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A linear M-O-M (M =metal, O=oxygen) cluster embedded in a Madelung field, and also including
the quantum effects of the neighboring ions, is used to represent the alkaline-earth oxides. For this mod-
el an ab initio wave function is constructed as a linear combination of Slater determinants written in an
atomic orbital basis set, i.e., a valence-bond wave function. Each valence-bond determinant (or group of
determinants) corresponds to a resonating valence-bond structure. We have obtained ab initio valence-
bond cluster-model wave functions for the electronic ground state and the excited states involved in the
optical-gap transitions. Numerical results are reasonably close to the experimental values. Moreover,
the model contains the ionic model as a limiting case and can be readily extended and improved.

I. INTRODUCTION

The interest in the electronic structure of transition-
metal oxides has been largely stimulated by the discovery
of superconductivity at high temperatures.! ™3 It is well
known that these oxides are members of a broad class of
perovskites and simple transition-metal oxides that may
or may not exhibit metallic conductivity and only under
very special conditions behave as high-T, superconduc-
tors.

A convenient starting point to understand the electron-
ic structure of these kinds of ionic systems is provided by
the framework developed by Zaanen, Sawatzky, and Al-
len.* In this approach, the band gap of a given system is
given in terms of two parameters: U and A. The U pa-
rameter corresponds to the d;'d—d; ~'d' "' excitations
of the Mott-Hubbard theory,5 where “i” and “j” denote
two transition-metal sites and »n the number of
transition-metal d electrons. On the other hand, A corre-
sponds to the charge-transfer energy d—d " 'L, where
L denotes a hole in the anion band. Both parameters, U
and A, are taken into account in the Anderson model
Hamiltonian.®

Usually U and A are taken from experiment,* although
there have been some attempts to compute them directly
by means of ab initio theory of electronic structure. A
clear example of this approach is the cluster-model study
of NiO reported recently by Janssen and Nieuwpoort.’
The only problem in this approach arises from the fact
that both excitations, U and A, are computed by consid-
ering that the two sites involved are infinitely far away
from each other. As a result, their ionized cluster be-
comes charged and it is necessary to take into account
the bulk polarization. In the work of Janssen and
Nieuwpoort, this is done in a semiempirical way through
the classical Claussius-Massotti relation.

It is also possible to consider that U and A correspond
to local excitations, as in the ionic model of Torrance
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et al.,® where these parameters are computed from exper-
imental data for the ionization potential of the metals, as-
suming a value of —7.7 eV for the electron affinity for
O, including the Madelung potentials, and taking into
account explicitly the Coulomb interaction between the
electron and hole. This simple model enabled Torrance
et al.® to classify 76 oxide systems as either (1) insulating
with large A and large U, or (2) metallic with small A, or
(3) metallic with small U.

The oversimplified picture arising from the ionic model
of Torrance et al.® should be more properly treated by
some model of the electronic structure theory in order to
include important effects that are neglected by this very
simple model. In particular, the valence-bond (VB)
theory® appears to be especially well suited because for an
ionic divalent system (such as MgO, for instance), the
ground-state wave function will be dominated by the
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resonating valence-bond component. In the VB frame-
work an excited electronic state can be schematically de-
picted as
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for those states corresponding to a U excitation energy.
The electronic ground state will be a mixing of these (and
other) components and the same applies to the electronic
states dominated by A and U. Now, if we omit the cou-
pling between the different resonating VB components,
the VB model reduces to the simple ionic model of Tor-
rance et al.® If we use a cluster model, with the adequate
embedding scheme, and a basis set to explicitly describe
the wave functions corresponding to the resonating VB
structures (1), (2), and (3) and compute the expectation
value of the energy, for each one of these wave functions,
we will have an ab initio extension of the ionic model.
Subsequent improvements of this model are straightfor-
ward by including the coupling between the different VB
determinants (through a variational configuration-
interaction approach), the more important quantum
effects of neighboring ions (QENI) and the effect of the
external correlation.

Unlike band-structure calculations, the resulting VB
wave function is explicitly correlated and from the very
beginning the many-body nature of the electronic system
is taken into account. By a correlated wave function we
mean that the (VB) N-electron function is not an eigen-
function of a Hamiltonian which can be written as a sum
of monoelectronic operators (as in the Hartree-Fock
theory).

In this paper, we will introduce the cluster ab initio
valence-bond model and apply it, as a first step, to the
simple oxides of the alkaline-earth elements. Finally, we
recall the similarity between the present model and the
one used by Fujimori and Minami.!® The important
difference between the present work and Ref. 10 lies in
the ab initio (parameter-free) nature of our model where
all the matrix elements are explicitly evaluated.

II. THE CLUSTER MODEL FOR SIMPLE OXIDES

In this work we use a small cluster model containing
three atoms surrounded by a set of 340 point charges
(PC’s) or 336 point charges and 4 pseudopotentials to de-
scribe the oxygen nearest-neighbor metal atoms not in-
cluded explicitly in the model (see Sec. V). The model
contains two metal atoms and one oxygen (Fig. 1) and the
number of electrons explicitly involved in the calculation
is the one corresponding to M2" and O? although the
resulting model (real atoms plus the PC’s) has zero net
charge. The set of PC’s has been optimized to reproduce
the Madelung potential in a large set of points on spheri-
cal surfaces centered on each cluster atom, plus a set of
points on the lines connecting next nearest neighbors,
and imposing zero charge for the resulting system. Only

FIG. 1. Schematic representation of the cluster model used
to represent alkaline-earth oxides.
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the PC’s corresponding to sites other than those where
the real atoms are have been optimized and symmetry
conditions on equivalent sites have been imposed in the
optimization process. It is worth pointing out that the
Madelung potential calculated along any other arbitrary
direction differs in less than 0.001 hartrees from the exact
potential obtained through the use of the well-known
Ewald techniques.

A limitation arising from the limited cluster size is that
A energies correspond largely to excitations to nearest
neighbors whereas U corresponds to local excitations be-
tween second-nearest neighbors. Consequently, the
values of U and A calculated in our M-O-M model may
differ from those calculated for the other geometries. For
example, MOy and MO, clusters have no excitation cor-
responding to U, while the nearest metal-metal distance
(which affects the value of U) is closer for the M¢O and
M ,O clusters than our M-O-M model. However, in this
work, our interest is focused on the presentation of the
model and its performance to reproduce the optical band
gap at different levels of approximation. The systems we
deal with are clearly charge-transfer insulators and the
effect of U will be of minor importance, especially for the
calculated value of the energy A.

A final point to be stressed is that the small cluster size
discussed here can be readily extended to larger clusters
and we can use the same computational framework
presented in the forthcoming sections (see Sec. X).

III. THE VALENCE-BOND MODEL SPACE

The electronic configuration dominating the electronic
ground state corresponds to 1s22s522p® for oxygen (behav-
ing as O?7) and (n —1)p°ns® for the alkaline-earth metal
atoms (behaving as M2"). If the metal atoms are labeled
A and B and no label is used for oxygen, the electronic
ground state will be dominated by the

|“ b, pz, " PP:" " PoyPs,) @

Slater determinant, corresponding to the resonating VB
component indicated in (1). In (4), ¥ and Y represent the
alpha and beta spin orbitals, respectively. Because our
cluster model has three atoms lying along the z axis, we
will consider local charge transfer along the z direction
only. The Slater determinant denoted by (4) can then be
abbreviated as

|zz) . (5)

It is worth pointing out that in the VB formalism the
Slater determinants are constructed from pure atomic or-
bitals. Hence, P Pz, Py Py is a set of atomic orbitals

whose explicit form will be considered in the next section.
Corresponding to the VB resonating structure (2), we
can construct the following VB Slater determinants:

lzs4 ),
|Zs 40,
lzsg) ,
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for a total z component of the spin angular momentum
(S,) of zero. In (6) s, and sg are the ns atomic orbitals
(AO’s) of the cation which are not occupied in (5). These
determinants correspond to a single excitation from ei-
ther z and Z to the empty spin orbitals of the cation.

For the VB resonating structure labeled (3) we can con-
struct the following VB Slater determinants:

\pazZsp)=Ip4sp) ,
lpazzsg)=|p ) ,
_— — (7)
lppzzs 4 ) =lpgs 4 ) ,
|ppzzs 4 ) =Ipgs4) .

Finally, we consider the valence-bond contributions
corresponding to neutral oxygen. There are two different
ways to construct resonant forms with neutral oxygen,
namely,

M2t _ 0% MO (8)
and
M*-0%-M™* . ©)
The VB Slater determinants associated with (8) are

|PA1ZSBS;> ’

- (10)
\ppPBS4S4) »
and those corresponding to (9) may be written as
|SA57> ’
— (11)
|SBSB> >

and we recall that z and Z are not occupied in either (10)
or (11).

The final valence-bond model space contains the Slater
determinants (5), (6), (7), (10), and (11), having dimension
13X13. It is important to point out that depending on
the orbital basis set used to construct the VB Slater deter-
minant, the resulting secular equations must include (or
not include) explicitly the overlap between them. In the
next section we will show how the orbital basis set is con-
structed and orthogonalized. The N-electron VB basis
set is then orthogonal. Because this basis set directly uses
Slater determinants, it is not spin or symmetry adapted.
The transformation of the VB basis to a spin and symme-
try adapted basis is straightforward although it is not
convenient from the computational point of view.

Once the VB model space is constructed we define the
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projection operator ﬁs as

P.= 3 lk)kl, (12)

kEVB

where |k ) is one of the 13 Slater determinants and S is
the VB model space. Next, we solve the secular equa-
tions (the orthogonal VB problem)

PAP Y, )=E,|¢,) (13)

which lead to the eigenfunctions of the electronic Hamil-
tonian in the VB model space basis set. These eigenfunc-
tions are of the form

W= 3 Culk) . (14)

kEVB

To solve (13) a number of matrix elements H;; have to
be computed. This is done without introduction of any
empirical parameter provided each |k ) VB determinant
is constructed from an atomic orbital basis set and the set
of integrals necessary to evaluate H;; computed within
the AO basis set.

IV. THE ATOMIC ORBITAL SET

To construct the VB Slater determinants, it is neces-
sary to have a set of (orthogonalized) atomic orbitals. If
the system we are concerned with is an ionic crystal, it
would be logical to use as atomic orbitals those of the cat-
ion and anion in the crystal. These orbitals are obtained
by performing a Hartree-Fock self-consistent-field (SCF)
calculation of the M?* or O anion in the Madelung
field. Technically, this is done by surrounding the ion by
the set of point charges used to obtain a proper simula-
tion of the Madelung potential and expanding these or-
bitals in a basis set of contracted Gaussian-type orbitals
(CGTO’s).

The CGTO basis set for the cations is the one reported
by Huzinaga!'! for the M2 cations augmented with two s
primitive GTO’s, to represent the outer s orbital of M
(not occupied in the dication), and one p primitive GTO.
The exponents of these functions were obtained in an
even tempered way. For O?~ we use a basis set opti-
mized for O~ (Ref. 12) and used previously to study the
core-level shift in MgO.!? Details about basis-set quality
and contraction schemes are given in Table I.

Once the CGTO basis set is defined, a SCF calculation
is carried out for a cluster model consisting of the ion and
the set of point charges used to represent the Madelung
potential. The resulting set of atomic orbitals is, of
course, orthogonal. However, the AO set of each atom in

TABLE 1. Atomic basis set used to describe the atomic orbitals of M2 and O?~ (3*1 stands for

1+1+1 and so on).

Primitive GTO CGTO s contraction p contraction d contraction
(oL 11s 7p Ss 3p 5,2,1,2,1 4,2,1
Mgt 9s 5p 6s 3p 3,1,2,3*1 3,2*%1
Ca’* 12s 8p 8s 5p 3,1,2,1,2,3*1 3,1,2,2*1
Sr2+ 155 11p 4d 8s 6p 1d 4,3,2,1,2,3*%1 4,1,2,1,2,1 4
Ba?" 18s 14p 7d 9s 6p 2d 4,2*3,2,1,2,3*1 4,2*3,1,2,1 4,3
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our cluster (1) for the simple oxides is not orthogonal to
the AO set of the other cluster-model atoms. An orthog-
onal set is obtained by first using the Lowdin procedure
to orthogonalize the AO’s of both metals and then a
Schmidt orthgonalization is carried out between O?~
AO’s and those of the M2t —._M?* cluster which at this
step are an orthogonal set), taking care not to mix core
and valence orbitals. The resulting set is orthogonal, but
contains some orthogonality tails. An analysis of the
electron density associated with each orthogonal AO re-
veals that the tails are indeed very small although they
increase from Mg to Ba. The implication of these ortho-
gonality tails will be described in Sec. VIIL.

Using this set of orthogonal AO’s, the resulting set of
VB Slater determinants, constituting our model space, is
also an orthogonal set and can be solved by using stan-
dard configuration-interaction (CI) techniques.

V. INTRODUCTION OF QUANTUM EFFECTS
OF NEIGHBORING IONS

In the previous section we have described how to ob-
tain the AO’s of the ion in the crystal. This set of AO’s is
only an approximation to the set we would like to have.
This is because there are quantum effects of neighboring
ions (QENI), other than Madelung ones, that must be
considered. In particular, it is necessary that the AO’s of
the cluster ions be orthogonal to the other ions in the lat-
tice. QENI does affect both orbital energies and orbital
shapes (see, for instance, Refs. 13 and 14). The effect on
the cations is very small because of the contracted nature
of the AO’s of a positively charged atom. On the con-
trary, QENI is very large for O>~, especially for the 2p
AO’s. A simple way to (partially) take QENI on the O®~
into account is to obtain the O*~ AO’s in a cluster model
where the nearest-neighbor cations of O>~ have been re-
placed by pseudopotentials.’>~!" This is precisely the ap-
proach we have used to introduce QENI in our cluster
model. This leads to a set of AQ’s for O?~ that contains
the dominating QENI on the atomic-orbital shape. The
resulting 2p orbitals for 0>~ are indeed very close to
those obtained using more sophisticated approaches as
the ab initio perturbed-ion method.'?

Another quantum effect due to the neighboring ions on
the cluster model we use may arise from the set of in-
tegrals computed in the given basis set. In fact, if we re-
place the point charges nearest to O*~ by pseudopoten-
tials (as done above) the one-electron integrals for the
given basis set will be different and closer to those ob-
tained if the cluster model were larger.

In this work we have explored both kinds of QENI by
explicitly substituting the oxygen nearest-neighbor point
charges by pseudopotentials. We can see their effect by
simply performing the calculations by explicitly including
them or not (see Table IV).

VI. EXTERNAL CORRELATION EFFECTS

The VB wave functions (14), although they are explicit-
ly correlated wave functions (they are not eigenfunctions
of an independent-particle Hamiltonian), arise from an
expansion that may be too limited to account quantita-
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tively for the energy differences between the different
electronic states. This is particularly true for the excited
electronic states chosen to represent the A and U transi-
tions. A way to improve this description is to consider
each |1,,) function as a zero-order wave function and
use perturbation theory to improve both the wave func-
tions and energies.

In order to apply perturbation theory to each |1,, ) we
must realize that from the basis set used there exists a vir-
tual space that is made up of all the remaining orbitals
not occupied in any of the VB Slater determinants enter-
ing in the definition of |4,, ). Then we can generate sin-
gle and double excitations on the Slater determinants by
substituting one or two occupied orbitals (in a given
determinant) by one or two virtual orbitals. This may be
expressed as

|k Y=rTalk)
or (15)
lkEY=rtsTbalk) ,

where a and b are the annihilation quasiparticle operators
(for occupied orbitals) and r*,s the corresponding
creation operators. If all the occupied orbitals are con-
sidered as active, the number of generated determinants
of the type (15) may be enormous. Moreover, it is unlike-
ly that excitations from the core levels will be important
to describe the electronic transitions we are interested in.
Accordingly, the active occupied orbitals are those corre-
sponding to the (n —1)p shell plus the ones of the 2s and
2p shells of oxygen. In our small cluster model this gives
rise to 6+ 6+ 8=20 active electrons.
The zero-order Hamiltonian is then defined as

A°= S E, v, ¢, 1+ 3 EJII|,  (16)
meVB IZVB

where |I) can be any of the determinants defined in (15)
and E)=(I|H|I). With this definition the perturbation

operator is
V=HA—-H, (17
and the first-order wave function is obtained as

(H)Z
=3 s

IZVB

k|H
D=3 3 cmk-—;m'_';; 13

kEVBIEVB
(18)
leading to a second-order energy

(k|11
E,—E}

EX=E,+ 3 3 CuCu
kIEVBIZVB

(19)

for each one of the electronic states belonging to our VB
model space.

We refer to external correlation as the energy contribu-
tion of those VB Slater determinants not included in the
VB model space, although a precise definition of correla-
tion it is not possible in this case because the starting
wave function |9, ) is not derived from a Hartree-Fock
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calculation.

Because only second-order contributions are included,
it is possible that the second-order energies for different
states A or U are not balanced. This can be solved by in-
troducing formally a variational class among those
|I') & VB, although this has not been done in the present
work.

The perturbation theory above corresponds to the
Epstein-Nesbet partition of the electronic Hamiltonian
and the overall procedure is closely related to the
configuration interaction by perturbative selective itera-
tion (CIPSI) algorithm!®~2 used in molecular electronic
structure calculations. A point that must be commented
on when dealing with extended systems concerns the size
consistency of the method used. The wave function cor-
responding to the configuration interaction in the model
space is not size consistent because it is a truncated CI
expansion. However, many of the unlinked terms intro-
duced by the normalization of the CI wave function on
the model space are eliminated after including the
second-order contribution through Eq. (19). If the
barycentric Moller-Plesset partition of the electronic
Hamiltonian is used, Malrieu has shown?' that the
second-order energy given by Eq. (19) grows, in the limit
of an infinite number of particles, as (2)N (N being the
number of particles). For the Epstein-Nesbet partition a
comparable analytical study is not available. However, a
recent study by Rubio et al.??> shows that, for practical
cases involving up to 56 electrons, both partitions behave
similarly and the error introduced by unlinked terms is
less than 1%. In the present case we use a limited model
to represent an extended system and energy differences
used to compute the optical gap from local excitations in-
volve a constant number of electrons. Hence, it is very
unlikely that the present results will be affected by size-
consistency effects.

Finally, let us say that if a VB model space of dimen-
sion 13 is used and 20 electrons are considered active, the
number of VB determinants |I ) & VB is around 700,000
and their contribution to the energy of a given state [1,, )
is given in Eq. (19).

VII. ANUMERICAL TEST OF
GROUND-STATE ENERGIES

In order to have an estimate of the performance of the
ab initio valence-bond wave function, we compare here
the total energy for the ground state of our cluster model
as obtained from different approaches.

A first reference can be obtained by performing a
Hartree-Fock calculation for the closed-shell Slater deter-
minant (4) and comparing the result with the energy ex-

pectation value obtained when the orbitals entering into
the definition of (4) are fixed to their atomic (orthogonal)
shape, as described in Sec. IV. These energies are report-
ed in Table II as Egcr and H;, respectively. It is remark-
able to see that at the simple H; level (where only the di-
agonal elements of the representation of the electronic
Hamiltonian in the valence-bond model space) the calcu-
lated energy lies only ~5X% 1073 hartrees (~0.14 eV)
above the Hartree-Fock energy of MgO, CaO, and SrO,
and 5X 107 hartrees (~ 1.4 eV) above the SCF value for
BaO. This difference between both values is due to the
covalent bonding contributions that permit the AO’s of
the metal to mix with those of the anion and, also, to the
static polarization of the orbitals of a given atom due to
the presence of the other cluster atoms.

Next, we consider the VB energy (Eyg) which is ob-
tained by the diagonalization of the H matrix in the
valence model space. The main effect is to permit the di-
ionic VB determinant (5) to mix with the A and U
valence-bond components. By including this config-
uration interaction, the energy with respect to the SCF is
somewhat smaller but here electronic effects other than
covalent and static polarization contributions are also in-
cluded.

Finally, we consider the external correlation effects
(E'?), arising from the second-order contribution of all
the VB generated determinants, following Eq. (19). In
this case, we include also covalent and polarization con-
tributions and the more important instantaneous
electron-electron interactions not already included in the
model space. A detailed analysis of correlation effects in
extended systems has been reported by Malrieu and co-
workers.?>?* These authors also show for convenience a
valence-bond wave function to rationalize the different
physical contributions to correlation energy.

If we were to be interested in ground-state properties
only, a Hartree-Fock calculation followed by either the
variational configuration interaction or by using Eq. (19)
with only one Slater determinant in the model space will
be surely enough and equivalent to the results reported
here at either Eyg or E? levels. However, because our
interest lies in the determination of the nature of the opti-
cal gap and its evaluation, we have to deal with excited
electronic states as well. For these electronic states, it is
not clear which electronic state has to be considered if a
delocalized (molecular-orbital) basis set is used. This is
because the corresponding H matrix will surely have ei-
genvalues lying below the one we are interested in. These
intruder states correspond to excitations on a given atom
without any charge transfer. The main advantage of the
VB wave function is that we know from the very begin-

TABLE II. Ground-state total energy of the MO oxides (M =Mg,Ca,Sr,Ba) obtained at different lev-

els of theory (see text). All energies in atomic units.

Escr H,y, Eyp ER
MgO —525.349 183 —525.344 855 —525.345912 —525.667276
CaO —1519.946 769 —1519.941 729 —1519.944 141 —1520.176 811
SrO —6567.667 889 — 6567.662 441 —6567.676032 —6567.905 331

BaO —16249.830 049

—16249.815413

—16249.817 626 —16250.048 268
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ning that the ground state is of the form (5) and also that
the excited states are dominated either by combinations
of the VB Slater determinants (6) or (7).

VIII. THE IONIC MODEL AS A LIMITING CASE

It is well known that if all the interactions other than
purely the electrostatic ones are neglected, the energetics
of an ionic system can be extracted from a very simple
ionic picture. This will be the case if the lattice parame-
ter is increased somehow with respect to its equilibrium
value.

From a purely ionic point of view, the states described
by the structures described in (2) in the Introduction will
lie at energies given by

2

A= eAVM—% —(I—A4), (20)

where e AV, is the difference in the electrostatic energies
(Madelung potential) between the cation and the anion, I
is the ionization potential of M +, and A is the electron
affinity of O~ (see Ref. 8). A plot of A, versus 1/a will
give a straight line with equal slope for all the oxides
from MgO to BaO.

In our cluster model, if we do not consider any mixing
between the different resonating structures we will be left
with the diagonal elements of the H matrix. These ele-
ments provide an estimation of the energy of each VB
component and give us an ab initio ionic model. To test
this idea we have carried out calculations of these H; ele-
ments at different values of the lattice constant (from
1.3r, to 1.8r,) where we know that the ionic model holds.
These calculations are carried out using the same AO set
orthogonalized at the corresponding geometry. A plot of
H;; versus 1/a gives indeed a straight line and the slope
of this line is very close to the one obtained using the ion-
ic model (see Table III). The small deviations in SrO and
BaO are due to the orthogonality tails which cause the
resonating structures defined in (2) (.e., M**-0"-M™)
to not correspond strictly with the result of the calcula-
tion. In fact, the orthogonality tails put a part of the
electron density of the anion near the cation and the re-
sulting structure is M?T-0% -M?®" with & being
somehow smaller than one. This explains the deviation
of the calculated slope from the one obtained using a
purely ionic model. On the other hand, the fact that the
calculated H;; plotted versus 1/a is a straight line clearly
shows that our model reduces to the ionic model at large
distances.

TABLE III. Slope of the representations of A, and Hj; vs
1/a. Results are in (eV/Bohr).

Oxide Slope
MgO 165.5
CaO 163.9
SrO 154.1
BaO 135.4
Ionic model (Ag) 163.0
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IX. THE OPTICAL GAP

Now we want to compute the energy difference be-
tween the electronic ground state and the first excited
state. From the point of view of VB theory it is clear that
the states to be considered are those represented by the
resonating VB components defined in (1) and (2) in the
Introduction. However, we have to recall that our clus-
ter model has left-right symmetry and an inversion
center. Consequently, the four VB determinants
representing A states (if no VB mixing is considered) are
classified as either symmetrical (S) or antisymmetrical
( A) with respect to a 180° rotation, and as triplet or sing-
let spin adapted. From the four VB determinants we ob-
tain four VB states that are symmetry and spin adapted
that can be represented as 'S, 35, ' 4, and *4. The elec-
tronic transition permitted by the dipole selection rule is
from the ground state to the ' 4 electronic state.

In order to gain a deeper insight into the nature of the
optical band gap it is interesting to perform the calcula-
tion at different levels. If we ignore the interaction be-
tween the different VB components we are left with the
H;; elements and our model reduces to the ionic model
(vide supra). However, there are two different ways of
obtaining these H;; elements (using the same basis set) de-
pending on whether the QENI is included or not in the
calculation via both orbital and integral effects.

From the summary of results reported in Table IV it is
seen that the values calculated for the optical band gap at
the H;; level (ab initio ionic model) are indeed very close
to those obtained from a purely ionic model such as that
used in Ref. 8. The inclusion of QENI produces a large
decrease in the calculated band gap, although no other
effect is included in the calculation. In fact, at this step
we have an ionic model plus a representation of the quan-
tum effects of the neighboring ions.

The next step is to allow a VB mixing between the
different VB resonating structures. The overall effect of
this mixing of di-ionic, monoionic, and neutral (on the
anion) VB components is a further decrease of the calcu-
lated band gap in the right direction, although the results
are less affected than when QENI is considered. At this
point, it is important to realize that the orbitals used to
describe all the resonating VB structures are those ob-
tained from the electronic ground state. In the electronic
states dominated by A resonating components, it will be
more adequate to use M to describe the outer ns atomic
orbitals. This effect is partially taken into account by in-
cluding external correlation. Thus, allowing single and
double excitations on the active electrons of each VB
determinant in our model space permits the AO’s to be
accommodated to each instantaneous electron-electron
situation. The global result is a large decrease in the cal-
culated band gaps again in the direction of the experi-
mental values (Table IV).

Because each electronic state is described by an ade-
quate N-electron wave function, the difference between
the calculated band gap and the experimental value will
arise mainly from the limited cluster model we are using.
A simple way to estimate the extension of the model is to
assume that the bandwidth of the A states can, in princi-
ple, be approximated by the energy difference between
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TABLE IV. Calculated optical gap at different levels of theory assuming that the electronic states in-
volved are the electronic ground state and the proper state dominated by the M *~-O " -M?2" valence-

bond components. Results are in eV.

Optical gap MgO CaO SrO BaO
Ionic model
(from Ref. 8) 18.23 16.39 14.81 13.54
H;; (ab initio ionic
model without QENI) 18.1 14.0 12.0 8.3
H;; (ab initio ionic
model with QENI) 15.7 12.4 11.3 9.0
VB (valence bond
in model space) 15.1 11.8 10.6 8.3
VB+2nd order 12.2 9.3 7.9 5.9
VB+2nd order+
estimated of bandwidth 10.9 8.0 6.2 4.8
Experimental value (Refs. 21 and 22) 7.7-17.8 6.8-7.1 5.8-6.0 3.8
ab initio Hartree-Fock
band theory (Ref. 23) 17.6 15.9 14.9
ab initio Hartree-Fock
band theory plus second
order on the one-electron
levels (Ref. 23) 8.2 7.7 7.1

the lowest and highest states among those representing A.
To avoid possible artifacts arising from an unbalanced
perturbation correction to the different electronic states
we have estimated the A bandwidth directly from the H
matrix eigenvalues in the VB model space. The final re-
sult, considering this estimated bandwidth, is reasonably
close to the experimental values.?>2%

Finally, we would like to compare our results with
those reported recently by Pandey, Jaffe, and Kunz.?’
These authors have used ab initio Hartree-Fock band
theory to compute the optical gap of MgO, CaO, and
SrO. They also include a detailed and very interesting
discussion about the failure of the Hartree-Fock one-
electron levels to represent electronic transitions and
show how these one-electron levels can be approximately
corrected by using second-order perturbation theory.
Results from Pandey’s work have been included in Table
IV for comparison. Unfortunately, details about the
basis-set quality are not given in 27, the only information
being the use of a set of 35 plane waves. It is remarkable
to see how close the values derived from H; without
QENI are to the ab initio Hartree-Fock ones. Moreover,
the better description of the optical band gap achieved at
the VB level indicates the superiority of this approach.
This better description is due to the use of an explicitly
correlated N-electron wave function for both ground and
excited electronic states. It is also worth pointing out
that after extensively including correlation effects, both
approaches converge fairly well to the experimental
values. A valuable feature of the present approach is that
it can be systematically improved by extending the one-
electron basis set, using a larger cluster model, expanding
the model space, and taking into account correlation
effects at higher order of perturbation theory. All these
improvements are possible and are currently being inves-
tigated in our laboratory.?® Some of these improvements
are further discussed in Sec. X.

X. A COMMENT ON CLUSTER-SIZE EFFECTS

Even assuming that the physics involved in the deter-
mination of the optical gap may be well described by a
model based on local excitations, one may wonder wheth-
er the results depend or not on the cluster size. This pos-
sibility can be explored by using a larger cluster model.
In this section we will report results obtained for MgO
using a larger cluster model containing explicitly one cen-
tral oxygen atom and four metal atoms plus two total ion
potentials and the remaining 336 point charges used to
represent the Madelung field. When using the Mg,O
cluster model (of D,, punctual symmetry), the number of
electronic states corresponding to structures (1), (2), and
(3) is larger than that for the small cluster because of the
possible spin combinations and the larger number of ac-
tive orbitals and electrons. If the model space for Mg,O
is constructed by keeping the ground-state closed-shell
determinant, and only those determinants in which an
electron from O?~ has been transferred to the 3s atomic
orbital of one of the cations, we have 25 determinants.
This choice leads to a model space which is as close as
possible to that used in the smaller cluster model. The
energies of these electronic states have been computed by
diagonalization of the Hamiltonian matrix in the model
space and further improved by second-order perturbation
theory using Eq. (19).

For Mg,O we have studied the ground state and the 24
electronic states corresponding to a A excitation. The
model space contains 25 determinants and the number of
determinants included at the second-order level of pertur-
bation theory is =5 millions.

The symmetry permitted transitions leading to the op-
tical gap are now from the 1Alg ground state to either
'4,, or 'E,. It has to be pointed out that within this
model space there are two different states of 'E, symme-
try and that only the lowest one will be considered here.
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TABLE V. Calculated optical gap for Mg,0 and Mg,O at
different levels of theory assuming that the electronic states in-
volved are the electronic ground state and the proper state cor-
responding to a local excitation from O?~ to Mg?*. Results are
ineV.

Level of theory Mg,O Mg, O
VB (Valence bond
in model space) 15.1 14.4 (from '4,, to '4,,)
14.7 (from '4,, to 'E,)
VB+2nd order 12.2 12.4 (from 'Alg to '4,,)
(

12.2 (from '4,, to 'E,)

Results for the two electronic transitions compatible with
the optical gap are reported in Table V and compared
with those obtained using the smaller model.

Analysis of the results in Table V show that the transi-
tion energies obtained through both models are very
close. The important point is the similarity between the
results obtained in the model space and the equal impor-
tance of external electronic correlation effects. Hence the
overall description of the electronic transitions leading to
the optical gap do not seem to depend on the cluster size,
at least when going from Mg,O to Mg,O. It is very un-
likely that results will be changed by further increase of
the cluster size to MggO.

The point we want to stress is once again the usefulness
of the model to identify different physical contributions;
contributions that given the local character of the process
seem not to be largely dependent on the cluster size.

XI. CONCLUSIONS

In this work we have presented a cluster model ap-
proach to studying the electronic structure of ionic sys-
tems and applied it to simple oxides of alkaline-earth ele-
ments. The cluster model contains explicitly the
Madelung fields and the more important QENI.

Using this cluster model, an ab initio valence-bond
wave function is constructed to describe the electronic
structure of the ground state and, also, of the excited
electronic states involved in the electronic transitions
leading to the optical gap. These valence-bond wave
functions are explicitly correlated and can be indeed used
as a multireference zero-order wave functions in a pertur-
bation framework. The main advantage of using these
VB wave functions lies in the physical description they
contain. In this approach, it is straightforward to con-
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struct accurate wave functions which are directly related
with simple physical ideas arising from a crude model as
a starting point. In fact, if no coupling between the
different VB components of the H matrix is considered,
the model reduces to the ionic model but from an ab ini-
tio point of view where the energy of each ionic structure
is directly computed as an expectation value using no ap-
proximations in the Hamiltonian and without introduc-
ing parameters in the evaluation of the matrix elements.
A further advantage of the model is that it permits us to
explore separately the different contributions to the opti-
cal gap. Starting from the ab initio ionic model, the re-
sult is improved by successively introducing different
physical contributions such as QENI, mixing of different
valence-bond components, by performing a configuration
interaction in the model space, and including external
correlation effects through perturbation theory.

For the alkaline-earth oxides we obtain a reasonable
description of the optical gap at a quantitative level. Our
results are very close to the experimental values and in
good agreement with the recent ab initio Hartree-Fock
band calculation of Pandey et al?’ after including the
correlation correction. Thus, both approaches agree in
the large importance of correlation effects to properly de-
scribe these optical excitations. However, the important
point is not the ability to reproduce more or less accu-
rately the experimental results but the possibility of ex-
ploring the importance of the different physical contribu-
tions.

The cluster ab initio valence-bond model for ionic sys-
tems introduced here can be readily extended and its ap-
plication to other oxides, particularly those containing
transition-metal atoms, is being actively explored in our
laboratory. We hope this model will provide a novel and
useful way to explore the electronic structure of these fas-
cinating systems.

ACKNOWLEDGMENTS

Financial support from CICyT project PB89-0648-
CO02-01 of the Spanish “Ministerio de Educacion y Cien-
cia” is fully acknowledged. Part of the computer time
was provided by the “Centre de Supercomputacié de Ca-
talunya (CESCA)” under an EASI contract between
CESCA and IBM Spain. In addition, J. B. Torrance
gratefully acknowledges financial support from the Span-
ish Ministry of Education during his Sabbatical in Spain.
We would like to thank also Dr. P. S. Bagus for his
stimulating discussions.

TA. W. Sleight, J. L Gillson, and F. E. Bierstedt, Solid State
Commun. 17,27 (1975).

2J. B. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).

3R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, and L. W.
Rupp, Nature 332, 814 (1988).

4). Zaanen, G. A. Sawatzsky, and J. N. Allen, Phys. Rev. Lett.
55, 418 (1985).

5N. F. Mott, Proc. Phys. Soc. London Sec. A 62, 416 (1949);
Can. J. Phys. 34, 1356 (1956); Philos. Mag. 6, 287 (1961); J.
Hubbard, Proc. R. Soc. London Ser. A 277, 237 (1964); 281,

401 (1964).

6P. W. Anderson, Phys. Rev. 124, 41 (1961).

7G. J. M. Janssen and W. C. Nieuwpoort, Phys. Rev. B 38, 3449
(1988).

8J. B. Torrance, Ph. Lacorre, C. Asavaroengchai, and R. M.
Metzger, J. Solid State Chem. 90, 168 (1991); Physica C 182,
351 (1991).

9See, for instance, R. McWeeny, Methods of Molecular Quan-
tum Mechanics, 2nd ed. (Academic, London, 1989), Chap. 7.

10A . Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984).



47 AB INITIO VALENCE-BOND CLUSTER MODEL FOR IONIC. .. 6215

11§, Huzinaga, Gaussian Basis Set for Molecular Calculations
(Elsevier, Amsterdam, 1984).

123, Q. Broughton and P. S. Bagus, Phys. Rev. B 36, 2813 (1987).

13y, Luafia and L. Pueyo, Phys. Rev. B 41, 3800 (1990).

147 Barandiaran and L. Seijo, J. Chem. Phys. 89, 5739 (1988).

ISN. W. Winter, R. M. Pitzer, and D. K. Temple, J. Chem.
Phys. 86, 3549 (1987).

16N. W. Winter, R. M. Pitzer, and D. K. Temple, J. Chem.
Phys. 87, 2945 (1987).

I7N. W. Winter and R. M. Pitzer, J. Chem. Phys. 89, 446 (1988).

188, Huron, P. Rancurel, and J. P. Malrieu, J. Chem. Phys. 58,
5745 (1973).

195, Evangelisti, J. P. Daudey, and J. P. Malrieu, Chem. Phys.
75,91 (1983).

20F. Illas, J. Rubio, J. M. Ricart, and P. S. Bagus, J. Chem.

Phys. 95, 1877 (1991).

213, P. Malrieu, Theor. Chim. Acta, 62, 163 (1982).

22). Rubio, A. Povill, F. Illas, and J. P. Malrieu, Chem. Phys.
Lett. 200, 559 (1992).

23M. B. Lepetit, B. Oujia, J. P. Malrieu, and D. Maynau, Phys.
Rev. A 39, 3274 (1989).

24B. Oujia, M. B. Lepetit, D. Maynau, and J. P. Malrieu, Phys.
Rev. A 39, 3289 (1989).

25W. H. Strelow and E. L. Cook, J. Phys. Chem. Ref. Data 2,
163 (1973).

26R. C. Whited, C. J. Flaten, and W. C. Walker, Solid State
Commun. 13, 1903 (1973).

27R. Pandey, J. E. Jaffe, and B. Kunz, Phys. Rev. B 43, 9228
(1991).

28A. Lorda, F. Illas, J. Rubio, and J. Torrance (unpublished).



