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We have investigated, in the L-S coupling, the appearance of triplet pairing in fermionic droplets
in which a single nl shell is active. The method is applied to a constant-strength model, for which
we discuss the different phase transitions that take place as the number of particles in the shell is
varied. Drops of 3He atoms can be plausible physical scenarios for the realization of the model.

I. INTRODUCTION

A feature common to all quantum Fermi liquids is the
possibility of Cooper-pair formation, giving rise to super-
conductivity or superfluidity. Experimental evidence of
such paired phases shows up in extended systems such
as the electron gas in superconducting metals, liquid 3He
and possibly in neutron-star matter as well, and in finite
systems such as nuclei. The theoretical frame for the de-
scription of paired systems is satisfactory, and the data
confirm the model prediction that while electron Cooper
pairs are formed in a singlet spin state, helium atoms
choose to pair up in a triplet state. This distinction be-
tween spin channels does not apply to nuclei, since nu-
cleons prefer a j-j coupling scheme; in neutron stars, the
proton and neutron fluids coexist with different densities,
which strongly determines their feasibility to constitute
Cooper pairs.

To our current knowledge, a theoretical description of
singlet and triplet pairing in drops of quantum liquids
with single-particle states in the l-s coupling scheme has
not been presented. Such an approach could be of some
relevance, in view of the fact that the theoretical study of
physical properties of helium drops has attracted consid-
erable interest in spite of the scarce experimental infor-
mation available.! At present, variational Monte Carlo®3
and density-functional®® calculations have been carried
out to describe the ground-state properties of drops made
of 3He or “He atoms; some effort has also been devoted
to the description of the excitation properties of these
systems, especially in the case of *He.6™® For 3He in the
normal phase, the only available calculations of the exci-
tation spectrum have been performed within the density-
functional approach proposed by Stringari,’ using the
random-phase-approximation!® or fluid dynamics.!+!2
The original 3He density functional of Ref. 9 has been
improved by a series of authors in order to accommodate
in the formalism not only a quantitative description of
the ground state and thermodynamical properties, such
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as the equation of state, but also its excitation properties,
such as Landau parameters, zero sound and paramagnon
propagation'®!4 and pairing properties,'® the scope be-
ing the development of a density functional capable of
describing both the ground state and the dynamics of
the liquid as well as of the droplets.®

The purpose of the present work is to advance a for-
malism that can be of use in future applications to 3He
drops. For this sake, we have developed a theoretical
frame to calculate the possible occurrence of triplet pair-
ing in fermionic droplets in which a single nl shell is
active. The method is applied to a constant-strength
model, for which we discuss the different phase transi-
tions that take place as the number of particles in the
shell is varied. In order to fix ideas relative to the prop-
erties of superfluid droplets, we shall restrict our con-
siderations to the case where Cooper pairs are formed
within a single nl shell. This restriction is not severe
on physical grounds, since mean-field calculations of 3He
drops*%16 show that shell separation in the neighbor-
hood of the Fermi level amounts to tenths of a kelvin
degree, while critical temperatures in the liquid lie in the
millikelvin region. Specific calculations have been car-
ried out for a shell with orbital quantum number [ = 7,
which can hold at most 30 particles. In 3He density-
functional calculations®16 this occurs for example when
the 15 (particle number N from 169 to 198) and 2j (N
from 369 to 398) shells are being filled. Typical figures
for single-particle energies of orbitals near the Fermi level
are €5, = —1818 mK, 6237' = —1628 mK (Fermi level), and
€an, = —1593 mK for *Hesgg.1® These quantities would
lend some support to the use of a single-shell model to
describe triplet pairing in 3He drops.

In Sec. II we present the general formalism here devel-
oped along the lines advanced by various authors'”1° to
establish the finite-system BCS model of nuclear physics,
where we have incorporated the specific invariance re-
quirements of an attractive pairing interaction acting in
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the spin-triplet channel. In Sec. III we specialize the gen-
eral formalism to a single-shell model and propose two
choices of the gap vector which give rise to an isotropic
and to an anisotropic superfluid phase. Section IV con-
tains the formulation of the triplet-pairing problem in the
single-shell model for finite temperatures. Some partic-
ular calculations are presented and discussed in Sec. V,
while Sec. VI contains the summary.

II. FORMALISM FOR PAIRING IN FINITE
SYSTEMS WITHIN THE Il-s COUPLING
SCHEME

Let us consider a set of single-particle states | io;),
where

| ios) =| nilimgos), (1)

| io7) =| nili — myaj), (2)

and an interaction that couples fermions in states | i0;)
and | io}),

H, = Z (io5i0} | V |jaﬁo§)c}a‘

4,j>0,0,0'

i )
G150 Cioss

3)

where (igiio} | V | jcrﬁo‘;) is the antisymmetrized ma-
trix element of the interaction. If the coupled-spin basis
| SM > is adopted, the above interaction can be rewrit-
ten as

Hy= 3 S (sSM |V | 5GSM)blgabisns  (4)
4,j>0 SM

with the pair creation operator

[cza, 0! ]M (5)

being b;g,, its Hermitian conjugate. If we explicitly in-
troduce the values of the Clebsch-Gordan coefficients in-
volved in the coupling, we readily find (a) the antisym-
metric, spin-singlet pair operator

szM

1
bloo = W(CLC%_ - CI~01:+)7 (6)

and (b) the symmetric, spin-triplet operators

110_ \/—(C'z+dr +c‘l.— 1,+)’ (7)

by = clirchy,- (8)

In Eq. (4) we have implicitly assumed that the inter-
action operator V is diagonal in the coupled-spin repre-
sentation. We then realize that the interaction splits into
a singlet and a triplet term,

H,=H;,+ H;
=Y (i | Vo | i7)bloob500
ij>0
+3° ST (| Vane | 536l arbng (9)

>0 M=0,+1

where V4, Viar are operators upon coordinate space once
the matrix elements in spin space have been computed,

%(rl,rz) = (00 | V(rl,rz,dl,dz) | 00), (10)

Vim(ry,re) = (1M | V(ry,re,01,02) | 1M). (11)

The standard BCS procedure for the treatment of j-
j pairing in finite nuclei,!” 1% consists of looking for a
wave function that minimizes the mean value of the to-
tal Hamiltonian Hy + H; in the frame of the variational
principle, under the constraints corresponding to conser-
vation of the average particle number and normalization
of the outcoming single-quasiparticle states. Here Hy
is the original single-particle Hamiltonian whose ground
state is a reference Slater determinant | ®); most usually,
| ®) represents the Hartree-Fock ground state

In the present case, to generalize the standard descrip-
tion we might look for a variational state of the form

| o) =[] [Tu™ +

SMi>0

v Mblgar) | @). (12)

Following the mathematical details of the finite-system
BCS theory,'™ 19 it can be shown that the state vector
| ¥) represents a vacuum for quasiparticle quasiparticle
excitations,

| @) =[] 1] alsn | ®), (13)

SMi>0

where the quasiparticle operators a',a are related to
the original single-particle ones c!,c by the so-called
Bogoliubov-Valatin transformation,20

of SM wSMo 1S

aisn = Ui Ior, =" Ciorlnr (14)
s

azsm = [v; M*C;-',: uf M i, )31 (15)

Here the symbol [ ]3; indicates that the spins of the in-
volved operators cf, ¢ add up to S, with o; + o, =M [cf.
Eq. (5)]. Furthermore, the condition that a’r a should
be fermion operators forces the transformation matrix in
Egs. (14) and (15) to be unitary; in particular,

| uZ™ 2 + [ oM 2= 1. (16)
We now minimize the Lagrangian function

L= (VY |Ho+H;,—AN|¥)

+ > 2E[|ufM |2+ | oM P,
i>0,5M

(17

where A and the set of quasiparticle energies {E;} are



48 TRIPLET PAIRING IN FERMIONIC DROPLETS 367

the Lagrange multipliers for the given constraints. The
variational procedure is identical to that of the finite-
system BCS problem and has been reviewed in many
textbooks!®1!? (see also Refs. 17 and 21); the total free
energy F = (¥ | Hy + H; — AN | ¥) can be written as

F= ZZzwa 1 &
+ZZ £5 (uSM SM)* SM SM,

SM ij>0

(18)

where the matrix elements in Eqgs.

(9)—(11) are generi-
cally denoted as Vz%%” and

Ei=ei— A+ VEY | M2, (19)
The results of the variation can be cast in terms of the
relations
1 &;
SM |2 i
' i [ 2 (1 - E;SM) ’ (20)
smp_ Ly, S 21
where
EPM = /& + [A§M]2, (22)
and the gap AFM is
SM _ SM, SM SM
APM = =3 Vi (23)
j>0
The particle number in each “spin phase” is
Nsm =2Y | vf™ 2, (24)
i

and the Lagrange multiplier \, representing the common
chemical potential of the equilibrated phases, can be de-
termined by the total particle-number constraint

N= ZNSM.
SM

Within this philosophy, for each total-spin channel SM
the variational method gives rise to the set of equations
(19)—(24), which are characteristic of the finite-system
BCS problem.8:19

Another approach to the problem consists of assum-
ing that the N particles belong to the same spin channel
and ask for the relative stability of the four phases; in
other words, one has to search the minimum free energy
of the system. It is well known?! that in liquid 3He, the
analysis of thermodynamic stability requires the consid-
eration of the isotropy or anisotropy of the Cooper pairs,
i.e., of the way in which the total-spin axis is oriented
in relative momentum space. We then note that in the
spin-triplet phase the preceding formulation in terms of

(25)

three uncoupled BCS problems for S = 1, M = %1 is
not rotationally invariant, since the quasiparticle energy
E; depends upon the total-spin orientation. This is unac-
ceptable in an unitary—i.e., rotationally invariant—state
for liquid 3He; similarly to the description of the infinite
system,?! we shall assume that in the triplet state § = 1,
E; is associated to the gap matrix A;,

A [ Dt Aig—

A= (Ai-—+ A _ ) (26)
where we adopt the notation Ay (0: + 0; = M) to
denote the gap parameters in (23) for § = 1, by the
matrix equation

Ei=v\&+A; Al (27)
Furthermore, introducing the vector

Az = (Ai-_ - Ai++ ’ Ai++ i Ai—— 7A‘i+—) (28)

2 2
such that
_ iz + 1Dy A

Al - (Azz Am: + ZAiya ’ (29)
we have

A, Al =1 A; 2. (30)
Consequently, the quasiparticle energy is a scalar

B =/t A2 (31)

The ”spin phases” appearing in the droplet are thus
(a) a BCS-like phase for the spin-singlet channel, whose
gap and occupation can be obtained from the system of
equations (19)—(24), and (b) a spin-triplet phase charac-
terized by a gap matrix and a scalar quasiparticle energy,
with occupations (20) for pairs with total-spin projection
M (M = 0,%1). In the next sections we discuss some
possible realizations for the gap matrix and the charac-
terization of the corresponding “spin phase.”

III. TRIPLET PAIRING IN A SINGLE SHELL

Let us first comment on pair formation and pair count-
ing in a single ! shell. For the 2/ + 1 magnetic substates
with two spin occupation possibilities each, we recog-
nize the following facts: (i) If M = %1, the pair de-
generacy is Q41 = [, since the sublevel with m = 0
does not participate in the formation of Cooper pairs
(m,o0 = %), (—m,oc = %); (ii) if M = 0, the projec-
tion m = 0 yields one pair with opposite spin projec-
tions and thus Q9 = 2/ + 1. Note in passing that the
spin pairs (0o’) = (+—) and (—+), both in magnetic
levels (m, —m), appear in the symmetric or antisymmet-
ric combinations for S = 1,0. It is then clear that the
maximum number of particles that can couple to either
S = 1 with the three total projections or to S = 0 is
Npax = 2(21 + 1), i.e., the full degeneracy of the shell.
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It is convenient as well to establish how the total energy
for the N-fermion system is computed. Because of the
arbitrariness in the assignment of a value to the single-
particle energy € of the shell in the single-shell model,
we rather calculate the free-energy excess £ = F — Ne.
On the one hand, if one can neglects!® the “self-energy”
contribution proportional to the occupation rate in (19),
the single-particle energy excess is simply

& = —N), (32)
while from Egs. (18), (20), (21), and (23) we can write

the pairing energy as

ng_ZM‘ (33)

m>0

The free-energy excess is thus £ = & + &,.
Within this framework, we first normalize the gap vec-
tor according to

Anim = Af(m), (34)

where A is an average over the shell,

!
1
'A|2:§T+_1 > Anm % (35)
m=-1
ie.,
1 1
A1 d° 1f(m) P=1. (36)
=—1

One may say that Eq. (36) is the translation to fi-
nite systems of the normalization relationship 2[ (dQ2/4m)
| £(2) |2= 1 adopted in the case of liquid 3He.%!

We can see that the parameter A satisfies a BCS-like
equation;'""19 indeed, if the matrix elements V;;,5 do not
depend upon the spin projection M, the components of

the gap vector A verify Eq. (23), namely,
Anlm = Af(m)
== Vimm— m;——f(m) (37)

m’'>0

If we now perform a scalar product with £f(m) and average
over the shell, we obtain

_ f(m) - £(m’)
- 2l+1Z Z Vin—mm'—m —— g 2E,.

=T Z 2E (38)
m>0
where
E2 =&+ A? | f(m) |? (39)

and the effective matrix element appearing in Eq. (38) is

7 f(m) ’
R 3

Equation (38) together with the particle-number conser-
vation rule N = 2E£n=_lv;‘.’n given by (24) completely
states the triplet-pairing problem in terms of the un-
knowns A and A. It should be kept in mind that in the
spin-triplet phase, the interaction matrix elements must
be spatially antisymmetric. On the other hand, it is also
worthwhile noting that the effective matrix element of
the present formulation generalizes to finite systems, the
angular averages entering the gap equation for the trans-
lationally invariant liquid.?!

Different phases for triplet pairing in droplets corre-
spond to different choices for the gap vector f(m). Simi-
larly to the case of the infinite system, we may intuitively
expect that this vector defines the direction along which
the pair of particles in states | io;) and | o)) possesses
total-spin projection M = 0. In liquid 3He, the gap vec-
tor is usually denoted as d(n) and is expressed in terms
of the normalized relative momentum vector n = k/k by
the relation d; = }°  dging. The determination of the
free-energy minima and the identification of the unitary
phases requires an analysis of the quadratic and quartic

invariants entering the fourth-order expansion of the T-
dependent free energy in terms of the gap, in the vicinity
of the transition temperature; it turns out that the differ-
ent unitary phases correspond to the matrix d,; being a
one-, two-, or three-dimensional unit matrix.2223 In the
present case, since the dynamical group of the droplet is a
nonconmutative one, opposite to the translational group
for the liquid, there is no obvious formulation for the gap
vector in terms of generators of the rotation algebra; fur-
thermore, the axial component of the angular momentum
of each particle is the only observable compatible with the
shell specification. With this in mind and in the spirit
of attempting a comparison among several alternatives,
in what follows we will build up possible descriptions for
spin-triplet superfluid phases in drop focusing upon ten-
tative isotropic and anisotropic gaps, postponing a for-
mal investigation of the existence of minima of the free
energy and their geometrical characterization.

A. Isotropic phase

The superfluid Balian-Werthamer (BW) (Ref. 24)
phase in liquid 3He corresponds to the three-dimensional
doi matrix, with gap vector f8W(n) = n. We then force
an isotropic unitary phase in a finite system, taking

£7(m) = ,1,1). (41)

1
Veis

The effective matrix element in Eq. (40) is then

-~ 1
I _ —_— ’ ’
P = Gy 2 Vot )

and the quasiparticle energy, which is independent of m,
can be computed from (38) as
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1 ~
Ej,=E=—3 > VL. (43)

In addition, from the particle-number condition (24)
one gets
N
v =02 = 5’ (44)
with Q the pair degeneracy 2! + 1. Using Eq. (20), we
easily obtain

Er=FE; (1—%) (45)
and
Ar= 5 |3 V| VEEE - W)
m>0
= Gz’ | /NEa = (46)

The above Eqs. (44)—(46) are identical to the well-
known ones derived in the finite-system BCS formalism
for the case of pairs in a single j shelll®1%:25 with a con-
stant pairing strength G. In the present case, the equiv-
alent constant is

Z 1748 (47)

m>0

In view of the discussion in this section, the pairing en-
ergy becomes

er _1Ar?

= (48)

B. Anisotropic phase
From the theoretical viewpoint,2%23 in liquid 3He there
may exist three independent anisotropic phases charac-
terized by the gap vectors (a) for the one-dimensional
(polar) case, fip(n) = v/3(0,0,n;); (b) for the two-
dimensional (planar) case, fap(n) = 4/2(nz,ny,0); and
(c) for the Anderson-Brinkman-Morel (ABM or axial)

phase, fapm(n) = \/—%_(n,; + wny, 0,0).
To compare with the preceding isotropic case, let us
then choose an anisotropic gap vector for the droplet,

3
m(0,0,m). (49)

fa(m) =
This choice is arbitrary except for the fact that it resem-
bles the one-dimensional liquid phase, which is the only
one from the above list that can be mapped onto the
available observables of a finite system, namely, the an-
gular momentum projection of each paired particle in the
shell. One can realize as well that the superfluid phase
thus constructed is sixfold degenerate with respect to the
possibilities of filling up the components of f4(m) with
quantities proportional to m, keeping the overall nor-

malization. It is easy to verify that the effective matrix
element is

3Im

Vi = @D ED

Z M Vi —m/m—m, (50)

and that the quasiparticle energy is now m dependent,

~2 3m? 2

A= 51
2 l(l + 1) (51)
which leads us into a numerical scheme, namely,
1+ E 354 = O (52)
m>0
- 1 5
N—Q+EAZ—E'7=0. (3)
m m
The pairing energy reads [cf. Eq. (33)]
4= 54
& 2l(l + 1) Z (54)

IV. SPIN TRIPLET PHASE
FOR FINITE TEMPERATURES

The formulation of the finite-temperature pairing the-
ory for Fermi liquids has been already presented in the
literature,?! as well as the corresponding extension of the
BCS theory to nuclei.?6 The derivation procedure is iden-
tical to the zero-temperature case, with the thermody-
namic free energy (in the grand canonical ensemble, i.e.,
the grand potential) as the functional to be minimized.
For the spin-triplet phase, the grand potential reads

BE,
F =&+ Z V,;S;Mmm —m (umvmtanh 2m
m,m’>0
X (um/vm'tanhﬁ E2m'>

-T E In(1 + e PEm), (55)

where B = 1/T is the inverse temperature and the last
term is the total entropy. Here the gap is

Epy
Z M m,umlvm'tanhﬁ 2'", (56)

m'>0

ASM —

while u, v, and the chemical potential A are determined
by the same equations as for the zero-temperature case
[cf. Egs. (19)—(24)]. Accordingly, for the single ! shell,
the gap equation acquires the form

Vin ,BE

m>0

(87)
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We now discuss the specific details of the triplet isotropic
() and anisotropic (A) phases of Sec. III

A. Isotropic phase

From Eq. (57) and the conditions described in Sec. III
A we obtain a trascendental equation for the quasiparti-
cle energy,

ﬁEI 2E;
tanh—— = ———
oG, (58)
where G; is the effective coupling constant defined in
Eq. (47). Now, the graphical analysis of Eq. (58) clearly
shows the existence of an N-independent critical temper-
ature

Q|6
— (59)

below which there exists a nonvanishing quasiparticle en-

ergy Er that can be numerically found. According to Eq.
(586), the gap is

Tcrlt -

A] (T) = AI(O)tanhﬁTEI-, (60)

where A;(0) is the zero-temperature gap given in (46).
The pairing energy then reads

o AXD)

B. Anisotropic phase

The numerical calculation to be performed is the solu-
tion of Egs. (53) and (57). In view of Egs. (33) and (56),
we recognize that the pairing contribution to the grand
potential can be written as

3 A? m? BEA
A_ _ 2 A —m
& =3t D mz>0 FA2rh (62)

[cf. Eq. (54)], while the single-particle free-energy excess
&o is given by (32) and the entropy has to be computed
as indicated in (55).

V. CONSTANT PAIRING STRENGTH MODEL

In this section we present a specific model for the inter-
action, inspired in the popular “constant BCS pairing” of
nuclear physics.18:1925 In this model, one assumes that
the matrix elements in the single shell are identical to a
negative constant G; in the present case, keeping in mind
that the spatial matrix elements must be antisymmetric,
the extension of the above model can be explicitly given
by the choice

Vin—mm'—-m' = V—mm—m’m'
=G = _V—mmm’—m’ = _Vm—m—m'm',

(63)

with the corresponding assignments for the Hermitian-
conjugated matrix elements. We now carry on the de-
tailed analysis of each spin-triplet phase.

A. Isotropic phase

According to Eq. (47), the effective strength can be
computed as follows:

> G, (64)

m,m’>0

which yields

1\? '
Gr=2G|=) .
1=26(g) (65)
The values of the quasiparticle energy E7, fractional oc-
cupation v2, gap Ay, and pairing free energy & I are then

given by Eqs (43) (44), (46), and (48), respectlvely,
which are just the “constant BCS pairing” results.

B. Anisotropic phase

In this case the effective matrix element V2 is

3mm/
Z 0+ (66)
which gives
-~ 3Gm
VA = 5 (67)

The calculation then proceeds numerically by solving
Egs. (52) and (53). It is also clear that, as in the former
case, all energies are proportional to the pairing strength.

As an illustration of the predictions of this formalism,
we present in Figs. 1 — 5 calculations performed under

A/1GI

0 10 20 30
N

FIG. 1. Zero-temperature gap as a function of the particle
number in the shell. Solid line: isotropic phase. Dashed line:
anisotropic phase.
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-£/1G!

-4 T T
0] 10 20 30
N

FIG. 2. Zero-temperature chemical potential referred to
the unperturbed single-particle level energy, as a function of
the particle number in the shell. Solid line: isotropic phase.
Dashed line: anisotropic phase.

the above prescriptions in an | = 7 shell, where the maxi-
mum number of particles to be paired is 30. Figures 1-3,
respectively, display the zero-temperature results for the
gap A, the chemical potential A = —& (thus referred to
the unperturbed single-particle level energy ), and the
free-energy excess £, in units of the coupling constant
| G |; in these figures, the lines connecting the points
are to guide the eye. Figures 4 and 5, respectively, ex-
hibit the T-dependent gap and the free-energy excess in
units of | G | for N = 6, N = 10, and N = 20 particles; it
should be noted that the gap is the same for both N = 10
and N = 20, due to symmetry about midshell.

From inspection of the figures, we can appreciate the

20

0 ->—

-201

-40-

€/16l

-60

-80 -

-100 T T
0 10 20 30
N

FIG. 3. Zero-temperature free-energy excess as a function
of the particle number in the shell. Solid line: isotropic phase.
Dashed line: anisotropic phase.

A/1GI

T/1GI

FIG. 4. T-dependent gap as a function of temperature
for N = 6 (dashed lines) and N = 10 (solid lines) particles
in the shell. I stands for the isotropic phase and A for the
anisotropic one.

following features. First, in the zero-temperature situ-
ation the overall shape of each set of curves is rather
similar for both triplet phases; the largest deviations oc-
cur near midshell. The isotropic phase is more strongly
bound than the anisotropic one, for all particle numbers.
The energy of the anisotropic phase displays an inflection
point at midshell; such an appearance can be traced to
the behavior of the chemical potential, since we realize
from Fig. 2 that, while in the isotropic phase this param-
eter is a linear function of the particle number [cf. Eq.
(45)], in the anisotropic phase it resembles, as a func-
tion of N, an odd parabola centered at midshell. It is
noticeable that for small particle numbers, i.e., N < 8,
the anisotropic free-energy excess is positive; the reason

€/1GlI

-50 T T T 1
0 0.5 1 1.5 2
TGl
FIG. 5. Free-energy excess as a function of temperature

for N = 6 (dashed lines), N = 10 (solid lines), and N =
20 (dot-dashed lines) particles in the shell. I stands for the
isotropic phase and A for the anisotropic one.
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is that in spite of the fact that the pairing energy Sz’,“ is
negative, its magnitude is not sufficient to compensate
the positive single-particle energy excess &g = N | A |;
thus, on thermodynamical grounds a droplet with those
particle numbers subjected to a constant attractive pair-
ing interaction is not bound. However, it should be kept
in mind that this effect is an artifact of considering the
single shell as constituting the whole system; in fact, ac-
tual computations for drops with either the 15 or 25 shell
active!® show that these drops are indeed bound when
one takes explicitly into account the remaining shells
which do not contribute to the formation of pairs.

Second, regarding the temperature-dependent gap and
chemical potential (this latter not shown), one encounters
the typical behavior of the order parameter in a second-
order phase transition; apparently, in the anisotropic case
there is not a sharp cutoff but a smooth approach to zero,
however in a much smaller scale of gap values than the
characteristic scale of the current plot. A critical tem-
perature for the anisotropic phase can be estimated, for
example, searching where the gap drops below 0.01 times
the zero-temperature value (see Fig. 4). From the cal-
culations it can be verified that T4, depends upon the
particle number in the shell and is always smaller than
TZ;, where the latter is given by (59); furthermore, the
anisotropic critical temperature decreases as one evolves
from an empty to a half-filled shell and behaves sym-
metrically with respect to midshell. The analysis of the
results for the whole set of particle numbers shows that
T2, varies between 1.4 and 1.1 times | G | for N varying
between 2 and 14.

Concerning the behavior of the free-energy excess, we
first note that for 7' > Té’i’: the corresponding free energy
is a linearly decreasing function of temperature; this is
precisely the contribution of the entropy term 7'S, with
an entropy S = 20 In 2. In addition, we see in Fig.
5 that for N = 6 and N = 10 three different regimes
appear: (i) the normal phase for T > T)!; (ii) as the
isotropic phase becomes a possibility for temperatures
smaller than T, the normal phase is still thermodynam-
ically more convenient; (iii) when the transition from a
normal to a superfluid phase takes place, the anisotropic
phase is the most stable. The situation is reversed
for temperatures below the crossing at Teross ~| G |,
where isotropy becomes preferential. We then realize
that there exists a temperature interval where a stable
drop can be found in an anisotropic paired phase, namely,
Teross < T < T4,. However, for N = 20 only two regimes
are apparent, since the anisotropic phase is never a ther-
modynamical choice for the system. Indeed, while for
each phase the gap is the same function of T for N = 10
and N = 20, the differences in the free-energy excess
for these particle numbers are entirely due to the unper-
turbed energy & since the chemical potential reverses its
sign at midshell. The numerical data show that this is a
feature of each pair of particle numbers (N, 2 — N); in
other words, as the number of particles is higher than the
pair degeneracy, the anisotropic phase cannot be reached
at any temperature.

VI. CONCLUSIONS

Inspired in the finite-system BCS theory of nuclear
physics, in this work we have constructed a formalism
to describe triplet pairing in fermionic droplets, both at
zero and at finite temperature. Although the experimen-
tal confirmation of triplet pairing in liquid 3He raises
3He drops as the major candidates to exhibit such a su-
perfluid behavior, other natural systems such as atomic
nuclei may be subjected as well to this type of calcu-
lations. The main difficulty encountered in closing the
general theoretical frame lies in the characterization of
the geometry of the gap matrix; at this point, since a
rigorous answer to questions regarding the location of
the free-energy minimum demands a deeper analysis of
the transition region,?! we have restricted ourselves to
indicate two simple appearances for an isotropic and an
anisotropic gap matrix in a single-shell model. To fix
ideas to a stronger degree, we have chosen a constant
attractive pairing interaction and carried out some par-
ticular examples.

As a general characteristic of all calculations performed
within the present model, one finds that the isotropic
triplet phase is, at low temperatures, thermodynamically
more stable than the anisotropic one. In this context,
as we attempt a comparison between the singlet (BCS)
and the triplet phases, we find that the effective pairing
strength in the latter is reduced, with respect to the BCS
strength. On the other hand, since | Gy |<| G |=| Gpcs |
and every energy in the formalism is proportional to the
coupling constant, the factor 2(I/2)? in (65) gives the
relative scale between the BCS and the I phases in the
droplet. For given G, the BCS phase will be the most sta-
ble. Of course, this is a feature of the single-shell model
with a constant pairing interaction and is not necessarily
expected to remain in actual droplets where the pairing
matrix elements have to be explicitly computed out of
some particle-particle interaction. However, even within
the severe limitations of the current approach, it is no-
ticeable that the possibility of reaching an anisotropic
state at some finite temperature is restricted to parti-
cle numbers below midshell. In some way, this feature
may remind one the characteristic of the second-order
phase transition in liquid 3He; namely, the fact that the
phase to be reached as the temperature is lowered is the
anisotropic ABM one for pressures above the policritical
point (for zero magnetic field), while the isotropic BW
state shows up in the low-pressure region.
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