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Within the random-phase approximation (RPA), we have obtained the average surface-plasmon
energy of voids and bubbles in nearly-free-electron metals using energy-weighted moments of the
electronic response to operators of type r~“*VY¥ro. We have used a local-density approximation
of Slater and Wigner type for the exchange and correlation energies, respectively, and the jellium
model for the positive ionic background. Compact expressions for the plasmon average energies
are given, which allow one to discuss clearly the role played by the kinetic- and Coulomb energy
contributions to the restoring force of the L modes. The effect of the electronic surface diffuseness
is clarified. For the numerical applications, we have used an improved Thomas-Fermi-Weizsécker
model already employed in similar studies on metal spheres. Using this model, we have also studied
the static polarizability of voids. In the case of bubbles, the gas filling the cavity is modeled by a
constant dielectric function whose effect is incorporated in the calculation of the electronic density
and in the RPA response. A comparison with the experimental data is presented.

I. INTRODUCTION

Voids are produced inside irradiated metals under cer-
tain conditions of temperature and irradiation dose.l
Apart from its intrinsic scientific interest in the study
of microstructures, the understanding of the electronic
structure of cavities in metals and of their excitations is
of some technological importance in the study of swelling
and deterioration of materials exposed to neutron and
heavy-ion irradiation in the core of fast reactors.

Metal irradiation produces rare-gas impurities either
by nuclear reaction or by ion implantation. These impu-
rities are essentially insoluble? and tend to precipitate to
form bubbles, i.e., voids filled with gas usually overpres-
surized with respect to the thermal equilibrium value.3

The existence of bubbles was first confirmed experi-
mentally by Henoc and Henry* (theoretical predictions
were available before, see Refs. 5 and 6), and since then
many experimental and theoretical investigations on the
properties of spherical defects and bubbles in metals have
been reported (see Refs. 7-14, for example, and references
therein).

The solution of the Laplace equation corresponding
to a sharp-surface spherical void surrounded by a metal
modeled by the Drude dielectric constant, yields the clas-
sical dispersion relation for the L mode®

L+1
2 2
Wel =Wp 577 (1)

where w) is the frequency of a surface mode carrying an
angular momentum L, and wy, is the plasma frequency.
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Equation (1) is the model-independent large void limit
for all nonretarded dispersion relation calculations. An
extension of the sharp-surface electrostatic model to
include spatial dispersion exists!® which produces re-
sults within a random-phase approximation (RPA). Aers,
Paranjape, and Boardman!! have included spatial disper-
sion within the hydrodynamical model through a pres-
sure term, retardation effects, and an improved elec-
tronic profile that goes beyond the sharp-surface model.
More recently, a truncated (“long-wavelength”) version
of the RPA was used by Wu and Beck!3 to study the
L =1 and 2 surface modes of a void. They have found
a size-dependent plasma frequency which is gradually
blueshifted as the radius of the cavity decreases.

For high enough implantation doses, regular arrays
of bubbles have been observed!?!4 which can be made
of several thousands of bubbles. In his work on void
clusters,” Lucas has used a local dielectric constant for
a metallic matrix containing a regular array of identi-
cal voids, and has studied the band structure of the
monopole (L = 0) plasmon mode.

In the present work, we want to address the surface
collective excitations of a bubble using a RPA sum-rules
approach which has proved to be useful in previous stud-
ies on metallic spheres.!3720 To allow for a sensible com-
parison of our results with the experimental data, we
incorporate into the formalism two dielectric constants
that, in the more general case, model the gas inside the
bubble and the positive ionic background in the metal,
respectively. We represent the neutralizing positive back-
ground surrounding the void by a jellium and assume the
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density of cavities to be small enough in order to consider
only a single void in a large metal volume. We assume
that the void radius is small compared to the character-
istic wavelength A\, = 2mc/w, (about 1500 a.u. for Al,
which has w, = 0.58 a.u.), so that retardation effects
may be neglected.

This paper is organized as follows. In Sec. II we
briefly recall the RPA sum-rules method and present
the main analytical results of our work for voids and
bubbles. In Sec. III we calculate the electronic struc-
ture of these objects using an improved Thomas-Fermi-
Weizsdcker (ITFW) model, and apply it to obtain the
static dipole polarizability of a void. We present the nu-
merical results for the surface plasmon in Sec. IV, as well
as a comparison with some available experimental data.
The conclusions are drawn in Sec. V, and the general
expression of the Coulomb interaction between two ele-
mentary charges used in Secs. II and IV is given in the
Appendix.

II. RPA SUM RULES
A. General description

RPA sum rules (SR) have been already used in the de-
scription of collective excitations of nearly-free-electron
(NFE) metals.!>2! To avoid unnecessary repetitions,
we refer the reader to these references, and references
therein, for a detailed account of the method. We simply
want to recall here that the SR contain information about
the excitation modes of the system through an energy-
weighted average of the strength function S(E) defined
as

S(E) =2§ §(E — E) |(n|QIO)? | (2)

n

where @ is the external operator representing the field
that excites the system and E,, |n), and |0) are the ex-
citation energies, excited states, and ground state (g.s.)
of the system, respectively. The sum rule my, is defined
as the kth-energy moment of S(E),

mi= [E*s@E)aE =Y Bfma@or. @)

The physical interest of these moments stems from the
fact that, if the system has states of strong collective
nature and if the operator @ is chosen so that it does
not simultaneously excite different normal modes, then
the strength function S(F) is concentrated in a narrow
region and the knowledge of a few mj furnishes useful
information about that state, avoiding on one hand the
much more cumbersome task of fully evaluating S(F),
and yielding on the other hand compact formulas that
can be used to estimate the energy and width of the
collective mode.

From a practical point of view, the most useful SR are
the m_;, my, and mg ones. This is so because they can
be obtained with RPA accuracy by much simpler Kohn-
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Sham (KS) calculations. From these SR, we can define
two average energies,

E3 = (mg/my)Y/?

(4)
Ei = (mi/m_1)Y?,

which are, respectively, upper and lower bounds to the
average energy E = m;/mg, By < E < Ej, and
can be employed to estimate the S(E) variance o2 <
(E£ — E2)/4. E; is closely related to the hydrodynami-
cal (long-wavelength) response of the system, whereas E3
can be associated with its “elastic” (short-wavelength),
collisionless regime response (see Ref. 21 and references
therein). For the present purposes, we shall be mainly
concerned with E3 which bears the relevant physical in-
formation, as plasma oscillations usually take place in a
collisionless regime. Nevertheless, for the sake of com-
pleteness we will also present some results for E;.

We have chosen as external field @ the one-electron
operator corresponding to the irregular solution at the
origin of the Laplace equation, i.e.,

Q(r) =r~ Dy, (5)

where Y7 is a spherical harmonic. This choice supposes
that the electronic density is zero at the center of the
void. Consequently, only voids whose density is negli-
gible within a volume around the origin can be studied
following this method. We shall come back to this point
in Sec. IV.

To describe the electron structure, we have used a den-
sity functional e[n(r )] consisting of a kinetic term (T), an
electron-electron (e-e) Coulomb direct term, a Coulomb
exchange term of Slater type,

3 /3\/3
Cox =7 (;) n(r)? = —¢, n(r)¥? (6)
a correlation term of Wigner type,
a n(r)
Ecor = — , (7
«r b+ [3/4mn(r)]*?
where a = 0.44 a.u. and b = 7.8 a.u. (we shall use

atomic units throughout), and a jellium-jellium (j-7) plus
a jellium-electron (j-e) Coulomb contribution.

B. The m; and ms sum rules for a void

It is very simple to obtain m; for the operator Q of
Eq. (5). Following the method outlined in Refs. 17-19,
we get

m1=%(2L+1)(L+1)/000dT7"22§'—:')—2-’ ®)

where n(r) is the g.s. (spherically symmetric) electronic
density.
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The calculation of mj is straightforward. Due to the
fact that AQ = 0, m3 has no explicit contributions from
terms like €¢x and €, which only depend on the elec-
tronic density.!® After a lengthy calculation, one gets
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mg = m3(T) +m3(C) , (9)

where the Coulomb contribution m3(C) containing the
e-e and j-e contributions is given by

r)ng(r

m3(C) = (L +1)2 [(L +2) / dr 21{_25 47rr1 dry[n(r1) —ny(r)] + 27r/ dr %} . (10)
The jellium density n;(r) of a void of radius R is defined by means of a unit step function

ny(r) =ngé(r — R), (11)
where ng = 3/(4nr3), rs being the bulk radius per electron.

The kinetic term mg3(T) is given by
L+3
ma(T) = 4(L+1)(L+2)(2L+1)/ 2L+4 [— (27 —3X\) + 3(2L+3)T] . (12)

In this expression, 7(r) is the kinetic-energy density de-

fined as
b [Er D vamr, )

E%/dBTT(T =

where @;(r) is the ith single-electron wave function.
The function A(r) is a kind of centrifugal kinetic-energy
density.!7:!8 If one uses the Thomas-Fermi approximation
to evaluate Eq. (12), this formula is simplified by the fact
that 27 = 3).?2 Since this equality approximately holds
in the general case, we shall neglect the contribution of
the first term in the right-hand side (rhs) of Eq. (12) in
all the numerical applications.

We would like to stress that the m; and m3 expres-
sions depend only on the KS particle and kinetic-energy
densities of the unperturbed system (this advantage is
also shared with the truncated RPA method of Ref. 13),
and that both SR can be obtained with RPA precision
by numerical quadratures.

Once the SR expressions have been worked out, dif-
ferent approximations for the electronic structure can
be employed in order to obtain approximate analytical
formulas. Indeed, it is quite instructive to carry out
the integrals in Eqs. (8), (10), and (12) for a step elec-
tronic density which is one of the most often used in the
literature.5%15:20 In this case, 7 = $(372)2/3n%/3 = x
and one gets

1L+1
my 2 R2L+1 1o » (14)

2mng (L+1)2
m(C)= T oL 71 (15)
mg(T) = (L +1)(L+2)(2L + 1)R2L+3 . (16)

Thus,
B L+1

E2=2(L+2)(2L+1 F w2

[

where w, = (47ng)*/? is the plasma frequency and Br =
(2)/2 vp, vp being the Fermi velocity.

In spite of the crude step density model we have used
for n(r) (the inclusion of the kinetic energy in whatever
approximation leads to a spill-in), Eq. (17) constitutes
an interesting result of the present study. It shows in a
transparent way how finite-size effects come about. We
will show in Sec. IV how the electron surface diffuseness
modifies this result. Notice that when R goes to infinity,
Eq. (17) yields the classical limit, Eq. (1).

Finally, we would like to draw attention to an applica-
tion of m; that has been often overlooked in the use of
the RPA method for describing the electronic excitations
of NFE metals (see, however, Ref. 23). Starting from Eq.
(3), it can be easily shown that

/ & (VQPn(r),  (18)

where H is the Hamiltonian of the electron system. As
m; can be calculated either from Eq. (3) using the RPA
S(E) function or from Eq. (18) using for n(r) the KS
g.s. density, it provides a test on the numerical accuracy
in evaluating S(E), which sometimes is not easy to as-
certain. In the particular case of the dipole mode of a
metal sphere, a test is provided by Sorbello’s electrostatic
force rule,2* widely used in that case (see, for example,
Refs. 25-27). However, the force rule cannot be used in
more general situations, like for g-dependent operators!®
and/or multipolarities higher than L = 1 (Refs. 17 and
18), or in the present case, whereas the test on m; is of
general applicability.

= 3(0[Q, [H, Q])|0) =

C. The case of a void filled with dielectric (bubble)

As we have indicated in the Introduction, to compare
the results of the calculations with available experimen-
tal data, one has to incorporate in the formalism the
response properties of the gas that appears inside the ex-
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perimentally studied bubbles. Its presence changes the
values of the plasmon energies in two different ways. One
is through the modification it induces in the g.s. elec-
tronic structure at the void surface. This is an implicit
way that shows up as a self-consistency effect: the dif-
fuseness of the g.s. density and the electronic “spill-in”
increase because the dielectric inside the cavity screens
the e-e interaction. As a consequence, the average elec-
tronic density at the void surface tends to decrease. The
other effect of the dielectric is what we shall call an ex-
plicit effect, in the sense that the dielectric constant ex-
plicitly appears in the formulas of the plasmon frequency.
We shall show that this second effect is, by far, the most
important one.

We assume constant dielectric functions to model the
gas filling the bubble (e;) as well as the jonic background
in the metal (e2). This assumption is valid when the en-
ergy values of the plasmon excitations are far from those
of the inner-shell excitations of the dielectrics, which is
not always the case. As a further approximation, we have
only modified the Coulomb direct term in the presence of
dielectrics, but not the exchange or correlation terms (a

m3(C) = 2n(L + 1)?
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similar procedure was used in Ref. 28 to study the elec-
tronic polarizability of small metal spheres embedded in
a dielectric). This procedure is in part justified by the
fact that eex and ecor have lesser influence on the g.s. n(r)
and 7(r) than the other terms in the density functional,
and that the electronic response is mainly determined by
the Coulomb direct interaction.!%23

To calculate m3(C) in the case of two regions of dif-
ferent dielectric constants, one has first to obtain the ex-
pression of the corresponding scalar Coulomb potential
®(ry,ry). This is given in the Appendix for two elemen-
tary charges at r; and rs in a space occupied by a spher-
ical dielectric of radius R and constant €; surrounded by
an infinite dielectric of constant e;. Using that expres-
sion, the total Coulomb direct energy for an arbitrary
charge density p(r) reads

Bo =} [[ dnidn o) 9 pen) . (19)

Starting from Eq. (19) and using the method of Refs. 18
and 19, a rather cumbersome calculation yields

n(r)ny

/ dr —5ime

AL +2) /°° s
€2 R

where npet(r) = ny(r) —n(r). Adding to Eq. (20) m3(T)
given by Eq. (12), one gets m3 in the case of a bubble.

Again, it is interesting to evaluate Eq. (20) for an elec-
tronic step density. In this case, the last three terms in
Eq. (20) are zero and one gets

_ 2mnd (L+1)2
ms(C) = i L+ L 1) (21)
Thus,
B L+1
E? = 3(L+2)(2L+1) L+ P——__51L+e2(L+1)
(22)

which is analogous to Eq. (17).

To conclude this section, we would like to stress again
the simplicity of formulas (8), (12), and (10) or (20) that
allow us to obtain the m; and mg SR (thus an aver-
age frequency of the surface modes within RPA) from
g.s. quantities obtained in the KS approximation. More-
over, the fact that they only depend on the unperturbed
electron and kinetic-energy densities offers the interest-
ing possibility of evaluating F3 employing a semiclassical
method, like the ITFW model of Refs. 18, 19, and 26.

Le-a L(2L + 1)R?E+1 (/‘x’d n(r) )2
€2 e L+e(L+1)

+<é— )};’2,(51)4/(1” n(r)

n(r1)
2L+5/ dr 12 Npet (1

-
r2L+2

L AL+ /R n(ry) / )
- A drq 2055 drr* n(r)

III. THE IMPROVED THOMAS-FERMI-
WEIZSACKER APPROXIMATION

A. Electronic structure

The problem of the electronic structure of vacancies in
metals has been addressed by Manninen et al.?? in the KS
and Thomas-Fermi-Weizsécker approximations. Wu and
Beck!2 have described voids using a single- or double-step
potential to generate the single-electron wave functions.
However, as their calculations are for voids whose size
is similar to ours, we shall use their results to test our
electronic densities.

What we shall call ITFW approximation consists in
using as kinetic-energy density 7(r) the following expres-
sion:

5/3 [V"(T)] 23
) =) + & TR 23)
where v = £(372)%/% and 8 = %. The latter value is

heuristic and has been fixed to reproduce the densities
obtained in Ref. 13 (see below). The use of the value
B = % deduced by Kirzhnits3 results in too steep densi-
ties as compared with the quantal ones (see Ref. 31 and
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references therein). From previous studies of collective
excitations in metal clusters,!826:32 3 value bigger than
% yields results in better agreement with the KS results
than the original value of Kirzhnits. To obtain the g.s.
ITFW density, one has to solve the Euler-Lagrange (EL)
equation,

be[n)
where p is the electron chemical potential, and &[n]
consists of the gex and €cor pieces defined in Egs. (6)
and (7), of the ITFW kinetic energy per unit volume
€kin = T(r)/2, and of the usual Coulomb direct (e-e, j-e,
and j-j) energy terms.

Equation (24) has been solved using the method of Ref.
31 within a large sphere of radius R, typically of the
order of R + 20 a.u., in which we have imposed charge
neutrality. The boundary conditions on n(r) are n’(0) =
n/(Roo) = 0. To obtain the Coulomb direct potential ¢(r)
entering Eq. (24), we have solved the Poisson equation

_4_7r Nnet(r) forr < R
Agr) =4 Gk (25)
- Nnet(r) forr > R,
2

imposing the matching condition

a¢ in B 3(25 out
[61 _6_;] r=R B [625] ’

r=R

(26)

at the bubble edge, as well as the conditions (r¢),—¢ =
(r¢)r,, = 0, the latter one due to charge neutrality.
Nnet(r) is defined after Eq. (20). As a test on the nu-
merical accuracy, we have checked that n(R) = ng, Eq.
(11), and that u is r independent and coincides with the
bulk value po obtained from Eq. (24) after dropping all
the gradient terms.

Figure 1 shows TF densities for a void of R = 20 a.u. in
an 7, = 2 a.u. metal, and the double-step model (DSM)
density (dots) of Ref. 13. The solid line corresponds to
the present ITFW model using 8 = 2. The dashed-

§-
dotted line has been obtained using 3 = . The agree-

0.03 +

0.02

n(r) (a.u.)

0.01

24 28

r(a.u)

FIG. 1. ITFW densities for a void of R = 20 a.u. in an
Ts = 2 a.u. metal using 8 = 2 (solid line) and 3 = } (dashed-
dotted line) and the corresponding double-step model density
of Ref. 13 (dots). The vertical line indicates the position of
the jellium surface.
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€ o0z}
001}
0 10 20 30 %0 50
r(a.u.)
FIG. 2. ITFW densities for voids of R=5, 10, 15, 20, and

40 a.u. in Al (rs = 2.07 a.u.).

ment between the ITFW (3 = 2) density and that of
Ref. 13 is reasonably good, indicating the reliability of
our semiclassical model.

Figure 2 displays the ITFW densities for Al (r; = 2.07
a.u.) corresponding to voids of R = 5, 10, 15, 20, and
40 a.u. It is interesting to notice that for R 2 15 a.u.,
the electron-density profiles are basically parallel. This
suggests that one can describe the electronic density of
these voids by a universal function depending on a few
parameters. We have checked that for voids of R 2 15
a.u., the variational densities can be represented by the
function

nry=mne |1 — 1 (27)

Ec))

where the parameter § takes into account that the deriva-
tive of the variational electron density is peaked inside
the metal. The values v = 1.801, § = 0.612 a.u., and
a = 0.762 a.u. reproduce quite well the variational re-
sults for Al down to R ~ 10 a.u.

Finally, we show in Fig. 3 the electron densities cor-
responding to €; = € = 1 (dashed line), and to ¢ = 3,

0.03
I

0.02 -3

3
s
<

0.01f

0 0 !% 20

r(a.u)

FIG. 3. ITFW electron densities corresponding to €; =

€2 = 1 (dashed line), and to €1 = 3, e2 = 1 (solid line) for a
cavity of R = 10 a.u. in Al. The vertical line indicates the
position of the jellium surface.
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€2 = 1 (solid line) for a cavity of R = 10 a.u. in Al. As
we have previously indicated, because of the screening
of the e-e interaction caused by the dielectric, the elec-
tron density “spills-in” the cavity, increasing the surface
diffuseness.

B. The static polarizability of a void

For the sake of completeness, we use the ITFW method
to work out the m_; SR which is closely related to the
static polarizability. We shall limit ourselves to the sim-
pler case of a void, but with some obvious modifications
the method can also be employed for bubbles.

Our method to obtain m_; is described in great detail
in Ref. 26. One has to solve the constrained problem

Bdf B[ 2 df [BIL(L+1) An,
‘zzrz*z(‘:* )m {Z[T+n_e_
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= /d3re[n] + )\/d3rQ(r)n(r) ’

where in the present case Q(r) = r~(2+)Y4 and ) is a
small parameter. The corresponding EL equation

be[n] 1
o v Yo =H

(28)

(29)
is solved to first order in A by using as electron density
n(r)
where ne(r) is the ITFW equilibrium density obtained

when A = 0. The unknown function f(r) obeys the fol-
lowing integro-differential equation:

=ne(r) + én(r) =ne(r) + A f(r) Yo , (30)

2
o, 2/3 1/3 _
i) + g'yn / — §cang / gars(ne) ——-———[b e

b+ 2rs(ne) }f

1 4r e L+2 *  f(r)
+ne TL+1 + 2L+ 1 TL+1 / d7‘1 Tl f(rl) + NeT g d’l‘l rf‘_l =0. (31)

In this equation, n/, and An. denote, respectively, the r
derivative and the Laplacian of the g.s. equilibrium den-
sity, and 74(ne) = (47n./3)1/3 is the local radius per
electron. The constants have been defined in Egs. (6),
(7), and (23). Once Eq. (31) has been solved, the static
polarizability « is readily obtained,?8
oo
a=2m_;=— / dr f(r)r~ &1 (32)
0

It is worth noting that the term multiplied by 47 /(2L+
1) in Eq. (31) comes from the e-e Coulomb direct poten-
tial. This is the only term that should be modified in
the case of a bubble, using the results given in the Ap-
pendix. The differential character of Eq. (31) comes from
the Weizsacker term in Eq. (23). Otherwise, one deals
with a simpler integral equation.

It is interesting to work out in detail the classical limit
obtained when only the Coulomb term is kept in Eq. (31).
The resulting integral equation

1 4m 1 /R Li2
+ drrit2f(r
RL+1 2L+1[RL+1 0 ()

+RL/:odrfL(i)l] =0 (33)

has a solution of the type f(r) = cé(r — R), as can be
checked substituting this expression into Eq. (33). One
easily finds

2L+ 1 1
4r RL+Z°
Thus,
2L+1 1
m_1=%ac1=———sﬂ_—m . (34)

Using Eqgs. (14) and (34), one gets for the classical fre-
quency

mi _ L —+ 1 _ 2 L + 1 2
LT A S Ty A
Equations (17) and (35) show that in the classical limit
E, = Es3, meaning that for a given L there is a single
plasmon mode which has no spatial dispersion (i.e., its
energy does not depend on the radius of the void). The
radius dependence comes from the quantal kinetic energy
and from the surface diffuseness, which is also a quantum
effect.

Figure 4 shows the dipole “induced density” f(r) for
two typical Al voids of R = 10 and 30 a.u. obtained from
the full solution of Eq. (31) (solid lines, left scale), and
from the solution of the integral equation that results in
putting 8 = 0 in that equation and using a constant elec-
tronic density no (dashed lines, right scale). The function
f(r) has been normalized as follows:

/mdrr2 flr) =
0

For the ITFW model, f(r) is located well inside the void,
at variance with the result of the unrealistic step density
(SD) model. This spill-in of the induced density caused

E12 =

(35)



I&

I 1.2
H
0.6} Lat b
h
H
Al {os
0.4}
{04
02}
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0 ' 10 ’ 20 ' 30 ' %0

r(a.u)

FIG. 4. Normalized dipole induced densities f(r) for two
voids of R = 10 and 30 a.u. in Al obtained from the full (solid
lines, left scale) and the 8 = 0, constant electron-density
(dashed lines, right scale) solutions of Eq. (31).

by the electronic surface diffuseness has a dramatic effect
on the value of the static polarizability. This can be seen
from Fig. 5, which shows the static dipole polarizability
in units of a1, Eq. (34). The solid line corresponds to the
ITFW model and the dashed line to the SD model, which
fails to yield the qualitative behavior of a/ag) as a func-
tion of R. A similar situation was found in NFE metal
spheres some time ago,25:26:32 and only the use of realis-
tic electronic densities in the calculations yielded a semi-
quantitative reproduction of the experimental results.33

To avoid any possible misunderstanding, we want to
emphasize that Egs. (8), (10), (12), and (20) are exact
RPA expressions, provided they are evaluated using the
corresponding KS densities. The use in Sec. IV of the
ITFW model to evaluate these equations is just a matter
of convenience justified by the fact that SR calculations
for metal spheres in the KS and ITFW approximations
yield results in excellent agreement with each other (see
Refs. 26, 19, and 34). In contradistinction, Eq. (32) is
not a RPA result. However, it has been shown in differ-
ent situations that Thomas-Fermi models of similar com-
plexity as the one used here yield a static polarizability

~N
T

ITFW

alag

FIG. 5. Static dipole polarizability in units of the classical
value, Eq. (34), in the ITFW (solid line) and SD (dashed line)
models, as a function of R.
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in good agreement with the exact RPA result. We refer
the reader to Refs. 17, 21, 34, and 35 for a discussion of
this point.

IV. NUMERICAL RESULTS
FOR THE SURFACE-PLASMON ENERGY

Before presenting the numerical results, we would like
to say a word of caution about the singularity of the
operator Q(r) = r~(L+DYy, that generates the surface
oscillations. We have explicitly assumed in the derivation
of Egs. (8), (10), (12), and (20) that n(r) is zero at the
origin. Actually, one can see from these formulas that
for them to be valid, n(r) must go to zero faster than
some power of r which increases with increasing L. In
practice, we have limited ourselves to cavities with R 2 5
a.u., for which the surface, defined as the region where
the density changes from 10% to 90% of the bulk value
ng, is well apart from the origin, and have introduced an
effective density

neﬁ(r) = 0(7‘ - Rcut) n(r) ’

with the requirement that the surface region of the vari-
ational n(r) is fully incorporated into neg(r). For the
results we shall be describing, we have checked that the
value of the cutoff radius Ry can be taken rather ar-
bitrarily without appreciably changing the numerical re-
sults. When, due to the chosen values of R and/or L, it
has not been the case, we have stopped the calculation
since it is no longer reliable.

The integrals over r—(22+2) in Egs. 582, (10), and (20)
and, to a lesser extent, the one over 7~ (2.+4) in Eq. (12),
must be carried out with some care. They are slowly
converging and stopping their evaluation at the R, value
defined in Sec. III A, which is perfectly valid for the struc-
ture calculation, can cause numerical inaccuracies, espe-
cially for large voids. Since at Ro, the functions n(r) and
7(r) have reached their asymptotic values ng and 7, we
have added to the computed integral the corresponding
rest calculated as in the SD model. In the case of Eq.
(8), for example, we have added to the integral

e dr _n(r)
0 r2L+2
the value
no 1

2L +1 R2L+1°

which results from analytically evaluating that integral
from R, to infinity.

The results we shall discuss correspond to Al (r, = 2.07
a.u.). We have chosen this typical NFE metal for all the
numerical calculations presented in this work (except Fig.
1) because of the available experimental data on bubbles
in aluminum.

A. Voids

We present in Fig. 6 the E3 energy for L = 1 and
€1 = €2 = 1 obtained from models of different complexity.
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FIG. 6. Average L = 1 E3 energy as a function of R for
voids (€1 = e2 = 1). Solid line: complete ITFW calculation
with 8 = 2. The crosses correspond to 8 = }. Dashed line:
step electron density model. Dashed-dotted line: neglecting
the kinetic contribution to E3. The dots along the E3 solid
curve have been obtained using the electronic density defined
in Eq. (27). The horizontal line at the right-hand side is the
classical limit.

The dashed line corresponds to the SD result, and the
dots to the F3 energies obtained using the parametrized
electron densities, Eq. (27). The solid line shows the
complete ITFW calculation with 8 = %. As a test of
the sensitivity of our results to the parameter 8 we also
include the results for 8 = § (crosses).

Another hint about the sensitivity of the results to the
value of 3 used in Eq. (23), as well as the adequacy of
the value here adopted, is furnished by Table I. In this
table, the results labeled as DSM have been obtained
using in Egs. (8), (10), (12), and (23) (with 8 = 2), the
DSM densities for R=7, 14, and 20 a.u. We would like
to indicate that these DSM densities have been obtained
digitalizing the results displayed in Figs. 1(a) and 2(a)
of Ref. 13. One can see that the agreement between the
TF and DSM results is good. However, one should have
in mind that we have assumed the same kinetic-energy
functional in both cases.

We see from Fig. 6 that the energy of the surface excita-
tion goes to the classical limit (indicated by a horizontal
line at the right side) when R increases, due to the domi-

TABLE I. Plasmon energies for voids of R=7, 14, and 20
a.u. in an 75 = 2 a.u. metal for L=1 and 2. The results labeled
WB have been taken from Ref. 13. The DSM results are E3
energies obtained using the densities given in Ref. 13. The
other results have been obtained using different values of the
parameter 3 in Eq. (23).

R L WB DSM B=1 =2
7 1 0.541 0.501 0.507 0.502
2 0.537 0.511 0.514 0.511
14 1 0.520 0.489 0.492 0.490
2 0.505 0.466 0.472 0.469
20 1 0.512 0.491 0.492 0.490
2 0.497 0.464 0.466 0.464
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nant role played by the Coulomb term. For voids of small
radius, the energy is mainly determined by the kinetic-
energy contribution, and thus it sharply increases below
R ~ 10 a.u. The smooth minimum around R ~ 15 a.u. is
due to the interplay between the kinetic-energy and sur-
face diffuseness effects which are absent in the SD model.
Indeed, if we neglect the kinetic contribution to E3 and
consider the Coulomb potential as the only source of the
restoring force of the mode, we obtain the dashed-dotted
line, which shows a size dependence coming from the sur-
face diffuseness. In the complete calculation, this effect is
compensated by the kinetic contribution when the radius
is small enough. The similarity between the result of the
complete calculation (solid line) and that of Aers, Paran-
jape, and Boardman!! obtained from a hydrodynamical
model is remarkable.

The dominance of the kinetic-energy contribution at
small radii is a consequence of the strong localization
of the induced charge. For very small voids, the exci-
tation loses its collective character degenerating into an
electron-hole pair (incidentally, this makes less restric-
tive the fact that the method cannot be applied to small
voids for the reasons discussed at the beginning of this
section). At small distances, the electron-hole pair com-
pensates with an equally strong kinetic-energy amount,
the strong negative potential energy needed to make a
dipole. We thus conclude that the blueshift of w with re-
spect to the classical value wy) for small radii is a kinetic-
energy effect.

The angular-momentum dependence of the plasmon
energy can be seen in Fig. 7, where we have plotted
E3(L) versus R for L = 1 to 3. Also indicated at the
right-hand side by horizontal lines are the L = 1 and 3
classical values. As expected from the higher power of
L appearing in m3(T’) than in m3(C) [see Egs. (15) and
(16)], for large L values and a given R, the kinetic contri-
bution is taking over the Coulomb one farther away from
the origin, displacing the smooth minimum of the curves
towards larger radii. As a consequence, the minimum is
swept up because of the minor role played by the surface
diffuseness when R increases.

For a given R, the collective character of the L mode
is being washed out as L increases. If, for a given

T —
3
2
r Al
L=l €=
~ 05¢r
3 1]
5
3
04t
- 0 o 30 ’ )
R(a.u)
FIG. 7. Es3(L) vs R for L = 1 to 3. The horizontal lines

at the right-hand side are the classical L = 1 and 3 values,
Eq. (1).
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angular momentum, we take as a rough criterion of
collectivity losing the equality of kinetic and Coulomb
contributions,'® we obtain from Eqgs. (15) and (16) the
following estimate of the minimum radius Rp,, of the
void that can sustain a collective L mode:

2(L + 2) BrF

Rmin=(2L+1) m'w—p

(36)

This gives for Al a radius of about 4 a.u. for L =1, and
8 a.u. for L = 3. A similar formula can be worked out
for bubbles using Egs. (16) and (21).

B. Bubbles

To estimate the changes introduced by the dielectric in
the frequency of the surface plasmon, we first considered
the case in which ¢; = 3, e = 1. The effect of the
dielectric on the g.s. electronic density has been described
in Sec. IIT A, Fig. 3.

Figure 8 shows the average dipole E3 energy as a func-
tion of R (solid line). For comparison, we show again the
results corresponding to €; = ez = 1 (dashed line). The
general trends of E3(R) can be easily understood from
the analysis we have carried out in the case of voids. No-
tice that in the present case, and for sizes bigger than
R ~ 10 a.u., Fj3 is increasing with R. This is due to the
increase of the electronic diffuseness and spill-in, whose
effect now takes over the kinetic energy one for sizes
smaller than in the ¢g = 1 case. However, we do not
calculate E3 for smaller bubbles (R < 7 a.u.) because of
the requirements explained at the beginning of Sec. IV.

It is worth noting the sizable shift of E3(R) with re-
spect to the € = 1 case. This effect is essentially due
to the explicit appearance of the dielectric constant in
Eq. (20). To show it, we have evaluated Eq. (20) using
the €; = €3 = 1 self-consistent densities. In this case, we
get for E3(R) the dashed-dotted line in Fig. 8. The dif-
ference between the solid and dashed-dotted lines is the

0.6
Al
L=
\\
0.5 \
. €=1
; g -
2
u
0.4
SN
~— €1=3
. .
0.3 0 L 30 L %0

R (a.u.)

FIG. 8. Dipole E5 energy as a function of R. Solid line:
bubbles with €1 = 3 and e2 = 1. Dashed line: voids (€; = €2 =
1). Dashed-dotted line: using the €; = ez = 1 densities in the
€1 = 3,e2 = 1 formulas. The horizontal lines at the right-
hand side are the classical values obtained from the Coulomb
contribution in Eq. (22).
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effect of the dielectric through self-consistently changing
the electronic densities. The disappearance of the mini-
mum when we use the €; = €3 = 1 electronic densities is
again a diffuseness effect: these densities lack the appro-
priate diffuseness to give rise to the minimum shown by
the exact calculation.

We have also checked that the last three terms in Eq.
(20), which are strictly zero in the SD model, contribute
very little to m3(C) when the density is diffuse. In the
case under study, these last three terms amount to a
negligible 0.4% of the total m3(C) for R = 40 a.u., a 2.5%
for R = 20 a.u., and a 7% for R = 10 a.u., an R value for
which mg already gets an appreciable contribution from
the kinetic energy.

Figure 9 shows the average energy of the dipole sur-
face plasmon for different values of the dielectric constant
in the cavity (1) and e = 1. The circles on that fig-
ure correspond to experimental data on bubbles of Ne,
Ar, and Xe in aluminum.312 For the first two gases, it
was experimentally possible to obtain information about
the density of the gas inside the bubble, the bubble ra-
dius, and the surface-plasmon energy. To obtain €; and
thus be able to compare with the results of our calcula-
tions, we have used the experimental atomic polarizabil-
ities [@(Ne) = 0.39 x 10724 cm3, a(Ar) = 1.62 x 10~2%4
cm?, and a(Xe) = 3.99 x 10724 c¢m3| in the Clausius-
Mossotti formula. In the first two cases, the difference
between experimental and calculated results is about 1%
for Ne and 6% for Ar [when making the comparison,
notice that ¢(Ne) = 1.41 and €(Ar) = 2.12]. In the
third case, there is a coupling effect between the surface-
plasmon and the 1Sy-1P; inner electronic excitation of
Xe, which prevents the experimental determination of
the plasmon energy. Nonetheless, if one uses the mea-
sured radius and the experimental dielectric constant to
locate the Xe point on the figure [¢(Xe) = 2.87], the re-
sulting frequency w = 0.365 a.u. agrees well with the
expected one.

We have also plotted in Fig. 9 a set of experimental

0.6
Al L=l
0.5+
~ €421
3
‘-U,; Ne 1.5
uf x
XX x 2
0.4+ X
x Ar 2.5
Xee X x 3
0.3 | | . L
10 30 50
R(au.)

FIG. 9. Average energy of the dipole surface plasmon
for different values of the dielectric constant in the cav-
ity and e2 = 1. Circles: experimental data for bubbles
of Ne (e1 = 141), Ar (a1 = 2.12), and Xe (e1 = 2.87)
in Al. Crosses: experimental data for He bubbles in Al
From left to right, the crosses correspond to bubbles of
€1 = 1.42,1.41,1.39,1.37,1.36,1.33,1.31,1.24, and 1.19, re-
spectively.
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data (crosses) taken from He bubbles in Al'? placing
them on the figure using the relationships between the
concentration, radius, and density given in Ref. 13. These
data seem to indicate that the gas density in the bubble
decreases as the bubble radius increases, thus leading to
a decrease of the dielectric constant. Our model does
not reproduce these data, although one should have in
mind the rather large width (about 12 a.u.) of the experi-
mental size distribution.!2 Manzke, Crecelius, and Fink!2
have suggested that their experimental results can be ex-
plained by a bubble-bubble interaction. Indeed, when
the gas dose is big enough, the density of bubbles in-
creases and their mutual interaction makes them crys-
tallize. This causes the single L modes of the isolated
bubbles to merge into continuous bands with predictable
quite different properties.

Lucas” has shown that most of the bubble-bubble in-
teraction comes from its monopolar L = 0 component,
which is much stronger than the van der Waals force
responsible for the mutual attraction between metallic
spheres. This mode is not the L = 0 multipole corre-
sponding to our ansatz, Eq. (5), as this one generates a
charge fluctuation!®

n=0(r) = ~V(nVQ) = Yoo 3y - (37)

which, integrated over the whole space, is not zero. The
L =0 is a volume mode that can be generated by the g-
and L-dependent operator3®

Q'(r) =y(gr)Yeo , (38)

where yr(gr) is a spherical Bessel function of the second
kind,37 and that for L = 0 and (gr) going to zero behaves
as Yoo/(gr). The integral of the induced density nf=%(r)
associated with @Q’ is zero as a consequence of the oscil-
latory nature of @', and the energy of this mode tends
to wp for big radii. Following the method of Ref. 19, it
can be shown that in the step density approximation the
Coulomb term contributes to the monopole energy, but
not the kinetic term.

V. CONCLUDING REMARKS

In this work we have studied the electronic surface
modes of cavities in metals within a RPA sum-rules ap-
proach. The static dipole polarizability of voids has
also been investigated, and the nature of the L =
0 mode, which is relevant for the process of bubble
crystallization,” has been briefly discussed.

( A 7k
Z [—% + —<—] Py(cos6)

I+1
1 7‘2 €2 T>
E By} Py(cos8)
1

C
Z :l—+l—1 Pi(cos8)

1 2

,l
Z [Dl h + —%] Py(cos )
\ | €17

®(ry,ra) = ¢

The behavior of the plasmon energy as a function of
the radius of the cavity has been studied with some de-
tail, disentangling the electronic kinetic- and Coulomb
energy contributions, as well as the effect of the surface
diffuseness. For the step density model we have obtained
a simple formula, Eq. (22), that could be useful in appli-
cations of the model to spectroscopic calculations.

In the case of bubbles, we have included the dielectric
properties of the gas inside the cavity, not only through
the electronic density, but also explicitly in the electronic
response. We have shown that this latter effect is by
far the most important one. It has been systematically
neglected in the description of the surface response of
bubbles!® and metal spheres embedded in a dielectric.?®
The formulas we have deduced for the surface energy al-
low one to incorporate the effect of the ionic cores when-
ever it can be modeled by a constant dielectric function,
as indicated in Ref. 21. However, in the numerical appli-
cations presented here we have not exploited this possi-
bility.

Although the SR approach yields only average energy
values, we hope to have shown in this paper, and in the
previous ones about metal spheres, that the method is a
very powerful and simple one to investigate the general
features of collective modes of NFE metals. Indeed, very
often it allows us to obtain a deeper physical insight than
a detailed evaluation of the strength function, as it yields
formulas that can be easily interpreted in terms of the
different terms (kinetic, Coulomb, exchange, etc.) of the
energy density functional.
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APPENDIX

The general expression for the scalar Coulomb poten-
tial ®(ry,r2) created by an elementary charge at ry, in
a point ry of a space occupied by a spherical dielectric
of radius R and constant €; surrounded by an infinite
dielectric of constant €5, reads

if r1,72 > R

ifri >R, 1< R

(A1)

ifri <R, 79>R

if ri,7m2 < R,
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where 6 is the angle formed by the vectors r; and r;. The constants A;, By, Cj, and D; are obtained imposing the
continuity of the potential and of the normal component of the displacement vector at R. This yields

) R2l+1

l(ez - 61)

(25 o [+
€2 o 20+ 1 1'1>+1

s Yir () Yim(Q2)
4 2 Im m
W%,: it alteal+])
T Y (Ql)Y[ (Qz)
4 1 lm m
WZ 1 el + 62(l + 1)
Im "2

®(ry,r2) = J

rll"'l 7‘12"'1 el +e2(l+1)

rhrh (14 1)(e1 — €2)

] Yl*m(Ql)Y'zm(Qz) if ri,r2 > R

ifry >R, 1o <R

(A2)

ifri<R, 72>R

A 1 rb
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\ m
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] },l:n(Ql)},lm(QQ) if ri, 7o < R.
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