dynamic) phases, at sufficiently low temperature, and the
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possibility of solitonic excitations and/or conduction
could arise. Deviations from planarity often are viewed
only to decrease bonding interactions, so we do not con-
sider such distortions here. As a further simplification
we presume that translational symmetry is preserved.
Both simple CO ideas and simple resonance-theoretic
ideas anticipate instabilities under these circumstances.
Then the distortions that lower the symmetry would be
those that destroy those of the factor group isomorphic
to

C,,={1,Cy,0,,04} » (2.1)

as obtained by factoring the full line group into the
translational subgroup and the planar-reflection sub-
group. This factor group C,, is that which may be
achieved by a single unit cell, as illustrated in Fig. 2.

A catalogue of the possible modes of distortion to be
studied is now appropriate. The members of a linearly
independent set of such distortion modes may be chosen
to transform as irreducible representations of the factor
group C,,. Four such distortions we study are associated
with the A4,,4,,B,,B, irreducible representations or-
thogonal to the “breathing mode” of C,, as indicated in
Fig. 3, where only 4, is totally symmetric. That is, we
presently consider only those modes which involve vari-
ous dilations (or contractions) of individual nearest-
neighbor bonds. This is appropriate for the simplest
models with only nearest-neighbor interactions. Actual-
ly, there are variations in the non-nearest-neighbor in-
teractions (thereby leading to more independent modes),
but these changes should be less rapid, roughly in propor-
tion to the relative sizes of the interactions. Thus, within
this nearest-neighbor approximation, for the five interac-
tions per unit cell there are five independent distortions.
For small distortions, either in the case of the Huckel CO
model or of the nearest-neighbor Heisenberg model, the
modification of the interactions between pairs of sites can
be expressed as

g =g(r)=go(1+8;), (2.2)
with

8,=08(A4,)+8(A4,)+8(B)+8(B,),

5,=8(A4,)—8(A,)+8(B;)—8(B,),

5,=08(A4,)+56(A4,)—8(B,)—8(B,), (2.3)

8§,=6(A4,)—6(A4,)—56(B)+8(B;),
55=—46(4,),

where the bonds i are identified as in Fig. 4. Then the

+ + + - - - - +
Ay Ay B, B,

FIG. 2. A unit cell of the polyacene and the reflection sym-
metries leaving the cell (as a whole) invariant.
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FIG. 3. The four irreducible distortions orthogonal to the
“breathing” mode.

models that we consider are of the form

H=73 >(1+§)v(r,) . (2.4)
For the Heisenberg (or VB) model
v (rm' ):gOSnia Snib ’ (2.5)

where S,;, and S,;, are spin operators on sites of subset A4
and B, respectively, joined by bond i of cell n, and g, is
the exchange parameter that is taken as a reference. For
the Hiickel CO model

v (rni )ZBO 2 (a:iaaanibo_"_atjibo’aniao) > (2.6)

g

where the a,:r,»aa and a,;,, are fermion creation and annihi-

lation operators for a spin-o orbital on sites of subset A4
and B, respectively, for bond i of unit cell n, and

B: =B(r;)=By(1+8;)

is the resonance-integral (or electron-hopping) parameter.

While the Hiickel CO model is readily solved, the VB
model is ordinarily only approximately soluble. But in
both cases the ground-state energies &((8(A4,),8(A4,),
8(B,),8(B,)) per site, in units of g, or B, are the aspects
of current interest. More particularly the energies

€(4,,6)=¢(5,0,0,0) ,
e( 4,,6)=¢(0,5,0,0) ,
£(B,,6)=¢(0,0,6,0) ,
&(B,,8)=¢(0,0,0,5) ,

(2.7)

(2.8)

are to be studied as functions of their respective distor-

FIG. 4. The labeling convention for the bonds and sites of a
unit cell.
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tion modes.

To simulate the VB ground-state geometry, we obtain
the ground-state equilibrium distances r; using the two-
body nonempirical Heisenberg Hamiltonian for the study
of conjugated hydrocarbons,?

H=3 3 [R(r;)—58(r;))+28(r;)S,;"Sup ]

=3 X [R(rj)—g(r)+g(r)P nig,mit] » 2.9
n 1

where P, i) is the transposition of spins on sites of
subset 4 and B joined by bond i of unit cell n, and R and
g are model parameters incorporating ¢ and 7 depen-
dence on the bond length. From the optimal values of r;,
the values of the “irreducible” distortions 6(X), where
X=A4,, 4,, B, or B,, can be obtained readily from (2.2)
and (2.3) and values of the g (r;).

III. NEEL-STATE-BASED ANSATZ

The cluster-expanded wave-function Ansatz in this sec-
tion is based upon the Néel state

|0) =TT alnia)B(nib) ,

n,i

(3.1

where a and S are spin orbitals, and 4 and B denote the
two sets of sites such that each member of one set is a
nearest neighbor solely to sites in the other set. Correc-
tions are made in terms of the (nearest-neighbor) pair-
excitation operators

P= Exisr;a‘s:i; >

n,i

(3.2)

where x; are scalars to be varied, and S,;, and S, are
spin raising and lowering operators for sites nia and nib,
respectively. The wave-function Ansatz is defined

®)=e”0) . (3.3)

This clearly is Néel-state-like with fluctuations away from
a pure Néel ordering at an adjacent pair of sites a,b with
a probability ~x?2.

IV. RESONATING-VB ANSATZE

Within one electron per site occupancy, a VB singlet
state is defined as a product of pairs of spins coupled to a
singlet with no electron unpaired. The set of the linearly
independent VB singlet states is*’ a basis of the subspace
of spin-zero states. This is a very large basis set and ap-
proximations are needed.

Two asymptotically orthogonal and noninteracting
zeroth-order (Kekulé) states, with 4, and B, symmetry,
respectively, represented in Fig. 5, can be obtained when
pairing is limited to nearest-neighbor spins,

AZ
'KA )E H(l—snjasrjb)lo) >

5, 4.1)
’KB)E H (I_SnTaSnTb)l()) ’
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B, Kekulé State

A, Kekulé State

FIG. 5. The two types of symmetry-inequivalent Kekulé
states (spin-pair product states).

where the products are over only the solid bonds of Fig.
5.

Since exchange of nearest-neighbor sites results from
the Heisenberg Hamiltonian acting on a Kekulé state, a
reasonable way to go beyond a Kekulé-state approxima-
tion consists of mixing in additional configurations ob-
tained by allowing an arbitrary number of recouplings
among adjacent pairings as represented in Fig. 6. Label-
ing by g,, the operator that leads to the recoupling be-
tween adjacent pairs e and f, an overall “higher-order”
VB excitation operator can be defined as

Q: 2 xeerf > 4.2)
(ef)

where x,, is the variational parameter associated to the
recoupling of e and f. Then, 4- and B-RVB Ansatze are
defined in terms of Q and the A4,- and B,-symmetry
Kekulé states, respectively,

|®y)=U(e9|Ky), X=4,B, 4.3)

where U discards the linked terms of e, namely, those
products of g, where any site index is repeated. The pa-
rameters in Q are to be obtained simultaneously upon op-
timization of the ground-state energy.

V. VB GROUND-STATE ENERGY

Upper bounds to ground-state energy of the system,
described by either (2.4) or (2.8) can be obtained upon
minimization of

_(Y|H|Y)

E(¥Y) TIED)

(5.1)
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with respect to ¥, which is selected to be either (3.3) or
(4.3).

In order to carry out computations, transfer-matrix
techniques* are an extremely useful tool, that allows us
to deal with matrix elements in (5.1) locally by unit cells.
Effectively, since both the interaction and the Ansatze to
be used are defined locally, one can introduce local states
consisting of possible configurations that can be drawn on
a unit cell, containing the contributions from bra and ket
parts of {(\V|W). If translational symmetry applies, as is
the case, local states are independent of the unit cell, and
will be labeled by e,, where n ranges over the whole set of
local states. To account for “propagation” of such local
states from the position of one unit cell to the next, it is
convenient to define a (position-independent) transfer ma-
trix encoding the local features of the considered Ansatz
and the system to be studied,

Ty =(e,|Tle,,), (5.2)

where T, is a weighted sum over the various ways a lo-
cal state e,, in a unit cell may succeed a local state e, in
the previous unit cell. The weight of every term in the
sum is the product of variational parameters associated
to the particular way e, evolves to e,,, and, eventually,
additional factors proceeding from Pauling’s superposi-
tions rules.*®

The transfer matrix T is then conveniently used to
evaluate the overlap

(W|W)=tr(TH), (5.3)

where L is the number of monomer units and we have as-
sumed cyclic boundary conditions. In the long chain lim-
it

(W|W)=put, (5.4)

where p is the (presumably nondegenerate) largest eigen-
value of T.

Since the operators in the Hamiltonian are local, we
can proceed in a similar way as in the overlap to evaluate
the matrix elements of the operators in the Hamiltonian.
We can define a “connection” matrix on the cells where
an interaction takes place and keep the transfer matrix
above on the other cells. Connection matrices C; with
i =1 to 5, containing the additional features of the single
interaction on bond i of some reference unit cell in H, can
be defined for every Ansatz in such a way that the matrix
elements in (5.1) reduce to the sum of the products of C ;
with a power of 7. The connection matrix elements,

(_C,-),,mE(enlgilem) s (5.5)

are obtained as a weighted sum over the various ways a

FIG. 6. An example of possible recouplings of pairs of nearest-neighbor singlet spin pairings.
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FIG. 7. Néel-state-based Ansatz for the irreducible distor-
tions orthogonal to the “breathing” mode. The steep curve is
e(A,,8), the flat one is €(B,,8), and the parabolic one is
e( A4,,8)=¢(B,,8). The curves for nonsymmetric modes are
symmetric about §=0.

local state e,, in the cell just to the right of the interac-
tion on bond i may succeed a local state e, on the cell just
to the left of the interaction. The weight of every term in
(C ;),m contains the additional variational parameters
originated when proceeding from e, to e,, through the
interaction on bond i. So the Heisenberg Hamiltonian
matrix element is expressed as

5
(VIH|IV)=goL 3 (1+8,){¥[S;;-S;|¥)

i=1

5 —c
=goL 3 (1+§; >tr{IL ‘G, (5.6)

i=1

where c; is the number of cells involved in C ;.
In the long-length limit, the largest eigenvalue u of T
dominates (5.9) and it reduces to

S _
(WIHIW) ~goL S pu" “1+8,)(,11C lur) (5.7

i=1

where (u,/ | and |u,7) are the left and right biorthonor-
mal eigenvectors corresponding to eigenvalue p of T.

Then the Heisenberg energy per unit cell in units of g,
reduces to

FIG. 8. Resonating valence-bond Ansatze for the irreducible
distortions orthogonal to the “breathing” mode. The steepest
curve is €,(A,,8)=ep(A4,,8), the more moderately sloped
steep curve is €4(4,,8)=¢p(B,,5), the parabolic curve is
eg( A,,8)=¢ 4(B,,8), and the flat curve is € ,(B,,8)=¢z(B;,d).

5,
eg~ Su (1+8)w,IIClu,r), (5.8)

i=1

or, for the nonempirical Hamiltonian (2.8),

5 e
e= 3 [R(r)—g(r)+grdp “(u,1|Cilu,n], (5.9)

i=1

where both r; and variational parameters in the Ansatz
are to be obtained upon optimization of the energy.

VI. RESULTS

Using transfer matrices and connection matrices as
given in the Appendix, one may compute the energy per
unit cell via (5.8) for any of our proposed Ansdtze at
selected values of the §; and the variational parameters.
With the variation of these Ansatze parameters, optimal
upper bounds to the ground-state energy are obtained as
a function of the §;. Via (2.3), §; has been computed with
the selection of all “irreducible” distortion modes to be
zero, but one of them at a time. Hence, the energies
designated in (2.7) have been obtained for the three
Ansatze proposed. The numerical results are shown in
Figs. 7 and 8.

It can be seen that ordering of energies for the different

TABLE I. The minimum variationally optimized total energies for each proposed Ansatz and associ-

ated values of r;.

E(cell) r r, r; rs rs
Ansatz (eV) (A)
Néel based —6.23174 1.40 1.40 1.40 1.40 1.43
A-RVB —6.053 87 1.36 1.45 1.36 1.45 1.45
B-RVB —6.053 87 1.36 1.45 1.45 1.36 1.45
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TABLE II. Contributions of the different irreducible distortion modes.

Ansatz 8(A,) 5(A4,) 5(B,) 8(B,) 8(BR)
Néel based 0.010 64 0.000 00 0.000 00 0.000 00 —0.023 65
A-RVB 0.020 85 0.106 43 0.000 00 0.000 00 —0.03185
B-RVB 0.023 57 0.000 00 0.000 00 0.10643 —0.03185

“irreducible” distortions orthogonal to the ‘‘breathing”
mode is the same both for the Néel-state-based ansatz and
for the RVB ones, though the Néel-state-based Ansatz
yields Heisenberg energies lower than those obtained by
RVB Ansatze. Notably, the Néel-state-based Ansatz
yields a quasilinear & dependence only for €( 4,,8), so
that no prediction of a distortion is made without con-
sideration of Coulombic and o-electron contributions to
the energy. The Néel-state-based Ansatz does, however,
share a number of features with the pair of RVB Ansdatze.
First, there is negligible response to the B, distortion,
and second, the more responsive B, and 4, modes are
degenerate. We note that these two qualitative features
also occur for the nearest-neighbor tight-binding (or
Hiickel) model, with arbitrary extents of either distortion,
8(A,) or 8(B,). Even for the extended Hiickel model
these conclusions seem to be similar”* "2 (though the
degeneracy between B, and 4, is not exact).

An argument'"? has, however, been made yielding the
alternative conclusion that a Peierls-type B, distortion
should be favored, this view being based upon a zeroth-
order band splitting going to 0 at k =xm from the
Hiickel model, and a nonzero distortive-response matrix
element from some sort of extended Hiickel model. Both
the splitting and distortive matrix element are accidental-
ly zero for the Hiicekl model, while for the extended
Hiickel model both are nonzero (though small), so that
for either of these (unmixed) models a Peierls distortion is
avoided. We believe the argument to use the “mixed”
model is weak, and the resultant predictions are in
disagreement with pure CO models and both of our
present approximate results for the VB model.

To make a more comprehensive VB treatment the
effects of Coulombic and o-electron interactions need to
be taken into account. This we do using the model of
Said et al.?? as in (2.9), and thereby we obtain the
ground-state geometry upon searching out (as a function
of the r;) the minimum variationally optimized total en-
ergy for each proposed Ansatz. These minimum total en-
ergies and associated values of r; are presented in Table I,
while in Table II the contributions of the different irre-
ducible distortion modes, including the “breathing’ with

respect to benzene, are given for these minimum energies.
For the Néel-state-based Ansatz we find any nonsym-
metric distortion to be entirely negligible. But the pair of
RVB Ansatze yield degenerate A, and B, distortions,
though at higher energies, and so may be viewed as not so
favorable. It is perhaps not too surprising that the Néel-
state-based Ansatz is superior. Upon examination of ear-
lier argued® (sufficient) criteria for preference of the
RVB description, one finds that for polyacene both the
coordinate-number criterion (z =<3) and the benzenoid
ring criterion are met, but the criterion of a high density
of Kekulé structures is not. However, the criteria for
preference of a Néel-state-based solution also are not (ful-
ly) met, and since the present Néel-state-based Ansarz
yields energies only slightly lower than our RVB Ansatze,
the question of the nature of the exact ground state is not
fully clear, especially upon inclusion of higher-order
(non-nearest-neighbor RVB-favoring) corrections to the
Heisenberg (or VB) model. In the absence both of such
higher-order corrections and of bond-length distortions,
one may gain some better indication of relative accura-
cies through comparison to results for corresponding
Ansitze’®3? applied to the linear-chain Heisenberg model,
whose exact solution is known.*> This comparison for en-
ergies per site (in units of g,) is made in Table III. The
last number there (in parentheses) is our guess based both
on comparison and on the better satisfaction of the
higher coordination number criterion* for enhancement
of Néel-state-based results. Our cluster-expansion
Ansatze notably improve upon single Néel and Kekulé
states.

Overall our present work indicates either a symmetric
ground-state geometry or one with slight 4, and/or B,
distortions which are exactly degenerate within our ap-
proximation. The asymmetric distortion mode recom-
mended by Kivelson and Chapman'' and by BoZovi¢'? is
not favored. The degeneracy of low-energy A4, and B,
distortion modes indicates the possibility of novel soliton-
ic excitations, if not for bare polyacene then at least for
the polymer when subjected to suitable chemical pertur-
bations. The qualitative characteristics for the VB pic-
ture seem not too dissimilar to that in a band-theoretic

TABLE III. A comparison of the results for corresponding Ansdtze applied to the linear-chain
Heisenberg model for energies per site (in units of g).

Linear chain Polyacene
Néel state —0.2500 —0.3125
Kekulé state —0.3750 —0.3750
RVB cluster Ansatz —0.4269 —0.4480
Néel cluster Ansatz —0.4374 —0.4740
exact —0.4431 (—0.48)
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FIG. 9. The local states for the Néel-state-based Ansatz. The longer vertical dashed line simply marks a chosen position within
each unit cell. The solid lines crossing this dashed line indicate pair excitations (in bra or ket).

picture, either at the Hiickel model of approximation or
even at the extended-Hiickel level.
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APPENDIX

Five local states in Fig. 9 can be readily identified for
the Néel-based Ansatz. Hence, if e, and e, are the first
and second local states of Fig. 9, then there are two
manners that e,, may follow e, as indicated in Fig. 10;
the associated weights involved in proceeding from e, to
e,, are there seen to be x2 and x%x2, so that

T, ,=xi+x3x} . (A1)

Proceeding similarly for the other matrix elements we
find the whole transfer matrix

where we have abbreviated

pi=1+4x2. (A3)

Next, when the operator for bond i is selected to be the
transposition operator, connection matrices can be writ-
ten as

¢ axl ‘u{[T(l

7(1,2,5)]T(2)

+T(1,2,5)[T—T(2)]}, (A4)

e, (3 €3

e
e, (3 6

J’2J’3+x§ J’2XA2; x%y3 x%xﬁ 2x1x4%5
ya+x3 yxi xi xixi 2x1x4%s
T=|y,+xt x} x¥; xIxi 2x,x4x5s |, (A2)
Vs xi o oxi o xxi 2xyxgxs
XyX3X5 0 0 0 x1x,x3x,
» H . :
N é —/_. xx‘g‘

€y

FIG. 10. The two possible ways in which an e, local state

may follow an e, local state.

€

eg €y

€0 € €12
€y
FIG. 11. The local states for the B-RVB Ansatz. Again, the

longer dashed line marks positions. The solid lines crossing this
dashed line indicate (singlet) spin pairings (in bra or ket).
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: P : A

' B ! ! K H

! 0 .
€ €; e

€4 eg e

€y ey ey

€10 ey

FIG. 12. The local states for the A-RVB Ansatz.

X q14

FIG. 13. The parametrization for the pair recouplings of
pairs of nearest-neighbor spin pairings for the B-RVB Ansatz.
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ﬂé
c,=L + Lir-zmira.2s
X, u
+T()[T(2)—T(1,2,5]} , (AS)
_or 1. ..
+TI(4)[T(3)—TI(3,4,5]}, (A6)
c.=2L 1 L1@)-1(3,4,51T3)
ox, p
+T(3,4,5)(T—T(3)]}, (A7)
C=3L (73,45 +T(1,2,5-21(1,2,3,4,5)] ,

B x5

(A8)

where the notation 7I'(i) indicates the matrix T with x; set
to 0 and I'(i,j, k) indicates T with x; =x;=x;,=0.

For either 4, or B, RVB Ansatze we obtain twelve lo-
cal states. With an adequate one-to-one correspondence
between the two basis sets (as in Figs. 11 and 12) and be-
tween the variational parameters involved (as in Figs. 13
and 14) it is possible to have the same T matrix for both
RYVB Ansatze:

X qp3

Z q33

FIG. 14. The parametrization associated to the A-RVB An-
satz.



4(1+x +x2)  2p(2+x)
2(2+x) 2y
2(2+x) y(4+x)
4 2y
2x 0
2 y
T= 4x 0
0
8y
0
4y
16 0

2z(2+x)

z(4+x)
2z
2z
0

8z

4z

4yz 2z
2yz  yz
2yz  yz
yz 0
0 yz
0 0
0 0
0 0
0 0
0 0
0 0
0 0

2xyz

0

Also, it can be seen that, with the correspondence suggested above,

C . (4,)=CB,), i=125,

C(4,)=C4B,),
C4(4,)=C4(B,),
with
2, i=2,3
alB)=11, i=1,4,5.

Specifically the matrices are

4(1+x)

2(2+x)

2(2+x)
4

2
C,(7,8,10,12)= *

4(1+x)
2(2+x)
2(2+x)

C 4(7,9,11,12)= 2%

2y (2+x)

2y
y(4+x)

2y
0

8y
4y

2y (2+x)

2y
y(4+x)

2y

© O % ©

2z(2+x)
z(4+x)

2z(2+x)
z(4+x)
2z
2z

8z
4z

2yz

oS O © ©

2xyz

0

§ ©c oo o

o O O © ©

2y
0

2y

yz
yz

yz

o

2yz
yz
yz

yz

(=)

VALENCE-BOND TREATMENT OF DISTORTIONS IN . ..

2

2

10 899
222 29’z 2pzr y%?
222 0 yz? 0
0 y*z 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
422 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
(A9)
(A10)
(A11)
2xyz 222 2yz 2
0 222 yz?
0 0 0
0 0 0
0 0 0 ’
yz 0 0
0 0 0
0 0 0
(A12)
2xyz 2p? 2%z
0 0 0
0 2p? yz
0 0 0
0 0 0 ’
yz 0 0
0 0 0
0 0 0

(A13)
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4(14+x) 2xy 2xz 2yz 2xyz 2xyz
2x 0 xz yz 0 0
2x xy 0 yz O 0
C 5(4,8,9,10,11,12)= 2% 0 0 0 yz o | (A14)
2 y z O 0 yz
4x o 0 O 0 0
4x? 2p[u(2+x)+2zx?] duyz 2yz(ptxz) 2uxyz 2uxyz 2uy? 2uy’z 2uyz?  py*z?
2x? y(2u+zx?) 2uyz  yz(u+xz) 0 0 0 0 uyz? 0
0 uy (4+x) 2uyz wyz 0 0 2uy?  wy’z 0 0
0 2uy uyz 0 0 0 0 0 0 0
C€(8,10,12,3,10)= 0 0 0 wyz 0 0 0 0 0 0 )
2x y(u+xz) 0 yz? uyz 0 0 0 0 0
0 0 0 0 0 uyz 0 0 0 0
0 8uy 0 0 0 0 4uy? 0 0 0
0 4uy 0 0 0 0 0 0 0 0
(A15)
4x?%y 2z[u(2+x)+x%y] 4uyz 2yz(p+xy) 2uxyz 2uxyz 2uz’ 2uy’z 2uyz’ py’z?
0 uz(4+x) 2uyz uyz 0 0 2uz? 0 uyz? 0
2x2y z(2u+x?%y) uyz yz(,u-i-xyz) 0 0 0 ;Lyzz 0 0
0 2uz uyz 0 0 0 0 0 0 0
C4(9,11,12;2,8)= 0 0 0 uyz 0 0 0 0 0 0 ,
2xy z(p+xy) 0 0 uyz 0 0 0 0 0
0 0 0 yiz 0 wyz 0 0 0 0
0 8uz 0 0 0 0 4uz? 0 0 0
0 4uz 0 0 0 0 0 0 0 0
(A16)
[
where a p.arenthetical label identifies rows and columns of e,(A4,,8)=ep(B,,8), (A18)
zeros which have been suppressed in our presentation.
For example, (i,j;k) indicates that rows i and j as well as
column k are all zero and have been deleted. Hence, it and
can be easily shown that
€4(X,8)=¢gp(X,8), X=A4,B (A17) ep(A4,,8)=¢,(B,,8) . (A19)
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