El Niño–Southern Oscillation–like variability during glacial terminations and interlatitudinal teleconnections

L. D. Pena, I. Cacho, P. Ferretti, and M. A. Hall

Received 5 March 2008; accepted 27 May 2008; published 29 July 2008.

1 Interannual-decadal variability in the equatorial Pacific El Niño–Southern Oscillation (ENSO) induces climate changes at global scale, but its potential influence during past global climate change is not yet well constrained. New high-resolution eastern equatorial Pacific proxy records of thermocline conditions present new evidence of strong orbital control in ENSO-like variability over the last 275,000 years. Recurrent intervals of saltier thermocline waters are associated with the dominance of La Niña–like conditions during glacial terminations, coinciding with periods of low precession and high obliquity. The parallel dominance of δ13C-depleted waters supports the advection of Antarctic origin waters toward the tropical thermocline. This “oceanic tunneling” is proposed to have reinforced orbitally induced changes in ENSO-like variability, composing a complex high- and low-latitude feedback during glacial terminations.

1. Introduction

2 High-latitude regions have traditionally attracted most of the research attention addressing feedback processes involved in glacial-interglacial changes [Cane, 1998] whereas tropical regions have often been regarded as passive players in the course of past global climatic variability. Nowadays, we have unambiguous evidences demonstrating that the quasi regular phenomenon of El Niño–Southern Oscillation (ENSO), which operates at interannual-to-decadal timescales, is able to amend regional winds and precipitation patterns globally [Fedorov and Philander, 2000; Wang and Fiedler, 2006]. However, little is known about the role of the ENSO-like variability at glacial-interglacial timescales. Modeling studies suggest that ENSO-like variability is sensitive to orbital forcing, in particular to the effect that the orbital precession exerts on the tropics [Clement et al., 1999, 2000]. At present, the number of tropical records which can evaluate the mean state of ENSO on orbital timescales is still limited [Beaufort et al., 2001; Ravelo et al., 2006]. Most interest has been dedicated to suborbital timescales [Clement et al., 2000; Koutavas et al., 2006; Stott et al., 2002], particularly to the study of the ENSO-like variability over the last deglaciation. Evidences so far are conflicting; some studies consider the period of global deglaciation an “El Niño-like” state of climate whereas others infer “La Niña-like” conditions for the same period [Andreasen et al., 2001; Beaufort et al., 2001; Koutavas et al., 2006, 2002; Stott et al., 2002]. This study provides high-resolution paleoceanographic records from the eastern equatorial Pacific (EEP) that supports ENSO-like variability from multicentennial to orbital scales and enable a new assessment of the tropical Pacific role in past global climate changes.

2. Methods

3 Multiproxy records were established at Site 1240 (Ocean Drilling Program (ODP) Leg 202) from the northern flank of Carnegie Ridge (0°31.31′N, 86°27.76′W; 2,921 m water depth) in the Panama Basin (Figure 1a). One of the main oceanographic features at this location is the Equatorial Undercurrent (EUC), an eastward flowing subsurface current (50–300 m water depth) that transports thermocline waters from the western Pacific along the equator [Lucas, 1986; Tsuchiya et al., 1989] (Figures 1b–1d). Paired stable isotope (δ18O, δ13C) and trace element (Mg/Ca) measurements [Pena et al., 2005] were carried out on two planktonic foraminifera species (Globigerinoides ruber and Neogloboquadrina dutertrei) that inhabit surface and thermocline depths, respectively [Fairbanks et al., 1982]. The records therefore enable reconstruction of past EEP surface and thermocline properties. The age scale for Site 1240 was constructed from 17 accelerator mass spectrometry (AMS) 14C ages and graphical tuning of the deeper parts of the records to Vostok ice core paleoclimatic profile [auxiliary material Table S1]. Unprecedented high sedimentation rates at the site of 6.4–25.2 cm ka⁻¹ allow to establish fine-scale records (80–312 years per sample) that cover the last 275,000 years (275 ka) (see auxiliary material).

3. Results and Discussion

4 Glacial-interglacial amplitudes along the G. ruber δ18O record range from 1.3 to 2.7‰ (Figure 2b), whereas
the Mg/Ca–derived sea surface temperatures (SSTs) range from 3.2 to 4.5°C (Figure 2c) confirming similar variations previously reported in the area [Lea et al., 2000]. SSTs lead \(\delta^{18}O \) changes by 1 to 3 ka during glacial terminations, also in agreement with records from the EEP [Lea et al., 2000] and the Southern Ocean [Mashiotta et al., 1999]. Moreover, core top SST estimates derived from \textit{G. ruber} of 24.8 ± 1.2°C agree with the mean SST of the nonupwelling season (25.1°C) [Conkright et al., 2002] when \textit{G. ruber} is known to calcify [Fairbanks et al., 1982; Thunell and Reynolds, 1984]. The \textit{N. dutertrei} \(\delta^{18}O \) record exhibits reduced glacial-interglacial amplitudes (0.8–1.4‰) (Figure 2d), and the corresponding deep thermocline temperature (DTT) shows moderate warming (1.9–3.4°C) during terminations (Figure 2e). The core top temperature estimate for the DTT is 13.7±1.3°C which is typically encountered at 150–200 m in the water column [Conkright et al., 2002] (auxiliary material Figure S1). This depth range is immediately below the modern EEP thermocline and corresponds to the main core of the EUC (Figures 1b–1d) [Lukas, 1986].

In order to acquire more information about the paleoceanographic evolution at Site 1240 we have calculated the deep thermocline seawater \(\delta^{18}O \) estimate (DT-D\(\delta^{18}O \)sw), as a proxy of local salinity changes (Figure 2f). The DT-D\(\delta^{18}O \)sw calculation involved the subtraction of the temperature effect (DTT) from the \textit{N. dutertrei} \(\delta^{18}O \) record and the removal of the global sea level component [Waelbroeck et al., 2002] of the seawater \(\delta^{18}O \) composition. A relative change of 1 ± 0.4‰ in the DT-D\(\delta^{18}O \)sw composition corresponds to a salinity change of ~2.1 ± 0.7 practical salinity units (psu).
Figure 2
forcing due to obliquity is relatively small (<3 W m⁻²), the 41 ka periodicities in tropical marine proxy records are unlikely to arise as a direct climate response to the obliquity component of local insolation [Lee and Poulson, 2005]. Indeed, some periods that would be expected to show large positive DT-δ¹⁸O_{sw} events at 110, 150 and 190 ka, in view of low-precession values, are actually recording minor or absent DT-δ¹⁸O_{sw} events coinciding with relatively low-obliquity values (Figure 3). Thus, according to these results, precession can be seen as the pacemaker of the EEP DT-δ¹⁸O_{sw} variations with obliquity acting to modulate the signal amplitude. Such relationship is clearly illustrated during terminations (Figures 3e–3g), when the existing orbital configurations (low precession and high obliquity) promoted the largest DT-δ¹⁸O_{sw} excursions corresponding to sustained and/or strong upwelling (La Niña–like) periods in the EEP. It has been suggested that this obliquity imprint may have propagated from high-to-low latitudes via atmospheric teleconnections [Chiang and Lintner, 2005] or through thermocline circulation via the so-called “oceanic tunnel” [Bostock et al., 2004; Fedorov et al., 2006; Lee and Poulson, 2005]. Further support to the idea that obliquity forcing propagated through tropical thermocline rather than through atmospheric changes, emerges from the occurrence of intense negative δ¹³C excursions at the EEP thermocline preceding the last three terminations (Figure 2g). This persistent feature of planktonic foraminiferal records from Indo-Pacific, south Atlantic and sub-Antarctic records [Ninnemann and Charles, 1997; Shackleton et al., 1983; Spero and Lea, 2002] suggests a southern source for this signal. At Site 1240, δ¹³C minima are similar in amplitude and duration to previously published δ¹³C records from nearby cores [Shackleton et al., 1983; Spero and Lea, 2002]. Interestingly, the onset of the *N. dutertrei* δ¹³C negative excursions is synchronous in time with the DTT warming (see auxiliary material Figure S4). *Spero and Lea [2002]* suggest that δ¹³C minima in glacial terminations in the EEP derive from Southern Ocean deep water mass as transmitted into the Indo-Pacific thermocline via the Sub-Antarctic Mode Water/Antarctic Intermediate Water (SAMW/AAIW). Although the oceanic pathways between the Sub-Antarctic water masses and tropical thermocline are not well constrained, it is clear that the waters transported by the EUC are mostly fed by sub-Antarctic water masses [Lukas, 1986; Tsutsumi et al., 1989], particularly by SAMW formed north of the sub-Antarctic front [Toggweiler et al., 1991] (Figure 4). During glacial periods, the combination of weaker thermohaline circulation and increased circum-Antarctic ice-induced stratification resulted in a reduced

Figure 2. Records from ODP 1240 over the past 275 ka. (a) Antarctic Vostok deuterium (δD) (see auxiliary material). (b) *G. ruber* δ¹⁸O record. (c) *G. ruber* SST_{Mg/Ca}. (d) *N. dutertrei* δ¹⁸O record. (e) *N. dutertrei* DTT_{Mg/Ca}. (f) Calculated DT-δ¹⁸O_{sw} (% Vienna SMOW), after removal of global ice volume effect, as a proxy for relative salinity changes in the EEP thermocline. Vertical bar indicates associated error ±0.45%. (g and h) The δ¹³C records measured on *N. dutertrei* and *G. ruber*, respectively. Oxygen and carbon isotopic values are in ‰o (Vienna Pee Dee belemnite). Age control points along the top axis are ¹⁴C AMS (red), SST tie points to the Vostok deuterium record (black), and *N. dutertrei* δ¹³C tie points to the Vostok CO₂ record for terminations II and III (purple) (see auxiliary material). Marine isotopic stages (MIS) 1–8 are labeled for reference. Vertical dashed lines indicate the onset of DTT warming associated to the last three terminations. A three-point moving average filter was applied to SST, DTT, and DT-δ¹⁸O_{sw}.
Figure 3
ventilation and δ^{13}C depletion of lower Circumpolar Deep Water (CPDW) [Stephens and Keeling, 2000; Toggweiler, 1999]. However, during terminations, Antarctic sea ice starts to withdraw because of increased seasonal insolation (high obliquity), at the time that the EEP shows predominant La Niña–like conditions (low precession) which promote a southward shift of the westerlies (Figure 4). This interpretation is supported by modeling studies [Toggweiler, 1999; Toggweiler et al., 2006] and has been recently confirmed by a compilation of meteorological satellite information during El Niño and La Niña periods [Yuan, 2004] (see auxiliary material Figure S2). A southward displacement of the westerlies would reinforce the Antarctic Circumpolar Current (ACC) around Antarctica and, therefore, stimulate the resumption of the Circumpolar Deep Water (CPDW) upwelling. Finally, the Southern Ocean signal (−δ^{13}C) is transmitted through intermediate waters mostly Sub-Antarctic Mode Water (SAMW) into tropical thermocline and incorporated in the EUC. However, the precise pathways for this “tunneling” of intermediate waters have not been well constrained yet. ITCZ is Intertropical Convergence Zone; AAIW is Antarctic Intermediate Water.

Figure 3. Relationship between DT-δ^{18}O_{sw} record and the orbital parameters. (a) Comparison of precession versus DT-δ^{18}O_{sw} band-pass Gaussian filter in the precession band (0.0435 ka^{-1} and band width of 0.005 ka^{-1}). (b) DT-δ^{18}O_{sw} record versus DT-δ^{18}O_{sw} band-pass Gaussian filter in the precession band. (c) Comparison of obliquity versus DT-δ^{18}O_{sw} band-pass Gaussian filter in the obliquity band (0.0244 ka^{-1} and band width of 0.005 ka^{-1}). (d) DT-δ^{18}O_{sw} record versus DT-δ^{18}O_{sw} band-pass Gaussian filter in the obliquity band. (e–g) Detailed views of terminations I–III, respectively, in DT-δ^{18}O_{sw} compared to orbital precession and obliquity. SP and WP stand for summer and winter perihelion, respectively. Yellow bands correspond to major DT-δ^{18}O_{sw} excursions, whereas gray bands relate to minor events. The choice of band widths in the range of 0.003–0.01 ka^{-1} does not appreciably affect the Gaussian filters outputs.

Figure 4. Schematic illustration of the discussed oceanic and atmospheric feedback processes that acted as a high- and low-latitude teleconnection mechanism during glacial terminations. The asymmetric seasonal insolation during low-precession periods enhances the tropical Pacific E-W SST gradient, eventually developing La Niña–like conditions in the EEP. These conditions promote a southward shift of the westerlies, which in combination with a reduced circum-Antarctic sea ice (high obliquity) produce an intensification of the Antarctic Circumpolar Current (ACC) and a resumption of the Circumpolar Deep Water (CPDW) upwelling. Finally, the Southern Ocean signal (−δ^{13}C) is transmitted through intermediate waters mostly Sub-Antarctic Mode Water (SAMW) into tropical thermocline and incorporated in the EUC. However, the precise pathways for this “tunneling” of intermediate waters have not been well constrained yet. ITCZ is Intertropical Convergence Zone; AAIW is Antarctic Intermediate Water.
within a century or less [Tsuchiya, 1991], thus establishing a nearly synchronous high- and low-latitude oceanographic link between the EEP and Antarctica (Figure 4).

4. Conclusions

[7] Our results from Site 1240 demonstrate that precession was the dominant forcing controlling past changes in the EEP upwelling intensity and that the obliquity signal at high latitudes acted as an amplifier-inhibitor mechanism of the low-latitude precession forcing. These high- and low-latitude teleconnections occur through the atmosphere by latitudinal shifts in winds belts and through the ocean by propagation of intermediate water masses from polar regions into tropical thermocline waters. This study provides new insights on the causes of glacial terminations and highlights the relevance of ENSO-like dynamics as an active positive feedback mechanism in both high- and low-latitude changes. This EEP–Southern Ocean linkage needs to be further implemented in climate models of past reconstructions and future predictions.

References

I. Cacho and L. D. Pena, GRC Geociències Marines, Department of Stratigraphy, Paleontology and Marine Geosciences, University of Barcelona, C/Marti i Franquès, s/n, E-08028 Barcelona, Spain. (icacho@ub.edu; lpena@ub.edu)
P. Ferretti and M. A. Hall, Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.