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ABSTRACT 

(±)3,4-methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic 

neurotoxin in mice. This study was designed to evaluate whether MDMA exposure affects 

their recognition memory and hippocampal expression of plasticity markers. Mice were 

administered with increasing doses of MDMA once per week for 8 weeks (three times in one 

day, every 3h) and sacrificed two weeks (2 w) or three months (3 m) later. The treatment did 

not modify hippocampal tryptophan hydroxylase 2, a serotonergic indicator, but induced an 

initial reduction in dopaminergic markers in substantia nigra, which remained stable for at 

least 3 months. In parallel, MDMA produced a decrease in dopamine (DA) levels in the 

striatum at 2 w, which were restored 3 months later, suggesting dopaminergic terminal 

regeneration (sprouting phenomenon). Moreover, recognition memory was assessed using 

the object recognition test. Young (2 w) and mature (3 m) adult mice exhibited impaired 

memory after 24 h but not after just 1 h retention interval.  Two weeks after the treatment, 

animals showed constant levels of CREB but an increase in its phosphorylated form and in c-

Fos expression. BDNF and especially Arc overexpression was sustained and long lasting. 

We cannot rule out the absence of MDMA injury in the hippocampus being due to the 

generation of BDNF. The levels of NMDAR2B, PSD-95 and synaptophysin were unaffected. 

In conclusion, the young mice exposed to MDMA showed increased expression of early key 

markers of plasticity, which sometimes remained for three months, and suggests 

hippocampal maladaptive plasticity that could explain memory deficits evidenced here.  
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Highlights 

 Intermittent repeated MDMA exposure reduces mouse TH-immunoreactivity in the SN 

 MDMA treatment induces a transient decrease in the striatal DA levels 
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 Mice exhibit a delay-dependent memory impairment that last for 3 months 

 The animals show a significant increase in p-CREB, c-Fos, BDNF and Arc expression 

 We suggest that hippocampal maladaptive plasticity explains the memory deficits 
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Introduction 

(±)3,4-methylenedioxymethamphetamine (MDMA: “ecstasy”) is one of the most popular 

recreational psychoactive substances. Repeated MDMA administration at doses that are not 

thought to have any persistent effect on the dopaminergic system [1] produces long-term 

deficits in neurochemical indices of serotonergic function in the rat brain [2]. Conversely, it is 

generally agreed that in mice, high doses of MDMA induce a relatively selective 

dopaminergic terminal injury in the striatum [3, 4] and only transiently disrupts 5-HT 

neurochemistry in the frontal cortex [3, 5], depending on the administration schedule and 

dose [6, 7].  

 

Several studies in rats report acute effects of MDMA on learning and spatial memory 

functions [8–10]. Moreover, impaired memory has been reported 3 months after MDMA 

administration in rats [11].Studies focusing on long-term consequences of MDMA in mouse 

memory are sparse; probably due to the fact that only a few studies have focused on the 

mouse hippocampus as a potential target for the effects induced by MDMA [12–14]. 

Moreover, none of those studies focuses on plasticity markers and memory with either a 

short or a long delay after MDMA exposition.  

 

The importance of such research comes from the fact that MDMA is considered an addictive 

substance. Addictive drugs, including amphetamines, produce forms of structural plasticity 

that can be observed in the nucleus accumbens and prefrontal cortex. This plasticity reflects 

reorganization of patterns of synaptic connectivity [15], involving stable changes in the brain 

that are responsible for addiction, a life-long condition. In addition to the mesolimbic 

dopamine (DA) pathway, the plasticity may affect structures that mediate learned or 

conditioned responses, such as the amygdala, the hippocampus and the cerebral cortex [16]. 
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MDMA in particular has been associated with stable adaptations in the dendritic structures of 

cortico-striatal neurons, based on a large increase in the spine density in both areas [17]. 

Alterations in intracellular messenger pathways, transcription factors and immediate early 

genes seem to be of fundamental importance for the development of plasticity, which is 

associated with addiction and cognition. Moreover, it is known that phospho-CREB (p-CREB) 

regulates the transcription of genes that contain a CRE (cAMP response element) site within 

their regulatory regions. This  upregulation  initiates some of the long-term changes in 

neuronal circuit functions that in turn promote the transcription of many genes, among them 

Arc, c-Fos, and expression of the NMDA receptor NR1 subunits NR1 and NR2. c-Fos is an 

immediate-early gene (IEG). Its expression by individual neurons can be used as a marker of 

cell activation. Arc (the activity-regulated cytoskeleton-associated gene) is also an IEG which 

is translated to a cytosolic protein involved in the mechanism of synaptic plasticity associated 

with long-term potentiation (LTP) and learning [18]. Expression of Arc mRNA and/or protein 

is increased by neuronal excitation induced by electrical stimulation or by activation of 

glutamatergic, dopaminergic or serotonergic receptors [19–21]. 

 

Another DA-dependent change, strongly associated with drug-induced neuroplasticity, is 

activation of the brain-derived neurotrophic factor (BDNF) expression. BDNF belongs to the 

class of psychostimulant-regulated IEGs [22]. It is well known that BDNF promotes forms of 

excitatory synaptic plasticity, such as early- and late-phase LTP, and also promotes dendritic 

spine formation [23]. Until now, there were no studies of the impact of MDMA on the 

expression of this neurotrophin in the hippocampus of mice, which could provide useful 

information regarding the plasticity developed by the amphetamine derivative. 

 

The effects of MDMA on learning and memory depend on the drug schedule and on the age 

at which the drug is administered [24]. Although a great deal of research has been devoted 

to elucidating the molecular mechanisms responsible for the cognitive deficits induced by 



6 

 

MDMA, to date not a single molecule or pathway has been identified. In the present paper 

we focus on MDMA exposure in young mice and its consequences for the young and mature 

adult brain. We attempt to simulate the pattern of human recreational consumption of MDMA 

through the dosage schedule we apply. We use mice, not rats, because this treatment 

schedule seems more likely to produce behavioral deficits in mice without inducing 

hippocampal toxicity. 

Therefore, this study was designed to evaluate whether repetitive and intermittent MDMA 

exposure affects recognition memory and the expression of markers related with this 

cognitive process in a short period after ecstasy exposure. We also aimed to determine 

whether any such changes remain and become chronic, and to identify the type and nature 

of the factors that are mainly responsible for the impact of MDMA on recognition memory. 

MATERIALS AND METHODS 

Animals 

Adolescent male C57BL/6 mice (4-5 weeks old at the beginning of the experiment) (Charles 

River Laboratories, France) were kept under controlled temperature, humidity and light 

conditions with food and water provided ad libitum. They were treated according to European 

Community Council Directive 86/ 609EEC and the procedure registered at the Department 

d’Agricultura, Ramaderia i Pesca of the Generalitat de Catalunya.  

 

Drug treatment 

To model recreational MDMA use, we considered appropriate to simulate the widespread 

practice of “boosting” (taking supplemental doses over time in order to maintain the drug’s 

effect)  [25] MDMA was administered three times in a day, every 3h, once a week for eight 

weeks. The treatment schedule started with a standard dose of MDMA (5 mg/kg) or saline (5 
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ml/kg) [26] and drug increased over the treatment period (up to 10 mg/kg) imitating the 

classic consumption of a reinforcing compound. Accordingly, the doses were: 5 mg/kg (two 

weeks), 7.5 mg/kg (the following three weeks) and 10 mg/kg (the last three weeks). Taking 

into account that the neurotoxic dose in mice is 25 mg/kg, three times in a day, every 3h 

(Colado et al. 2001), the highest dose selected was 10mg/kg. Exposition was at high ambient 

temperature (26ºC) as described elsewhere [27]. After the end of the treatment (ATET), mice 

were killed at two different time points: two weeks ATET (3.5 months old, n=31) and three 

months ATET (6 months old, n=36). At 3-6 months of age, mice have completed their 

development, but are not affected by senescence yet; we referred to them as young (3.5 

months old) and mature (6 months old) adults. 

Therefore, in the present study, four groups were considered: 

 Saline treated mice, killed two weeks ATET: Saline 2w 

 MDMA treated mice, killed two weeks ATET: MDMA 2w 

 Saline treated mice, killed 3 months ATET: Saline 3m 

 MDMA treated mice, killed 3 months ATET: MDMA 3m 

 

Object recognition test 

One week before death, the recognition memory of the animals was tested using the object 

recognition test (ORT). The test consisted of a familiarization session (three consecutive 

days) in which mice explored an arena (a circular area measuring 40 cm diameter) without 

objects for 10 min. During the first familiarization session, the animals were monitored to 

assess locomotor activity (Smart 3; Panlab SL, Barcelona, Spain). On the 4th day, the mice 

were trained with two identical objects, (two objects “A”; 10 min). Novel object recognition 

was tested 1 h and 24 h after the training session, when mice were exposed to the familiar 

object A and a novel object B (1 h) or C (24 h) for 10 min. The time spent by the mice at each 
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of the objects was measured in seconds. Exploration of the objects was defined as sniffing, 

touching and having moving vibrissae whilst directing the nose towards the object at a 

distance of less than 1 cm. The data were expressed as measures of discrimination between 

the new and familiar object, thus correcting the difference in the exploratory time of each 

object by the total exploration time. 

Tyrosine hydroxylase (TH) - positive neurons in substantia nigra (SN) 

Mice were anaesthetized by i.p. injection of ketamine (100 mg/kg) plus xylazine (10 mg/kg) 

and were perfused with 4% paraformaldehyde in 0.1 M phosphate buffer, after which the 

brains were removed. Coronal sections of 30 μm were obtained. Free-floating sections were 

rinsed in 0.1 M phosphate buffer, pH 7.2 and preincubated in a blocking solution (10% fetal 

bovine serum (FBS), 0.2 mol/l of glycine, Triton X-100 0.2% in 0.2% PBS-gelatin). Then, the 

sections were incubated for 48h at 4 °C with mouse anti-tyrosine hydroxylase antibody 

(1:200 BD Biosciencies). After that, the sections were incubated with Alexa Fluor 488 goat 

anti-mouse secondary antibody (1:200; Sigma-Aldrich) for 2 h at room temperature. Finally, 

the slices were mounted on glass slides using Fluoromount (EMS). To quantify the total 

number of TH-positive neurons in the SN, unbiased counting frame was positioned on each 

photomicrograph taken at a magnification of 10x, according to the atlas of [28].  TH-neurons 

were counted in both hemispheres using the Image J software, and the density (cells/area) 

was calculated in relation to the area delimited by the frame. 

 

Measurement of neurotransmitters 

For analysis of neurotransmitter levels, the mice were killed by cervical dislocation and 

decapitation, the brains rapidly removed and the striatum dissected out on ice. Samples were 

prepared by sonication in 10 volumes of 0.1M perchloric acid, centrifuged for 30 min at 

12,000 × g after which 40 μl of filtered supernatant was injected into HPLC system equipped 

with a Waters 2465 electrochemical detector set to a potential +0.70 V, and a column Nova 
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Pack C18 4µm 3.90 x 150 mm (Waters, Milford, MA). The mobile phase consisted of purified 

water with 10% methanol, 1.92 mM 1-octanesulfonic acid, 0.1 mM EDTA and 10 mM 

phosphoric acid. Column temperature was set at 37 °C and a flow rate of 1 ml/min. The 

retention times for norepinephrine (NE), 3,4-dihydroxyphenylacetic acid  (DOPAC), 5-

hydroxyindoleacetic acid (5-HIAA), DA, homovanillic acid  (HVA) and serotonin (5-HT) were 

2.74, 4.46, 6.95, 8.13, 11.24 and 20.66 min, respectively. 

Hippocampal lysate preparation 

The hippocampus was quickly dissected out, frozen and stored at −80 °C until use. When 

required, tissue samples were thawed and homogenated at 4 °C in lysis buffer (Tris-HCl 

20mM, NaCl 137 mM, Nonidet P40 1%, EDTA 2mM, 4.5 μg/μl of aprotinin, 0.1 mM of 

phenylmethylsulfonyl fluoride, 1 mM of sodium orthovanadate, and phosphatase inhibitor 

cocktail 1 (Sigma-Aldrich, St.Louis, MO, USA), lysated samples were mixted in an orbital for 

2 h at 4 °C. The protein samples were then centrifuged at 15,000 xg for 30 minutes. The 

supernatant was recovered and protein content was determined using the Bio-Rad Protein 

Reagent. 

 

Western blotting and immunodetection 

Western blotting (WB) and immunodetection protocol was used to determine the proteins 

levels as described (Pedrós et al., 2014). Primary antibodies are detailed in supplementary 

material. All results are normalized to GAPDH or Actine, unless stated otherwise.  

 

RNA extraction and quantification 

Total RNA was isolated from the hippocampus of mice, using the RNeasy Lipid Tissue Mini 

Kit, according to manufacturer's protocol (Qiagen). RNA pellet was reconstituted in RNAse-

free water, with the RNA integrity determined by Agilent 2100 Bioanalyzer. 

Quantitative RT-PCR  
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First-strand cDNA was reverse transcribed from 1 μg of total RNA from the hippocampus, 

using the High Capacity cDNA Reverse Transcription kit, according to manufacturer's 

protocol (Applied Biosystems). Equal amounts of cDNA of each individual animal were 

subsequently used for qRT-PCR, and each sample was analyzed in duplicate for each gene. 

The PCR reaction contained 15 ng of reverse-transcribed RNA, 2 x IQTM 2SYBRGreen 

Supermix (BioRad, Barcelona, Spain) and 100 nM of each primer.  The PCR assays were 

performed on a StepOnePlus Real Time PCR system (Applied Biosystems), and normalized 

to the average transcription levels of actin, using the delta–delta Ct method [30]. Primer 

Express Software (Applied Biosystems, Foster City, CA) was used to design the primers 

(supplementary material). 

 

Statistical analysis 

Unless otherwise indicated, we used Student’s t-test for comparing the means of two 

treatments (saline or MDMA). All data are presented as mean ± SEM, and the P values less 

than 0.05 were considered as significant. 

 

RESULTS 

Object Recognition test 

On the first day of the familiarization of the ORT, locomotor activity was registered. Student’s 

t-test for distance travelled and locomotor speed showed a significant effect of treatment 

when assayed short time after finishing drug exposure (2w) (distance: 3081.3 ± 160.5 cm 

saline vs 2604.0 ± 132.9 cm MDMA, p <0.05; speed: 5.14 ± 0.24 cm/s saline vs 4.45 ± 0.23 

cm/s MDMA, p <0.05; n=26). This effect disappeared three months after finishing exposure. 

Memory results were analyzed using two-way ANOVA and post-hoc comparisons by Tukey’s 

procedure, as we wanted to assess the effect of two variables: treatment and delay time. 

Both young and mature adult mice previously exposed to MDMA exhibited impaired object 
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recognition memory, measured as reduced novel preference, after a retention interval of 24 h 

but not after just 1 h. Statistical analysis revealed a significant effect of delay time (2w F1,24 = 

83.78, p <0.001, n=26; 3m: F1,21 = 33.23, p <0.001, n=23) and of the interaction treatment x 

delay time (2w: F1,24 = 4.27, p <0.05, n=26; 3m: F1,21 = 60.95, p <0.001, n=23) (see Fig. 1 A 

and B). These results indicate a delay-dependent deleterious effect of the drug on memory. 

As glucocorticoids impair performance of spatial memory [31], we determined the effect of 

our chronic MDMA regimen on this receptor protein in this area. Neither, the 2w group nor 

the 3m group showed any effect of MDMA exposure (2w: 100 ± 7.90% saline vs 91.88 ± 

9.46% MDMA, n=7, n.s.; 3m: 100 ± 11.76% saline vs 120.96 ± 15.47% MDMA, n=7, n.s.) 

Effects of MDMA on neuronal injury markers 

To assess the neurotoxicity we measured neurotransmitter levels in striatum, also counting 

TH-positive cells in SN. To confirm that the treatment did not damage serotonergic terminals 

in the hippocampus, we also evaluated tryptophan-hydroxylase 2 (TPH2), a marker of 5-HT 

terminals. 

Two weeks after the treatment, MDMA exposure caused a significant decrease of striatal DA 

levels (42.1 ± 4.1 nmol/g wet tissue (wt) saline vs 24.8 ± 4.7 nmol/g wt MDMA, n=8 , 

p=0.057) and its main metabolite, DOPAC (14.3 ± 1.0 nmol/g wt saline vs 9.31 ± 0.98 nmol/g 

wt MDMA, n=8, p<0.05), without changing norepinephrine (0.66 ± 0.07 nmol/g wt saline vs 

0.67 ± 0.19 nmol/g wt MDMA, n=8) or 5-HT levels (1.78 ± 0.37 nmol/g wt saline vs 1.77 ± 

0.33 nmol/g wt MDMA, n=8). In parallel, we found a slight MDMA-induced decrease in the 

number of TH-positive neurons in SN (0.26 ± 0.02 positive cells/area saline vs 0.20 ± 0.01 

positive cells/area MDMA, n=12, p<0.05)(Fig. 2). However, no changes were observed for 

TPH2 expression in the hippocampus (100 ± 9.67% saline, 102.54 ± 7.98 % MDMA, n=7). 

When the same parameters were evaluated 3 months ATET, the levels of DA (37.20 ± 2.65 

saline vs 37.70 ± 6.96 MDMA, n=15) and DOPAC (14.48 ± 1.16 saline vs 12.83 ± 1.34 
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MDMA, n=15) were restored in mice exposed to MDMA. As expected, the MDMA effect on 

TH-positive cells in the SN was maintained (0.23 ± 0.01 positive cells/area saline vs 0.18 ± 

0.01 positive cells/area MDMA, n=8, p<.0.05)(Fig. 3) and no changes in TPH2 expression in 

hippocampus were found (100 ± 13.54% saline, 92.18 ± 8.90% MDMA, n=8).  

Effects of MDMA on plasticity markers (P-CREB/CREB) in the hippocampus  

Two weeks after the chronic administration of MDMA, no changes in the total level of CREB 

protein were detected (100 ± 21.37% saline, 97.35 ± 8.57% MDMA, n=9), but an increase in 

its phosporylated form was observed (100 ± 21.37% saline, 165.8 ± 14.62% MDMA; p<0.05). 

As expected, this increase disappeared 3 months after the last dose of the drug (100 ± 

13.95% saline, 89.95 ± 15.72% MDMA, n.s., n= 8) (Fig. 4). 

Early genes/proteins  

We performed PCR and WB assays to determine changes in genes or proteins strongly 

associated with neuroplasticity [22]. Of the CREB-regulated genes, we chose Arc and c-Fos. 

Results showed that both c-Fos mRNA and c-FOS protein in the hippocampus were 

significantly induced by MDMA shortly ATET (mRNA: 100 ± 23.77% saline n=4; 391.1 ± 

46.8% MDMA, n=9, p<0.01) (protein: 100 ± 7.92% saline, 144.0 ± 8.7% MDMA, n=8, 

p<0.01), but returned to basal values when assayed 3 months ATET (Fig. 5; mRNA: 100 ± 

12.24% saline, 117.1 ± 17.17% MDMA, n.s., n=9, protein: 100 ± 16.68% saline, 96.74 ± 

16.68% MDMA, n.s., n=9). The overexpression of c-Fos mRNA and c-FOS protein that lasts 

two weeks indicates a very strong signal during drug exposure. 

Regarding ARC, repeated administration of MDMA to C57BL/6 mice induced significant 

expression of Arc mRNA (100 ± 11.72% saline, 190.2 ± 22.47% MDMA, p<0.05, n= 9) and 

ARC protein (100 ± 5.96% saline, 126 ± 4.61% MDMA, p<0.05, n=8) when assayed 2 weeks 

ATET (Fig. 6A and B). Surprisingly, the overexpression of this gene was sustained and long 

lasting (100 ± 11.17% saline, 163.7 ± 20.67% MDMA, p<0.05, n=9), as shown in MDMA-
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treated mice, 3 months ATET. Nevertheless, no changes were found in ARC protein levels 

(100 ± 4.43% saline, 114.0 ± 11.32% MDMA, n.s., n=7) in mature adult mice (Fig. 6C and D). 

 

BDNF 

Despite of in the present study MDMA did not modify 5-HT parameters in hippocampus, we 

sought to measure its effect on the expression of BDNF, as our group reported increased 

hippocampal BDNF levels depending on cognitive training in rats exposed to MDMA [27]. 

Figure 7 summarizes the effects of MDMA on BDNF levels. A significant increase in BDNF 

mRNA transcript expression was found shortly after drug withdrawal (100 ± 8.01% saline, 

133.6 ± 7.07% MDMA, p<0.05, n=10). Likewise, MDMA-treated animals showed a slight 

increase in BDNF protein levels, although it did not reach statistical significance (100 ± 

10.06% saline, 126.8 ± 10.19% MDMA, n.s., n=8) 

In mature adult mice (3 months ATET), a delayed expression of BDNF protein was observed 

in MDMA-trated animals (100 ± 5.57% saline, 138.35 ± 11.08 MDMA, p<0.05 n=9), although 

mRNA showed non-significant changes (100 ± 11.61% saline, 124.2 ± 11.08% MDMA, n.s., 

n=10). The changes in BDNF expression related with the amphetamine derivative exposure 

are thus independent of the impact of MDMA on hippocampal 5-HT neurochemistry, absent 

from our study. 

Regulation of synaptic plasticity-related proteins 

Finally, other CREB-regulated genes are those encoding glutamate receptors. Synaptic 

plasticity associated with addiction and cognition relies on the normal integration of 

glutamate receptors at the post-synaptic density (PSD). Therefore, we studied the effects of 

MDMA exposure in the levels of four synaptic proteins: PSD-95, NR1, NR2B and 

synaptophysin (2w n=7-9, 3m n=8-11). 
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The effects of the assayed MDMA schedule on these proteins are shown in Fig. 8, and are 

presented as relative protein expression. Although an apparent decrease was observed for 

NR1 expression in both young and mature adults, statistical significance was not reached 

(2w: 100 ± 24.18% saline, 71.91 ± 8.52% MDMA, n.s., n= 7; 3m: 100 ± 27.83% saline, 62.55 

± 12.70% MDMA, p=0.2835, n=10) (Fig 8A and E). Moreover, MDMA failed to induce any 

change in NR2B expression (Fig 8B and F).  

Studies have shown that interactions between the PSD-95 protein and NMDA receptors 

located at the spine tip may also regulate dendritic spine morphology. Thus, we analyzed the 

expression of this protein in the hippocampus of the treated animals. According to our results 

with NR2B, MDMA did not significantly modify the levels of this scaffolding protein (Fig 8C 

and G)(2w: 100 ± 15.24% saline, 71.28 ± 6.11% MDMA, n.s., n= 8; 3m: 100 ± 5.58% saline, 

86.52 ± 6.42% MDMA, n.s., n=9).  

 

Finally, to explore the relationship between the cognitive changes observed in MDMA-treated 

mice and synaptic modifications, we studied the effect of a recent or a long earlier exposure 

in synaptophysin. Once again, our results revealed no relationship in this sense (Fig. 8D and 

H)(2w: 100 ± 14.67% saline, 96.45 ± 16.62% MDMA, n.s., n= 9; 3m: 100 ± 4.79% saline, 

108.67 ± 14.34% MDMA, n.s., n=8) 
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DISCUSSION 

MDMA is an amphetamine derivative that acts as a psychostimulant by increasing 

catecholamine concentration in synapses. In comparison with methamphetamine, MDMA 

has enhanced potency for 5-HT release and reduced potency for DA release [32]. It also acts 

as an agonist of 5-HT2A receptors [33] and, at high doses, as a 5-HT or DA neurotoxin in 

non-human primates, rats and mice, often associated with depletion of 5-HT or DA terminal 

markers [2].  

It is well established that MDMA has a different pharmacology in mouse compared to rat. In 

contrast to its selective 5-HT neurotoxicity in rats, after a binge schedule in mice (20-30 

mg/kg, t.i.d, 3 h intervals), it is a relatively selective DA neurotoxin without long-lasting effects 

on the 5-HT content. Long-term studies in rats demonstrated that after MDMA-induced 

neurotoxicity, significant (even complete) recovery may occur from 8 weeks to a whole year 

[34]. Nevertheless, other studies have shown incomplete recovery in certain brain areas or in 

particular animals after 12-18 months post-treatment [35, 36]. Another important finding from 

those time course studies in rats was the late appearance of a serotonergic hyperinnervation 

of certain subcortical brain areas, a phenomenon thought to reflect axonal/terminal sprouting 

following synaptic loss. 

In the present study, we applied a dosage schedule that imitated classic weekend 

recreational use of MDMA. The highest dose used was notably lower than the dose 

established as toxic in binge regimens [6], but we used a more extended treatment. Costa et 

al. [37] also used a prolonged and intermittent exposure (10 mg/kg two times in a day, twice 

per week during 9 weeks); nevertheless, we thought that once per week and administering 

increasing doses simulates better the pattern of consumption in adolescents. This treatment 

produced an initial reduction in TH-immunoreactivity in the SN, which agreed with the results 

of Costa et al. There were no previous reports of longer-term effects of MDMA on mice, but 

our results here indicate an irreversible effect on dopaminergic neurons in SN or, 
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alternatively, suggest that recovery from dopaminergic damage in mice takes more than 

three months. 

In the striatum, neurotransmitter analysis revealed initial major decrements in DA levels, 

which recovered three months later. This suggests an increase in catecholamine synthesis or 

a compensatory DA axonal sprouting and branching after synaptic loss; or both. Acute 

activation of striatal dopamine synthesis after MDMA could be a compensatory response to 

the carrier-mediated efflux of transmitter [38]. Regarding dopaminergic terminal regeneration 

(sprouting), it was reported in mice 30 days after MDMA exposure [39], and involves 

plasticity events such as reactive synaptogenesis and rerouting of axons to unusual 

locations. In parallel, MDMA-exposed mice significantly reduced the distance travelled and 

speed when assayed shortly after finishing the treatment. These results agree with the 

reduction of DA neurons in SN and with DA depletion in the striatum; and this depressant 

effect disappeared three months later, correlating with the restoration of striatal DA levels. 

In contrast, analysis of the hippocampus collected in 2w and 3m groups yielded no changes 

in the serotonergic marker (TPH2). In the same groups, previously to sacrifice, recognition 

memory was tested using the ORT. When this task was tested after a short retention interval 

(1h), the MDMA-treated mice performed similarly to control animals. However, when memory 

was tested after a long retention interval (24h), for which a key role of the hippocampus has 

been reported, the MDMA group showed a very significant deficit, which was maintained for 

a prolonged time ATET. We ruled out changes in the glucocorticoid receptor as the origin of 

these deficits. These results indicate a delay-dependent deleterious effect of the drug on 

recognition memory, and that the hippocampus is the structure mainly responsible. The 

hippocampus is involved in object recognition memory regardless of retention interval, but 

parahippocampal structures (e.g., perirhinal cortex) are sufficient to support object 

recognition memory over short retention intervals [40].  
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On the other hand, it has been suggested that structural plasticity associated with exposure 

to drugs of abuse reflects a reorganization of the patterns of synaptic connectivity which 

contributes to some of the persistent effects associated with drug use, including addiction. 

Exposure to amphetamine, cocaine, nicotine or morphine produces persistent changes in the 

structure of dendrites and dendritic spines on neurons in some brain regions, such as those 

associated with incentive motivation, reward and judgment [15]. Furthermore, persistent 

changes, such as those associated with learning and memory, are thought to be due to the 

reorganization of synaptic connections in brain circuits. Therefore MDMA, which induces 

anomalous neuroplasticity as a consequence of its addictive properties [41], could affect 

memory processes. This only could be possible if the plasticity changes are present in brain 

structures related to memory, such as hippocampus. Following rat developmental MDMA 

exposure, Williams et al. [42] found neuronal cytoarchitectural changes, which are long-

lasting and are in regions consistent with the learning and memory deficits observed in such 

animals. Eight weeks after chronic administration of MDMA to rats, van Nieuwenhuijzen et al. 

[43] reported residual changes in hippocampal proteins implicated in learning-related 

neuroplasticity, and our group reported increased hippocampal BDNF levels and an effect on 

spine density depending on cognitive training [27]. However, previously there were no data 

on the effects on mice, where the consequences of MDMA are known to be different. 

The cAMP response element-binding protein binds to CRE sites as a dimer and only 

activates transcription when both subunits are phosphorylated at their Ser133 residue (p-

CREB). As CREB can be phosphorylated at Ser133 by protein kinase A (PKA), p-CREB can 

be detected after DA type1 receptor stimulation by classical psychostimulants. P-CREB may 

initiate some long-term changes in neuronal circuit functions, thereby promoting the 

transcription of many genes, among them Arc, c-Fos, NR1 and NR2B. Therefore, CREB may 

be a universal modulator of processes required for memory formation [44]. Mice exposed to 

the assayed MDMA schedule showed constant levels of CREB but an increase in its 

phosphorylated form. It is worth stressing that these results were obtained in animals whose 
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MDMA exposure finished 2 weeks previously, indicating an important phosphorylation 

stimulus. This was confirmed by measuring c-Fos, a marker of cell activation that behaves 

similarly to p-CREB, which increased shortly after treatment but had then reverted 3 months 

ATET.  

Activity-regulated gene 3.1 (Arg3.1), also known as Arc, is an IEG that is regulated by BDNF- 

and CREB-dependent signaling [45, 46]. Arc protein acts as a stabilization factor for 

filamentous-actin, which results in the regulation of dendritic spine morphology [47, 48]. Arc 

could be considered a key regulator of protein synthesis-dependent forms of synaptic 

plasticity, which are thought to underlie memory storage [49]. In rats, single or repeated 

cocaine treatment, as well as long-term abstinence (48 days) following drug administration, 

all increase Arc expression [50–52], although it is associated, at the same time, with 

alterations in the finely tuned mechanisms that regulate Arc degradation [52]. In our 

experiments, MDMA increased Arc transcript and protein expression after two weeks of 

withdrawal, which was also evident, although reduced, after 3 months of withdrawal. These 

results indicate an intense effect of MDMA on synaptic plasticity particularly intense in the 

early stages of withdrawal which fades with time. 

In the same way, we assayed the effects of MDMA on BDNF. The mRNA related to BDNF 

gene and to that of Arc are induced by cellular activity and transported into dendrites, thereby 

promoting plasticity [22]. The changes in BDNF accumulate and rise with increasing periods 

of abstinence [53]. Martínez-Turrillas et al. [54] studied the effects of an acute administration 

of MDMA to rats. They found that after MDMA, BDNF mRNA levels were increased in frontal 

cortex, but reduced in hippocampus after 48 h, in spite of the marked increase at this time 

point in the levels of the transcription factor pCREB. Those authors attributed this variation to 

the high vulnerability of the rat hippocampus to the neurotoxic effects of the amphetamine. 

However, because hippocampus serotonergic neurotransmission is not affected by MDMA in 

mice, the consequences for BDNF levels are probably different. In neurons, the expression 
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of BDNF mRNA is enhanced when the AMPA-type glutamate receptor is activated [55, 56], 

and requires an increase in intracellular calcium concentrations [57, 58]. We found [59] that 

treatment with MDMA significantly disrupted calcium homeostasis, favoring glutamate 

release in the hippocampus. These results allowed us to speculate about a possible effect of 

MDMA on BDNF expression. Indeed, in this area, we observed that few days after treatment, 

BDNF mRNA levels were increased with no significant effects at protein levels. Conversely, 

BDNF mRNA levels were not affected 3 months after exposure, while it significantly 

increased protein levels. This suggests that prolonged exposure to MDMA differently affects 

BDNF transcription and translation. It is known [60] that after an appropriate stimulus, a 

homogenous increase of BDNF mRNAs is carried out in the cell body, and it can be 

selectively targeted to the active synapse or non-selectively translocated to dendrites, but 

trapped by an active spine, where it would be quickly translated to BDNF protein. Therefore 

BDNF mRNA and BDNF protein may be non-simultaneously stored in different locations 

inside the neurons [61], which would explain the discrepancy between mRNA and protein 

levels found in the present study. We cannot dismiss the idea that in our model, the absence 

of injury in the hippocampus is due to the generation of BDNF in this area [62]. 

In addition to being involved in learning plasticity and neural cell death [63], the 

glutamate/glutamatergic system is involved in addiction to several drugs of abuse [64]; but 

knowledge of glutamate receptor regulation following MDMA administration is limited. 

Kindlundh-Högberg et al. [65] investigated in adolescent rats the immediate effects of 

repeated intermittent MDMA administration upon gene-transcript levels of glutamatergic 

receptors. In contrast to other brain areas, they did not found changes in hippocampal NR1 

or NR2B expression, 10 h after the last injection. In our study, the evaluation of NR2B, PSD-

95 and synaptophysin also yielded constant levels, with only NR1 showing a tendency to 

decrease, which was not statistically significant. 
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Drugs of abuse, such as psychostimulants, usurp the normal basic reward function, 

essentially hijacking molecular and cellular processes, such as those involved in addiction, 

leading to persistent adaptive behavioral responses [64]. It is not completely understood to 

what extent these maladaptive changes in the reward circuit expand and affect other brain 

areas. In the present study, young mice exposed to intermittent and repeated doses of 

MDMA showed increased expression of key early markers of plasticity, which sometimes 

persisted for 3 months. Considering that the neuronal injury was detected in the SN but not in 

the hippocampus, we suggest that hippocampal maladaptive plasticity could explain the 

memory deficits evidenced here.  

 

Conclusions 

Mice exposed to an intermittent and repetitive schedule of MDMA for 8 weeks initially 

showed lower locomotor activity, concordant with the reduction of DA neurons in the SN and 

the depletion of DA in the striatum. Consistent with what happens with DA in the striatum, 3 

months after treatment, this hypolocomotor effect disappeared. Mice also exhibited deficits in 

recognition memory that persisted at least 3 months ATET. However, in the hippocampus, 

MDMA administration did not cause any changes in 5-HT terminals or in NMDA subunits, 

indicating that other mechanisms underlie MDMA-elicited memory deficits. These behavioral 

changes correlate with significant overexpression of hippocampal plasticity markers 

downstream of CREB phosphorylation, which could be the result of DA D1 receptor 

stimulation. It is especially worth stressing the long-lasting increase in BDNF protein after 

drug exposure.  
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FIGURE LEGENDS 

Figures were created using GraphPad Prism program 

Fig. 1: Assessment of recognition memory in animals exposed to saline or MDMA and tested 

one week (A, n=26) or three months (B, n=23) after the end of the treatment. The time spent 

exploring new object was registered 1 h and 24 h after the familiarization session, and 

expressed as measures of discrimination between the new and familiar object. Data are 

presented as mean ± SEM. Two-way ANOVA revealed a significant effect of delay time (2w 

F1,24 = 83.78, P <0.001; 3m: F1,21 = 33.23, P <0.001) and of the interaction treatment x delay 

time (2w: F1,24 = 4.27, P <0.05; 3m: F1,21 = 60.95, P <0.001). Post-hoc comparisons by 

Tukey’s procedure yielded the significances that are displayed in the graph. * P <0.05 vs 

time-matched saline.  

Fig. 2: Exposure to MDMA significantly decreased the TH positive neurons in the SN. Bar 

graph show the number of TH positive neurons in SN, two weeks after the last exposure to 

the drug. Data represent the mean ± SEM. Post-hoc Turkey test: * P<0.05 vs  saline. Panels 

show representative photomicrographs of the effects of Saline or MDMA on TH 

immunofluorescence in the SN, after 2 weeks of withdrawal. Scale bar: 50µM. 

Fig. 3: Long lasting effect of exposure to MDMA on TH positive neurons in the SN. Bar graph 

show the number of TH positive neurons in SN, 3 months after the last exposure to the drug. 

Data represent the mean ± SEM. Post-hoc Turkey test: * P<0.05 vs  saline. show 
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representative photomicrographs of the effects of MDMA on TH immunofluorescence in the 

SN, after 3 months of withdrawal. Scale bar: 50µM. 

Fig. 4: Effect of MDMA exposure on the expression of mouse hippocampal proteins CREB 

(A, C) and p-CREB (B, D). This was assessed two weeks (2w: A, B) or three months (3m: C, 

D) after the end of the treatment. Data are presented as mean ± SEM; * P <0.05 vs saline. 

Fig. 5: Effect of MDMA exposure on the expression of mouse hippocampal c-Fos mRNA 

transcript (A, C) and protein (B, D) tested two weeks (2w) or three months (3m) after the end 

of the treatment (A, B; and C, D, respectively). Data are presented as mean ± SEM; * P 

<0.05 vs saline. 

Fig. 6: Consequences of repeated and intermittent MDMA exposure for mouse hippocampal 

Arc mRNA transcript (A, C) and protein expression (B, D) assessed two weeks (2w: A, B) or 

three months (3m: C, D) after the end of the treatment. Data are presented as mean ± SEM; 

* P <0.05 and **P<0.01 vs saline. 

Fig. 7: Effect of MDMA exposure on mouse hippocampal BDNF mRNA transcript (A, C) and 

protein expression (B, D) tested two weeks (2w) or three months (3m) after the end of the 

treatment (A, B; and C, D, respectively). Data are presented as mean ± SEM; * P <0.05 vs 

saline. 

Fig. 8: Lack of specific regulation of synaptic plasticity-related proteins by repeated and 

intermittent MDMA treatment, in mouse hippocampus. Expression of the: NR1 (A, E), NR2 

(B, F), PSD-95 (C, G) and synaptophysin (D, H) proteins was evaluated two weeks (2w: A, B, 

C, D) or three months (3m: E, F, G, H) after the end of the treatment. Data are presented as 

mean ± SEM. 
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